Displaying publications 21 - 40 of 81 in total

Abstract:
Sort:
  1. Nurul Izzah, A., Wan Rozita, W.M., Siti Fatimah, D., Aminah, A., Md Pauzi, A., Lee, Y.H.
    MyJurnal
    A survey was conducted to investigate patterns of fruits and vegetables consumption among Malaysian adults residing in Selangor, Malaysia. Two hundred forty two subjects comprises of male (28%) and female (72%) of major ethnics (Malays-52.3%; Chinese-30.5%; Indians-16.9%) with the mean age of 43.5±18 years were studied from July to November 2002. Consumption data for vegetables were collected using 24 hours duplicate samples method while for fruits 24-hour diet record was used. The results showed that most frequently consumed leafy, leguminous, root, brassica and fruits vegetables were celery (Apium graveolens), spinach (Spinacia oleracea), water spinach (Ipomoea aquatic), long beans (Vigna sesquipedolis), French beans (Phaseolus vulgaris), carrot (Daucas carota), potato (Solanum tuberosum), Chinese mustard (Brassica juncea), round cabbage (Brassica reptans), cauliflower (Brassica oleracea var cauliflora), chilies (red, green, small or dried) (Capsicum sp.), tomato (Lycopersicum esculentum), cucumber (Cucumis sativus), long eggplant (Solanum melongena) and okra (Hibiscus esculentus). While most consumed ulam and traditional vegetables were petai (Parkia speciosa), sweet leaves (Sauropus andragynus) and Indian pennywor (Hydrocotyle asiatica). Other vegetables inclusive spices and flavorings that were preferred by subjects were shallot (Allium fistulosum), garlic(Allium sativum), onion (Alium cepa), green bean sprout (Phaseolus aureus) and curry leaves (Murraya koenigii). The most preferred fruits were banana (Musa spp.) and apples (.Malus domestica). A total consumption of fruits and vegetables among adults in Selangor was 173 g/day and the consumption among Malays (202 g/day) was significantly higher (P
    Matched MeSH terms: Solanum tuberosum
  2. Kadiri M, Sevugapperumal N, Nallusamy S, Ragunathan J, Ganesan MV, Alfarraj S, et al.
    Microbiol Res, 2023 Mar;268:127277.
    PMID: 36577205 DOI: 10.1016/j.micres.2022.127277
    Management of late blight of potato incited by Phytophthora infestans remains a major challenge. Coevolution of pathogen with resistant strains and the rise of fungicide resistance have made it more challenging to prevent the spread of P. infestans. Here, the anti-oomycete potential of Bacillus velezensis VB7 against P. infestans through pan-genome analysis and molecular docking were explored. The Biocontrol potential of VB7 against P. infestans was assessed using a confrontational assay. The biomolecules from the inhibition zone were identified and subjected to in silico analysis against P. infestans target proteins. Nucleotide sequences for 54 B. velezensis strains from different geographical locations were used for pan-genome analysis. The confrontational assay revealed the anti-oomycetes potential of VB7 against P. infestans. Molecular docking confirmed that the penicillamine disulfide had the maximum binding energy with eight effector proteins of P. infestans. Besides, scanning electron microscopic observations of P. infestans interaction with VB7 revealed structural changes in hypha and sporangia. Pan-genome analysis between 54 strains of B. velezensis confirmed that the core genome had 2226 genes, and it has an open pan-genome. The present study confirmed the anti-oomycete potential of B. velezensis VB7 against P. infestans and paved the way to explore the genetic potential of VB7.
    Matched MeSH terms: Solanum tuberosum*
  3. Nasehi A, Kadir JB, Esfahani MN, Mahmodi F, Ghadirian H, Ashtiani FA, et al.
    Plant Dis, 2013 May;97(5):689.
    PMID: 30722190 DOI: 10.1094/PDIS-10-12-0902-PDN
    In June 2011, lettuce (Lactuca sativa) plants cultivated in major lettuce growing areas in Malaysia, including the Pahang and Johor states, had extensive leaf spots. In severe cases, disease incidence was recorded more than 80%. Symptoms on 50 observed plants initially were as water soaked spots (1 to 2 mm in diameter) on leaves, and then became circular spots spreading over much of the leaves. In this research, main lettuce growing areas infected by the pathogen in the mentioned states were investigated and the pathogen was isolated onto potato dextrose agar (PDA). Colonies observed were greyish green to light brown. Single conidia were formed at the terminal end of conidiophores that were 28.8 to 40.8 μm long and 11.0 to 19.2 μm wide, and 2 to 7 transverse and 1 to 4 longitudinal septa. To produce conidia, the fungus was grown on potato carrot agar (PCA) and V8 juice agar media under 8-h/16-h light/dark photoperiod. Fourteen isolates were identified Stemphylium solani based on morphological criteria described by Kim et al. (1). To confirm morphological characterization, DNA of the fungus was extracted from mycelium and PCR was done using universal primers ITS5 (5'-GGAAGTAAAAGTCGTAACAAGG-3') and ITS4 (5'-TCCTCCGCTTATTGATATGC-3'), which amplified the internal transcribed spacer (ITS) region of rDNA (2). The sequencing result was subjected to BLAST analysis which was 99% identical to the other published sequences in the GenBank database (GenBank Accession Nos. AF203451 and HQ840713). The nucleotide sequence was deposited in GenBank under Accession No. JQ736022. Pathogenicity testing of representative isolate was done using 20 μl of conidial suspension with a concentration of 1 × 105/ml in droplets (three drops on each leaf) on four detached 45-day-old lettuce leaves cv. BBS012 (3). Fully expended leaves were placed on moist filter paper in petri dishes and were incubated in humid chambers at 25°C. The leaves inoculated with sterile water served as control. After 7 days, disease symptoms were observed, which were similar to those symptoms collected in infected fields and the fungus was reisolated and confirmed as S. solani based on morphological criteria (1) and molecular characterization (2). Control leaves remained healthy. Pathogenicity testing was completed twice. To our knowledge, this is the first report of S. solani on lettuce in Malaysia and it may become a serious problem because of its broad host range, variability in pathogenic isolates, and prolonged active phase of the disease cycle. Previous research has shown that S. solani is a causal agent of gray leaf spot on lettuce in China (4). References: (1) B. S. Kim et al. Plant Pathol. J. 20:85, 2004. (2) Y. R. Mehta et al. Current Microbiol. 44:323, 2002. (3) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002. (4) F. L. Tai. Sylloge Fungorum Sinicorum, Sci. Press, Acad. Sin., Peking, 1979.
    Matched MeSH terms: Solanum tuberosum
  4. Siti Nursyazwani Maadon, Sarini Ahmad Wakid, Iwana Izni Zainudin, Lili Syahani Rusli, Mohd Syahril Mohd Zan, Nor’Aishah Hasan, et al.
    Sains Malaysiana, 2018;47:3025-3030.
    Endophytic fungi are those living inside the host plant without causing any apparent negative effect on the host plant. Two
    isolates endophytic fungi from leaves and two isolates from root at Universiti Teknologi MARA (UiTM) Reserve Forest,
    Negeri Sembilan were successfully isolated and identified by morphology and molecular characteristic. Samples were
    surface sterilized and sub-cultured to obtain a pure culture. Characteristics of the isolates such as colony appearance,
    mycelial texture, conidia/spores and pigmentation were studied to explore their morphology. Isolates were also subjected to
    a PCR-based genotyping test. There were noticeable differences in morphological characteristics among the four isolates.
    Microscopic analysis showed four isolates consist of septa and conidia/spores. The pigmentation result showed that
    colony in A1leaf samples demonstrated an orange color on potato dextrose agar (PDA) media, colony in A1root demonstrate
    a black texture in PDA media while hairy colonies in the others two isolates showed a white color on PDA media. Based on
    molecular analyses the fungal genera showed 99-100% similarity with the related fungi recorded in the GenBank. Both
    morphology and molecular sequencing of internal transcribed spacer (ITS) regions of endophytic fungi showed that three
    isolates (A1root, C2leaf, and C3root) were grouped in Basidiomycota while one isolate (A1leaf) belonged to Ascomycota. The
    endophyte funguses were identified as Daldinia sp. (A1leaf), Polyporales sp. (A1root,) Lentinus sp. (C2leaf,) and Rigidoporus
    sp. (C3root). Overall, the new discoveries of isolated endophyte fungal have dyeing potential of fungal pigments which
    offer a viable alternative to natural vegetable and harmful synthetic dyes.
    Matched MeSH terms: Solanum tuberosum
  5. Guo L, Zhu XQ, Hu CH, Ristaino JB
    Phytopathology, 2010 Oct;100(10):997-1006.
    PMID: 20839935 DOI: 10.1094/PHYTO-05-09-0126
    One hundred isolates of Phytophthora infestans collected from 10 provinces in China between 1998 and 2004 were analyzed for mating type, metalaxyl resistance, mitochondrial DNA (mtDNA) haplotype, allozyme genotype, and restriction fragment length polymorphism (RFLP) with the RG-57 probe. In addition, herbarium samples collected in China, Russia, Australia, and other Asian countries were also typed for mtDNA haplotype. The Ia haplotype was found during the first outbreaks of the disease in China (1938 and 1940), Japan (1901, 1930, and 1931), India (1913), Peninsular Malaysia (1950), Nepal (1954), The Philippines (1910), Australia (1917), Russia (1917), and Latvia (1935). In contrast, the Ib haplotype was found after 1950 in China on both potato and tomato (1952, 1954, 1956, and 1982) and in India (1968 and 1974). Another migration of a genotype found in Siberia called SIB-1 (Glucose-6-phosphate isomerase [Gpi] 100/100, Peptidase [Pep] 100/100, IIa mtDNA haplotype) was identified using RFLP fingerprints among 72% of the isolates and was widely distributed in the north and south of China and has also been reported in Japan. A new genotype named CN-11 (Gpi 100/111, Pep 100/100, IIb mtDNA haplotype), found only in the south of China, and two additional genotypes (Gpi 100/100, Pep 100/100, Ia mtDNA haplotype) named CN-9 and CN-10 were identified. There were more diverse genotypes among isolates from Yunnan province than elsewhere. The SIB-1 (IIa) genotype is identical to those from Siberia, suggesting later migration of this genotype from either Russia or Japan into China. The widespread predominance of SIB-1 suggests that this genotype has enhanced fitness compared with other genotypes found. Movement of the pathogen into China via infected seed from several sources most likely accounts for the distribution of pathogen genotypes observed. MtDNA haplotype evidence and RFLP data suggest multiple migrations of the pathogen into China after the initial introduction of the Ia haplotype in the 1930s.
    Matched MeSH terms: Solanum tuberosum/microbiology
  6. Doni F, Isahak A, Che Mohd Zain CR, Mohd Ariffin S, Wan Mohamad WN, Wan Yusoff WM
    Springerplus, 2014;3:532.
    PMID: 25279323 DOI: 10.1186/2193-1801-3-532
    BACKGROUND: Trichoderma sp. SL2 has been previously reported to enhance rice germination, vigour, growth and physiological characteristics. The use of Potato Dextrose Agar as carrier of Trichoderma sp. SL2 inoculant is not practical for field application due to its short shelf life and high cost. This study focuses on the use of corn and sugarcane bagasse as potential carriers for Trichoderma sp. SL2 inoculants.

    FINDINGS: A completely randomized design was applied for this study. Trichoderma sp. SL2 suspension mixed with corn and sugarcane bagasse were used as treatment mixture in soil. Growth parameters including rice seedling height, root length, wet weight, leaf number and biomass were measured and compared to control. The results showed that Trichoderma sp. SL2 mixed with corn significantly enhanced rice seedlings root length, wet weight and biomass compared to Trichoderma sp. SL2 mixed with sugarcane bagasse and control.

    CONCLUSION: Corn can be a potential carrier for Trichoderma spp. inoculants for field application.

    Matched MeSH terms: Solanum tuberosum
  7. Nasehi A, Kadir JB, Abidin MAZ, Wong MY, Mahmodi F
    Plant Dis, 2012 Aug;96(8):1226.
    PMID: 30727066 DOI: 10.1094/PDIS-03-12-0223-PDN
    In June 2011, tomatoes (Solanum lycopersicum) in major growing areas of the Cameron Highlands and the Johor state in Malaysia were affected by a leaf spot disease. Disease incidence exceeded 80% in some severely infected regions. Symptoms on 50 observed plants initially appeared on leaves as small, brownish black specks, which later became grayish brown, angular lesions surrounded by a yellow border. As the lesions matured, the affected leaves dried up and became brittle and later developed cracks in the center of the lesions. A survey was performed in these growing areas and 27 isolates of the pathogen were isolated from the tomato leaves on potato carrot agar (PCA). The isolates were purified by the single spore technique and were transferred onto PCA and V8 agar media for conidiophore and conidia production under alternating light (8 hours per day) and darkness (16 hours per day) (4). Colonies on PCA and V8 agar exhibited grey mycelium and numerous conidia were formed at the terminal end of conidiophores. The conidiophores were up to 240 μm long. Conidia were oblong with 2 to 11 transverse and 1 to 6 longitudinal septa and were 24 to 69.6 μm long × 9.6 to 14.4 μm wide. The pathogen was identified as Stemphylium solani on the basis of morphological criteria (2). In addition, DNA was extracted and the internal transcribed spacer region (ITS) was amplified by universal primers ITS5 and ITS4 (1). The PCR product was purified by the commercial PCR purification kit and the purified PCR product sequenced. The resulting sequences were 100% identical to published S. solani sequences (GenBank Accestion Nos. AF203451 and HQ840713). The amplified ITS region was deposited with NCBI GenBank under Accession No. JQ657726. A representative isolate of the pathogen was inoculated on detached 45-day-old tomato leaves of Malaysian cultivar 152177-A for pathogenicity testing. One wounded and two nonwounded leaflets per leaf were used in this experiment. The leaves were wounded by applying pressure to leaf blades with the serrated edge of a forceps. A 20-μl drop of conidial suspension containing 105 conidia/ml was used to inoculate these leaves (3). The inoculated leaves were placed on moist filter paper in petri dishes and incubated for 48 h at 25°C. Control leaves were inoculated with sterilized distilled water. After 7 days, typical symptoms for S. solani similar to those observed in the farmers' fields developed on both wounded and nonwounded inoculated leaves, but not on noninoculated controls, and S. solani was consistently reisolated. To our knowledge, this is the first report of S. solani causing gray leaf spot of tomato in Malaysia. References: (1) M. P. S. Camara et al. Mycologia 94:660, 2002. (2) B. S. Kim et al. Plant Pathol. J. 15:348, 1999. (3) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002. (4) E. G. Simmons. CBS Biodiversity Series 6:775, 2007.
    Matched MeSH terms: Solanum tuberosum
  8. Ko Y, Liu CW, Chen CY, Maruthasalam S, Lin CH
    Plant Dis, 2009 Jul;93(7):764.
    PMID: 30764368 DOI: 10.1094/PDIS-93-7-0764A
    Mango (Mangifera indica L.) is grown on approximately 20,000 ha in Taiwan. It is an economically important crop and the income of many fruit farmers comes primarily from mango production. During 2006 and 2007, a stem-end rot disease was observed 1 week after harvest on 28 to 36% of stored mangoes picked from six orchards in the Pingtung, Tainan, and Kaoshiung regions. Two popular mango cultivars, Keitt and Irwin, showed greater susceptibility to this disease, while 'Haden' was found to be moderately susceptible. In storage, symptoms initially appeared as light-to-dark brown lesions surrounding peduncles. Rot symptoms advanced slowly but eventually penetrated the mesocarp, which consequently reduced the commercial value of fruits. The fungus formed abundant pycnidia (0.1 to 0.6 mm in diameter) on infected fruits in advanced stages of symptom development. Pieces of symptomatic fruits plated on acidified potato dextrose agar (PDA) and incubated at 25 ± 1°C consistently yielded the same fungus. A single conidial isolate was cultured. Pycnidia developed on PDA after continuous exposure to light for 9 to 14 days. On the basis of morphological characteristics, the fungus was identified as Phomopsis mangiferae L. (2,3). Pycnidia released two types of conidia: α-conidia (5 to 10 × 2.3 to 4.0 μm) were hyaline and oval to fusoid; and β-conidia (15.0 to 37.5 × 1.3 to 2.5 μm) were hyaline and filiform with characteristic curves. Conidiophores were hyaline, filiform, simple or branched, septate, and 15 to 75 μm long. Cultures incubated under continuous fluorescent light (185 ± 35 μE·m-2·s-1) at 25°C for 3 days were used as inoculum for pathogenicity tests. Five fruits from 'Keitt' were wounded with a sterilized scalpel and each wound (2 × 2 × 2 mm) was inoculated with either a 5-mm mycelium agar plug or a 0.5-ml spore suspension (105 conidia per ml) of the fungus. Five wounded fruits inoculated with 5-mm PDA plugs or sterile water alone served as controls. Inoculated areas were covered with moist, sterile cotton. Fruits were enclosed in plastic bags and incubated at 24°C for 3 days. The test was performed three times. The same symptoms were observed on all inoculated fruits, whereas no decay was observed on control fruits. Reisolations from the inoculated fruits consistently yielded P. mangiferae, thus fulfilling Koch's postulates. This disease has previously been reported in Australia, Brazil, China, Cuba, India, Malaysia, and the United States (1). To our knowledge, this is the first report of P. mangiferae causing stem-end rot disease on mangoes in Taiwan. Our report necessitates taking preventive strategies in the field, prior to or after harvest, to contain postharvest losses in mangoes. References: (1) G. I. Johnson. Page 39 in: Compendium of Tropical Fruit Diseases. R. C. Ploetz et al., eds. The American Phytopathological Society. St. Paul, MN, 1994. (2) R. C. Ploetz, ed. Page 354 in: Diseases of Tropical Fruit Crops. CABI Publishing. Wallingford, UK, 2003. (3) E. Punithalingam. No. 1168 in: Descriptions of Pathogenic Fungi and Bacteria. CMI, Kew, Surrey, UK, 1993.
    Matched MeSH terms: Solanum tuberosum
  9. Golkhandan E, Kamaruzaman S, Sariah M, Abidin MAZ, Nazerian E, Yassoralipour A
    Plant Dis, 2013 May;97(5):685.
    PMID: 30722205 DOI: 10.1094/PDIS-08-12-0759-PDN
    In August 2011, sweet potato (Ipomoea batatas), tomato (Solanum lycopersicum), and eggplant (S. melongena) crops from major growing areas of the Cameron highlands and Johor state in Malaysia were affected by a soft rot disease. Disease incidence exceeded 80, 75, and 65% in severely infected fields and greenhouses of sweet potato, tomato, and eggplant, respectively. The disease was characterized by dark and small water-soaked lesions or soft rot symptoms on sweet potato tubers, tomato stems, and eggplant fruits. In addition, extensive discoloration of vascular tissues, stem hollowness, and water-soaked, soft, dark green lesions that turned brown with age were observed on the stem of tomato and eggplant. A survey was performed in these growing areas and 22 isolates of the pathogen were obtained from sweet potato (12 isolates), tomato (6 isolates), and eggplant (4 isolates) on nutrient agar (NA) and eosin methylene blue (EMB) (4). The cultures were incubated at 27°C for 2 days and colonies that were emerald green on EMB or white to gray on NA were selected for further studies. All bacterial cultures isolated from the survey exhibited pectolytic ability on potato slices. These bacterial isolates were gram negative; rod shaped; N-acetylglucosaminyl transferase, gelatin liquefaction, and OPNG positive; and were also positive for acid production from D-galactose, lactosemelibiose, raffinose, citrate, and trehalose. They were negative for indol production, phosphatase activity, reducing substances from sucrose, and negative for acid production from maltose, sorbitol, inositol, inolin, melezitose, α-mathyl-D-glocoside, and D-arabitol. The bacteria did not grow on NA at 37°C. Based on these biochemical and morphological assays, the pathogen was identified as Pectobacterium wasabiae (2). In addition, DNA was extracted and PCR assay with two primers (16SF1 and 16SR1) was performed (4). Partial sequences of 16S rRNA (GenBank Accession Nos. JQ665714, JX494234, and JX513960) of sweet potato, tomato, and eggplant, respectively, exhibited a 99% identity with P. wasabiae strain SR91 (NR_026047 and NR_026047.1). A pathogenicity assay was carried out on sweet potato tubers (cv. Oren), tomato stems (cv. 152177-A), and eggplant fruits (cv. 125066x) with 4 randomly representative isolates obtained from each crop. Sweet potato tubers, tomato stems, and eggplant fruits (4 replications) were sanitized in 70% ethyl alcohol for 30 s, washed and rinsed in sterile distilled water, and needle punctured with a bacterial suspension at a concentration of 108 CFU/ml. Inoculated tubers, stems, and fruits were incubated in a moist chamber at 90 to 100% RH for 72 h at 25°C when lesions were measured. All inoculated tubers, stems, and fruits exhibited soft rot symptoms after 72 h similar to those observed in the fields and greenhouses and the same bacteria were consistently reisolated. Symptoms were not observed on controls. The pathogenicty test was repeated with similar results. P. wasabiae have been previously reported to cause soft rot on Japanese horseradish (3), and aerial stem rot on potato in New Zealand (4), the U.S. (2), and Iran (1). To our knowledge, this is the first report of sweet potato, tomato, and eggplant soft rot caused by P. wasabiae in Malaysia. References: (1) S. Baghaee-Ravari et al. Eur. J. Plant Pathol. 129:413, 2011. (2) S. De Boer and A. Kelman. Page 56 in: Laboratory Guide for Identification of Plant Pathogenic Bacteria, 3rd ed. N. Schaad et al., eds. APS Press, St. Paul, 2001. (3) M. Goto et al. Int. J. Syst. Bacteriol. 37:130, 1987. (4) A. R. Pitman et al. Eur. J. Plant Pathol. 126:423, 2010.
    Matched MeSH terms: Solanum tuberosum
  10. Nazerian E, Sijam K, Zainal Abidin MA, Vadamalai G
    Plant Dis, 2011 Nov;95(11):1474.
    PMID: 30731752 DOI: 10.1094/PDIS-10-10-0754
    Cucumber (Cucumis sativus L.) is one of the most important vegetable fruits in Malaysia. Cucumber is principally grown in the states of Johor, Kelantan, and Perak. The broad host range Enterobacteriaceae pathogen, Pectobacterium carotovorum, can cause soft rot on stems or cucumber fruit. In Malaysia, cucumber is produced in a warm, humid climate, thus the plant is susceptible to attack by P. carotovorum at any time during production. In 2010, cucumber samples with wilted and chlorotic leaves, water-soaked lesions, and collapsed fruits were found in multiple fields. Small pieces of infected stems and fruit were immersed in 5 ml of saline solution (0.85% NaCl) for 20 min and then 50 μl of this suspension was spread onto nutrient agar (NA) and incubated at 27°C for 24 h. White-to-pale gray colonies with irregular margins were selected for analysis. For pathogenicity tests, cucumber fruits were surface sterilized by ethyl alcohol 70%, washed with sterilized distilled water, cut into small pieces, and inoculated with 20 μl of 108 CFU/ml suspensions of five representative strains. Cucumber plants were grown for 3 weeks in sterilized soil and their stems were inoculated with 20 μl of 108 CFU/ml of bacterial suspension. Inoculated samples and control (noninoculated) plants were placed in a growth chamber with 80 to 90% relative humidity at 27°C. Symptoms occurred on fruit slices and stems after 1 to 3 days and appeared the same as naturally infected samples, but the control samples remained healthy. Koch's postulates were fulfilled with the reisolation of cultures with the same characteristics as described earlier. Hypersensitivity reaction (HR) assays were done by infiltrating 108 CFU/ml of bacterial suspension into tobacco leaf epidermis and HR developed. All strains were subjected to biochemical and morphological assays, as well as molecular assessment. The strains were gram negative, facultative anaerobes, rod shaped, able to macerate potato slices and growth at 37°C; catalase positive; oxidase and phosphatase negative; able to degrade pectate; sensitive to erythromycin; negative for utilization of α-methyl glycoside, indole production, and reduction of sugars from sucrose; acid production from arabitol, sorbitol, and utilization of citrate were negative, but positive for raffinose and melibiose utilization. PCR amplification of the pel gene by Y1 and Y2 primers produced a 434-bp fragment on agarose gel 1% (1). Amplification of intergenic transcribed spacer region by G1 and L1 primers gave two main bands at approximately 535 and 580 bp on agarose gel 1.5%. The ITS-PCR products were digested with RsaI restriction enzyme (3). On the basis of biochemical and morphological characteristics, PCR-based pel gene and characterization of the ITS region, and digestion of the ITS-PCR products with RsaI restriction enzyme, all isolates were identified as P. carotovorum subsp. carotovorum. To our knowledge, this is the first report of soft rot caused by P. carotovorum subsp. carotovorum on cucumber from Malaysia. References: (1) A. Darraas et al. Appl. Environ. Microbiol. 60:1437, 1994. (2) N. W Schaad et al. Laboratory Guide for the Identification of Plant Pathogenic Bacteria. 3rd ed. The American Phytopathological Society Press, St. Paul, 2001. (3) I. K. Toth et al. Appl. Environ. Microbiol. 67:4070, 2001.
    Matched MeSH terms: Solanum tuberosum
  11. Li BX, Shi T, Liu XB, Lin CH, Huang GX
    Plant Dis, 2014 Jul;98(7):1008.
    PMID: 30708897 DOI: 10.1094/PDIS-01-14-0004-PDN
    Rubber tree (Hevea brasiliensis) is an important crop in tropical regions of China. In October 2013, a new stem rot disease was found on cv. Yunyan77-4 at a rubber tree plantation in Hekou, Yunnan Province. There were about 100 plants, and diseased rubber trees accounted for 30% or less. Initially, brown-punctuate secretion appeared on the stem, which was 5 to 6 cm above the ground. Eventually, the secretion became black and no latex produced from the rubber tree bark. After removing the secretion, the diseased bark was brown putrescence, but the circumambient bark was normal. Upon peeling the surface bark, the inner bark and xylem had brown rot and was musty. The junction between health and disease was undulate. On the two most serious plants, parts of leaves on the crown were yellow, and the root near the diseased stem was dry and puce. The pathogen was isolated and designated HbFO01; the pathogenicity was established by following Koch's postulates. The pathogen was cultivated on a potato dextrose agar (PDA) plate at 28°C for 4 days. Ten plants of rubber tree cv. Yunyan77-4 were selected from a disease-free plantation in Haikou, Hainan Province, and the stem diameter was about 7 cm. The bark of five plants was peeled, and one mycelium disk with a diameter of 1 cm was inserted into the cut and covered again with the bark. The other five plants were treated with agar disks as controls. The inoculation site was kept moist for 2 days, and then the mycelium and agar disk were removed. On eighth day, symptoms similar to the original stem lesions were observed on stems of inoculated plants, while only scars formed on stems of control plants. The pathogen was re-isolated from the lesions of inoculated plants. On PDA plates, the pathogen colony was circular and white with tidy edges and rich aerial hyphae. Microscopic examination showed microconidia and chlamydospores were produced abundantly on PDA medium. The falciform macroconidia were only produced on lesions and were slightly curved, with a curved apical cell and foot shaped to pointed basal cell, usually 3-septate, 16.2 to 24.2 × 3.2 to 4.0 μm. Microconidia were produced in false heads, oval, 0-septate, 6.2 to 8.2 × 3.3 to 3.8 μm, and the phialide was cylindrical. Chlamydospores were oval, 6.4 to 7.2 × 3.1 to 3.8 μm, alone produced in hypha. Morphological characteristics of the specimen were similar to the descriptions for Fusarium oxysporum (2). Genomic DNA of this isolate was extracted with a CTAB protocol (4) from mycelium and used as a template for amplification of the internal transcribed spacer (ITS) region of rDNA with primer pair ITS1/ITS4 (1). The full length of this sequence is 503 nt (GenBank Accession No. KJ009335), which exactly matched several sequences (e.g., JF807394.1, JX897002.1, and HQ451888.1) of F. oxysporum. Williams and Liu had listed F. oxysporum as the economically important pathogen of Hevea in Asia (3), while this is, to our knowledge, the first report of stem rot caused by F. oxysporum on rubber tree in China. References: (1) D. E. L. Cooke et al. Fungal Genet. Biol. 30:17, 2000. (2) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual, 2006. (3) T. H. Williams and P. S. W. Liu. A host list of plant diseases in Sabah, Malaysia, 1976. (4) J. R. Xu et al. Genetics 143:175, 1996.
    Matched MeSH terms: Solanum tuberosum
  12. Mahmodi F, Kadir JB, Puteh A, Wong MY, Nasehi A
    Plant Dis, 2013 Feb;97(2):287.
    PMID: 30722331 DOI: 10.1094/PDIS-08-12-0756-PDN
    In July 2011, a severe outbreak of pod and stem blight was observed on lima bean (Phaseolus lunatus L.) plants grown in the Cameron Highlands, located in Pahang State, Malaysia. Disease incidence varied from 33 to 75% in different fields. Pods and stems exhibited withered, light brown to reddish brown necrotic areas. Sub-circular and brown lesions were produced on the leaves. These lesions varied in size, often reaching a diameter of 1 to 2 cm. After tissue death, numerous pycnidia were observed on the surface of the pod or stem. The pycnidia diameter varied from 155 to 495 μm, averaging 265.45 μm, and on the surface of the pod or stem, pycnidia were often arranged concentrically or linearly, respectively. Pycnidiospores were hyaline, 1-celled, usually straight, and rarely, slightly curved. The α-spores varied from 5.5 to 9.0 × 2.5 to 4.0 μm; averaging 7.3 × 3.5 μm. The β-spores found either alone or with pycnidiospores in pycnidia were slender, hyaline, nonseptate, and straight or curved. Size varied from 15.8 to 38.0 × 1.3 to 2.1 μm; averaging 25.86 × 1.8 μm. The colony characteristics were recorded from pure cultures grown on potato dextrose agar plates, and incubated in darkness for 7 days at 25 °C, then exposed to 16/8 h light and dark periods at 25°C for a further 14 to 21 days. Morphological characteristics of the colonies and spores on PDA matched those described for P. phaseolorum var. sojae (2). Colonies were white, compact, with wavy mycelium and stromata with pycnidia that contained abundant β-spores. Sequence analysis of the ribosomal DNA internal transcribed spacer obtained from the Malaysian isolate FM1 (GenBank Accession No. JQ514150) using primers ITS5 and ITS4 (1) aligned with deposited sequences from GenBank confirmed identity and revealed 99% to 100% DNA similarity with P. phaseolorum strains (AY577815, AF001020, HM012819, JQ936148). The isolate FM1 was used for pathogenicity testing. Five non-infected detached leaves and pods of 4-week-old lima bean were surface sterilized and inoculated by placing 10 μl of conidial suspension (106 conidia ml-1) on the surface of leaves and pods using either the wound/drop or non-wound/drop method and distilled water used as control (3). The inoculated leaves and pods were incubated at 25 °C and 98% RH, and the experiment was performed twice. Disease reactions and symptoms were evaluated after inoculation. After one week, typical symptoms of pod and stem blight appeared with formation of pycnidia on the surface of the tissues, but not on non-inoculated controls. P. phaseolorum var. sojae was consistently reisolated from symptoms. To our knowledge, this is the first report of P. phaseolorum var. sojae causing pod and stem blight of lima bean in Malaysia. References: (1) R. Ford et al. Aust. Plant Pathol. 33:559, 2004. (2) G. L. Hartman et al. Compendium of Soybean Diseases. 4th ed. American Phytopathological Society, St. Paul, MN, 1999. (3) P. P. Than et al. Plant Pathol. 57:562, 2008.
    Matched MeSH terms: Solanum tuberosum
  13. Keith LM
    Plant Dis, 2008 May;92(5):835.
    PMID: 30769617 DOI: 10.1094/PDIS-92-5-0835B
    Rambutan (Nephelium lappaceum Linn.) is a tropical, exotic fruit that has a rapidly expanding niche market in Hawaii. Diseased rambutan fruit was commonly observed in orchards in the Hilo and Kona districts of Hawaii Island during 2006. In surveys conducted in January, symptoms appeared as dark brown-to-black spots on mature fruit and blackened areas at the base of spinterns (hair-like projections) of mature and immature fruits. Pieces of infected fruit (cv. R167) were surface sterilized for 2 min in 0.5% NaOCl, plated on potato dextrose agar, and incubated at 24 ± 1°C for 7 days. The fungus growing on PDA was pale buff with sparse, aerial mycelium and acervuli containing black, slimy spore masses. All isolates had five-celled conidia. Apical and basal cells were hyaline, while the three median cells were olivaceous; the upper two were slightly darker than the lower one. Conidia (n = 40) were 20.3 ± 0.1 × 6.8 ± 0.1 μm. There were typically three apical appendages averaging 16.8 ± 0.2 μm long. The average basal appendage was 3.8 ± 0.1 μm long. The fungus was initially identified as Pestalotiopsis virgatula (Kleb.) Stey. on the basis of conidial and cultural characteristics (3). The identification was confirmed by molecular analysis of the 5.8S subunit and flanking internal transcribed spacers (ITS1 and ITS2) of rDNA amplified from DNA extracted from single-spore cultures with the ITS1/ITS4 primers (1,4) and sequenced (GenBank Accession No. EU047943). To confirm pathogenicity, agar pieces, 3 mm in diameter, from 7-day old cultures were used as inoculum. Five mature fruit from rambutan cv. R134 were rinsed with tap water, surface sterilized with 0.5% NaOCl for 2 min, wounded with a needle head, inoculated in the laboratory, and maintained in a moist chamber for 7 days. Lesions resembling symptoms that occurred in the field were observed on fruit after 7 days. No symptoms were observed on fruit inoculated with agar media. The fungus reisolated from diseased fruit was identical to the original isolates, confirming Koch's postulates. The disease appears to be widespread in Hawaii. Preharvest symptoms may have the potential to affect postharvest fruit quality if fruits are not stored at the proper conditions. Pestalotiopsis spp. have been reported on rambutan in Malaysia, Brunei, and Australia (2). To my knowledge, this is the first report of P. virgatula causing fruit spots on rambutan in Hawaii. References: (1) G. Caetano-Annolles et al. Curr. Genet. 39:346, 2001. (2) D. F. Farr et al. Fungal Databases. Systematic Botany and Mycology Laboratory. On-line publication. ARS, USDA, 2007. (3) E. F. Guba. Monograph of Pestalotia and Monochaetia. Harvard University Press, Cambridge, MA, 1961. (4) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA. 1990.
    Matched MeSH terms: Solanum tuberosum
  14. Keith LM, Matsumoto TK
    Plant Dis, 2013 Jan;97(1):146.
    PMID: 30722309 DOI: 10.1094/PDIS-07-12-0702-PDN
    Mangosteen (Garcinia mangostana L.) is a tropical evergreen tree that produces one of the most prized tropical fruits, commonly known as the "Queen of the Fruits.″ Mangosteen has the potential to occupy a rapidly expanding niche market in Hawaii. In October 2009, a disease was observed that produced brown leaf spots and blotches surrounded by bright yellow halos at a mangosteen orchard located in Hakalau, Hawaii (19° 53' 49″ N, 155° 7' 35″ W). Recently transplanted 10+ year old trees were 95 to 100% infected. Pieces of infected leaves and stems were surface-sterilized, plated on potato dextrose agar (PDA), and incubated at 24°C ± 1°C for 21 days. The fungus growing on PDA was pale buff with sparse aerial mycelium and acervuli containing black, slimy spore masses. Single spore isolates were used for the morphological characteristics and molecular analysis. Conidia were 5-celled. Apical and basal cells were hyaline; the three median cells were umber to olivaceous. Conidia (n = 50) were 24.3 ± 0.2 × 7.5 ± 0.1 μm, with apical appendages, typically three, averaging 24.3 ± 0.4 μm long, and a basal appendage averaging 6.7 ± 0.2 μm long. DNA sequences were obtained from the β-tubulin gene and the internal transcribed spacer (ITS1 and ITS2) and 5.8S regions of the rDNA to confirm the identification. The morphological descriptions and measurements were similar to P. virgatula (Kleb.) Steyaert (1). Although sequence data of the ITS region (GenBank Accession No. JN542546) supports the identity of the fungus as P. virgatula, the taxonomy of this genus remains confused since there are only a few type cultures, so it is impossible to use sequences in GenBank to reliably clarify species names (2). To confirm pathogenicity, six leaves of two 3-year-old seedlings were inoculated. Seven-day-old cultures grown on 10% V8 agar at 24°C under continuous fluorescent lighting were used for inoculations. The inoculum consisted of spore suspensions in sterile distilled water adjusted to 6 × 105 conidia/ml. Using a fine haired paint brush, the inoculum was brushed onto the youngest leaves, while sterile distilled water was used as the control. The plants were incubated in a clear plastic bag placed on the laboratory bench at 24°C for 48 hours, then placed on a greenhouse bench and observed weekly for symptoms. After 14 days, leaf spots ranging in size from pinpoint to 5.4 mm in diameter with a distinctive yellow halo were present. Within 35 days, the leaf spots enlarged to leaf blotches ranging in size from 11.5 × 13.3 mm up to 28.3 × 34.6 mm with brown centers and a distinctive yellow halo identical to the field symptoms. A Pestalotiopsis sp. identical to that used to inoculate the seedlings was recovered from the leaf spots and blotches, confirming Koch's postulates. The experiment was repeated twice. Pestalotiopsis leaf blight has been reported in other countries growing mangosteen, including Thailand, Malaysia, and North Queensland, Australia (3). However, to our knowledge, this is the first report of a Pestalotiopsis sp. causing a disease on mangosteen in Hawaii. Although this disease is considered a minor problem in the literature (3), effective management practices should be established to avoid potential production losses. References: (1) E. F. Guba. Monograph of Pestalotia and Monochaetia. Harvard University Press, Cambridge, MA. 1961. (2) S. S. N. Maharachchikumbura et al. Fungal Div. 50:167, 2011. (3) R. C. Ploetz. Diseases of Tropical Fruit Crops. CABI Publishing. Wallingford, Oxfordshire, UK, 2003.
    Matched MeSH terms: Solanum tuberosum
  15. Golkhandan E, Sijam K, Meon S, Ahmad ZAM, Nasehi A, Nazerian E
    Plant Dis, 2013 Aug;97(8):1110.
    PMID: 30722504 DOI: 10.1094/PDIS-01-13-0112-PDN
    Soft rot of cabbage (Brassica rapa) occurs sporadically in Malaysia, causing economic damage under the hot and wet Malaysian weather conditions that are suitable for disease development. In June 2011, 27 soft rotting bacteria were isolated from cabbage plants growing in the Cameron Highlands and Johor State in Malaysia where the economic losses exceeded 50% in severely infected fields and greenhouses. Five independent strains were initially identified as Pectobacterium wasabiae based on their inability to grow at 37°C, and elicit hypersensitive reaction (HR) on Nicotiana tabaccum and their ability to utilize raffinose and lactose. These bacterial strains were gram-negative, rod-shaped, N-acetylglucosaminyl transferase, gelatin liquefaction, and OPNG-positive and positive for acid production from D-galactose, lactosemelibiose, raffinose, citrate, and trehalose. All strains were negative for indole production, phosphatase activity, reducing sucrose, and negative for acid production from maltose, sorbitol, inositol, inolin, melezitose, α-methyl-D-glucoside, and D-arabitol. All the strains exhibited pectolytic activity on potato slices. PCR assays were conducted to distinguish P. wasabiae from P. carotovorum subsp. brasiliensis, P. atrosepticum, and other Pectobacterium species using primers Br1f/L1r (2), Eca1f/Eca2r (1), and EXPCCF/EXPCCR, respectively. DNA from strains did not yield the expected amplicon with the Br1f/L1r and Eca1f/Eca2r, whereas a 550-bp amplicon typical of DNA from P. wasabiae was produced with primers EXPCCF/EXPCCR. ITS-RFLP using the restriction enzyme, Rsa I, produced similar patterns for the Malaysian strains and the P. wasabiae type strain (SCRI488), but differentiated it from P. carotovora subsp. carotovora, P. atrosepticum, P. carotovorum subsp. brasiliensis, and Dickeya chrysanthemi type strains. BLAST analysis of the 16S rRNA DNA sequence (GenBank Accession No. KC445633) showed 99% identity to the 16S rRNA of Pw WPP163. Phylogenetic reconstruction using concatenated DNA sequences of mdh and gapA from P. wasabiae Cc6 (KC484657) and other related taxa (4) clustered Malaysian P. wasabiae strains with P. wasabiae SCRI488, readily distinguishing it from other closely related species of Pectobacterium. Pathogenicity assays were conducted on leaves and stems of four mature cabbage plants for each strain (var. oleifera) by injecting 10 μl of a bacterial suspension (108 CFU/ml) into either stems or leaves, and incubating them in a moist chamber at 80 to 90% relative humidity at 30°C. Water-soaked lesions similar to those observed in the fields and greenhouses were observed 72 h after injection and bacteria with similar characteristics were consistently reisolated. Symptoms were not observed on water-inoculated controls. The pathogenicity test was repeated with similar results. P. wasabiae was previously reported to cause soft rot of horseradish in Japan (3). However, to our knowledge, this is the first report of P. wasabiae infecting cabbage in Malaysia. References: (1) S. H. De Boer and L. J. Ward. Phytopathology 85:854, 1995. (2) V. Duarte et al. J. Appl. Microbiol. 96:535, 2004. (3) M. Goto and K. Matsumoto. Int. J. Syst. Bacteriol. 37:130, 1987. (4) B. Ma et al. Phytopathology 97:1150, 2007.
    Matched MeSH terms: Solanum tuberosum
  16. Wu JB, Zhang CL, Mao PP, Qian YS, Wang HZ
    Plant Dis, 2014 Jul;98(7):996.
    PMID: 30708927 DOI: 10.1094/PDIS-09-13-1006-PDN
    Dendrobium (Dendrobium candidum Wall. ex Lindl.) is a perennial herb in the Orchidaceae family. It has been used as traditional medicinal plant in China, Malaysia, Laos, and Thailand (2). Fungal disease is one of the most important factors affecting the development of Dendrobium production. During summer 2012, chocolate brown spots were observed on leaves of 2-year-old Dendrobium seedlings in a greenhouse in Hangzhou, Zhejiang Province, China, situated at 30.26°N and 120.19°E. Approximately 80% of the plants in each greenhouse were symptomatic. Diseased leaves exhibited irregular, chocolate brown, and necrotic lesions with a chlorotic halo, reaching 0.8 to 3.2 cm in diameter. Affected leaves began to senesce and withered in autumn, and all leaves of diseased plants fell off in the following spring. Symptomatic leaf tissues were cut into small pieces (4 to 5 mm long), surface-sterilized (immersed in 75% ethanol for 30 s, and then 1% sodium hypochlorite for 60 s), rinsed three times in sterilized distilled water, and then cultured on potato dextrose agar (PDA) amended with 30 mg/liter of kanamycin sulfate (dissolved in ddH2O). Petri plates were incubated in darkness at 25 ± 0.5°C, and a grey mycelium with a white border developed after 4 days. Fast-growing white mycelia were isolated from symptomatic leaf samples, and the mycelia became gray-brown with the onset of sporulation after 5 days. Conidia were unicellular, black, elliptical, and 11.4 to 14.3 μm (average 13.1 μm) in diameter. Based on these morphological and pathogenic characteristics, the isolates were tentatively identified as Nigrospora oryzae (1). Genomic DNA was extracted from a representative isolate F12-F, and a ~600-bp fragment was amplified and sequenced using the primers ITS1 and ITS4 (4). BLAST analysis showed that F12-F ITS sequence (Accession No. KF516962) had 99% similarity with the ITS sequence of an N. oryzae isolate (JQ863242.1). Healthy Dendrobium seedlings (4 months old) were used in pathogenicity tests under greenhouse conditions. Leaves were inoculated with mycelial plugs (5 mm in diameter) from a 5-day-old culture of strain F12-F, and sterile PDA plugs served as controls. Seedlings were covered with plastic bags for 5 days and maintained at 25 ± 0.5°C and 80 ± 5% relative humidity. Eight seedlings were used in each experiment, which was repeated three times. After 5 days, typical chocolate brown spots and black lesions were observed on inoculated leaves, whereas no symptoms developed on controls, which fulfilled Koch's postulates. This shows that N. oryzae can cause leaf spot of D. candidum. N. oryzae is a known pathogen for several hosts but has not been previously reported on any species of Dendrobium in China (3). To our knowledge, on the basis of literature, this is the first report of leaf spot of D. candidum caused by N. oryzae in China. References: (1) H. J. Hudson. Trans. Br. Mycol. Soc. 46:355, 1963. (2) Q. Jin et al. PLoS One. 8(4):e62352, 2013. (3) P. Sharma et al. J. Phytopathol. 161:439, 2013. (4) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990.
    Matched MeSH terms: Solanum tuberosum
  17. Nishijima KA, Follett PA, Bushe BC, Nagao MA
    Plant Dis, 2002 Jan;86(1):71.
    PMID: 30823004 DOI: 10.1094/PDIS.2002.86.1.71C
    Rambutan (Nephelium lappaceum L.) is a tropical fruit grown in Hawaii for the exotic fruit market. Fruit rot was observed periodically during 1998 and 1999 from two islands, Hawaii and Kauai, and severe fruit rot was observed during 2000 in orchards in Kurtistown and Papaikou on Hawaii. Symptoms were characterized by brown-to-black, water-soaked lesions on the fruit surface that progressed to blackening and drying of the pericarp, which often split and exposed the aril (flesh). In certain cultivars, immature, small green fruits were totally mummified. Rambutan trees with high incidence of fruit rot also showed symptoms of branch dieback and leaf spot. Lasmenia sp. Speg. sensu Sutton, identified by Centraalbureau voor Schimmelcultures (Baarn, the Netherlands), was isolated from infected fruit and necrotic leaves. Also associated with some of the fruit rot and dieback symptoms were Gliocephalotrichum simplex (J.A. Meyer) B. Wiley & E. Simmons, and G. bulbilium J.J. Ellis & Hesseltine. G. simplex was isolated from infected fruit, and G. bulbilium was isolated from discolored vascular tissues and infected fruit. Identification of species of Gliocephalotrichum was based on characteristics of conidiophores, sterile hairs, and chlamydospores (1,4). Culture characteristics were distinctive on potato dextrose agar (PDA), where the mycelium of G. bulbilium was light orange (peach) without reverse color, while G. simplex was golden-brown to grayish-yellow with dark brown reverse color. Both species produced a fruity odor after 6 days on PDA. In pathogenicity tests, healthy, washed rambutan fruits were wounded, inoculated with 30 μl of sterile distilled water (SDW) or a fungus spore suspension (105 to 106 spores per ml), and incubated in humidity chambers at room temperature (22°C) under continuous fluorescent light. Lasmenia sp. (strain KN-F99-1), G. simplex (strain KN-F2000-1), and G. bulbilium (strains KN-F2001-1 and KN-F2001-2) produced fruit rot symptoms on inoculated fruit and were reisolated from fruit with typical symptoms, fulfilling Koch's postulates. Controls (inoculated with SDW) had lower incidence or developed less severe symptoms than the fungus treatments. Inoculation tests were conducted at least twice. To our knowledge, this is the first report of Lasmenia sp. in Hawaii and the first report of the genus Gliocephalotrichum on rambutan in Hawaii. These pathogens are potentially economically important to rambutan in Hawaii. G. bulbilium has been reported previously on decaying wood of guava (Psidium guajava L.) in Hawaii (2), and the fungus causes field and postharvest rots of rambutan fruit in Thailand (3). References: (1) J. J. Ellis and C. W. Hesseltine. Bull. Torrey Bot. Club 89:21, 1962. (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989. (3) N. Visarathanonth and L. L. Ilag. Pages 51-57 in: Rambutan: Fruit Development, Postharvest Physiology and Marketing in ASEAN. ASEAN Food Handling Bureau, Kuala Lumpur, Malaysia, 1987. (4) B. J. Wiley and E. G. Simmons. Mycologia 63:575, 1971.
    Matched MeSH terms: Solanum tuberosum
  18. Sulaiman R, Thanarajoo SS, Kadir J, Vadamalai G
    Plant Dis, 2012 May;96(5):767.
    PMID: 30727556 DOI: 10.1094/PDIS-06-11-0482-PDN
    Physic nut (Jatropha curcas L.) is an important biofuel crop worldwide. Although it has been reported to be resistant to pests and diseases (1), stem cankers have been observed on this plant at several locations in Peninsular Malaysia since early February 2008. Necrotic lesions on branches appear as scars with vascular discoloration in the tissue below the lesion. The affected area is brownish and sunken in appearance. Disease incidence of these symptomatic nonwoody plants can reach up to 80% in a plantation. Forty-eight samples of symptomatic branches collected from six locations (University Farm, Setiu, Gemenceh, Pulau Carey, Port Dickson, and Kuala Selangor) were surface sterilized in 10% bleach, rinsed twice with sterile distilled water, air dried on filter paper, and plated on water agar. After 4 days, fungal colonies on the agar were transferred to potato dextrose agar (PDA) and incubated at 25°C. Twenty-seven single-spore fungal cultures obtained from all locations produced white, aerial mycelium that became dull gray after a week in culture. Pycnidia from 30-day-old pure cultures produced dark brown, oval conidia that were two celled, thin walled, and oval shape with longitudinal striations. The average size of the conidia was 23.63 × 12.72 μm with a length/width ratio of 1.86. On the basis of conidial morphology, these cultures were identified as Lasiodiplodia theobromae. To confirm the identity of the isolates, the internal transcribed spacer (ITS) region was amplified with ITS1/ITS4 primers and sequenced. The sequences were deposited in GenBank (Accession Nos. HM466951, HM466953, HM466957, GU228527, HM466959, and GU219983). Sequences from the 27 isolates were 99 to 100% identical to two L. theobromae accessions in GenBank (Nos. HM008598 and HM999905). Hence, both morphological and molecular characteristics confirmed the isolates as L. theobromae. Pathogenicity tests were performed in the glasshouse with 2-month-old J. curcas seedlings. Each plant was wound inoculated by removing the bark on a branch to a depth of 2 mm with a 10-mm cork borer. Inoculation was conducted by inserting a 10-mm-diameter PDA plug of mycelium into the wound and wrapping the inoculation site with wetted, cotton wool and Parafilm. Control plants were treated with plugs of sterile PDA. Each isolate had four replicates and two controls. After 6 days of incubation, all inoculated plants produced sunken, necrotic lesions with vascular discoloration. Leaves were wilted and yellow above the point of inoculation on branches. The control plants remained symptomless. The pathogen was successfully reisolated from lesions on inoculated branches. L. theobromae has been reported to cause cankers and dieback in a wide range of hosts and is common in tropical and subtropical regions of the world (2,3). To our knowledge, this is the first report of stem canker associated with L. theobromae on J. curcas in Malaysia. References: (1) S. Chitra and S. K. Dhyani. Curr. Sci. 91:162, 2006. (2) S. Mohali et al. For. Pathol. 35:385, 2005. (3) E. Punithalingam. Page 519 in: CMI Descriptions of Pathogenic Fungi and Bacteria. Commonwealth Mycological Institute, Kew, Surrey, UK. 1976.
    Matched MeSH terms: Solanum tuberosum
  19. Ko Y, Yao KS, Chen CY, Lin CH
    Plant Dis, 2007 Dec;91(12):1684.
    PMID: 30780618 DOI: 10.1094/PDIS-91-12-1684B
    Mango (Mangifera indica L.; family Anacardiaceae) is one of the world's most important fruit crops and is widely grown in tropical and subtropical regions. Since 2001, a leaf spot disease was found in mango orchards of Taiwan. Now, the disease was observed throughout (approximately 21,000 ha) Taiwan in moderate to severe form, thus affecting the general health of mango trees and orchards. Initial symptoms were small, yellow-to-brown spots on leaves. Later, the irregularly shaped spots, ranging from a few millimeters to a few centimeters in diameter, turned white to gray and coalesced to form larger gray patches. Lesions had slightly raised dark margins. On mature lesions, numerous black acervuli, measuring 290 to 328 μm in diameter, developed on the gray necrotic areas. Single conidial isolates of the fungus were identified morphologically as Pestalotiopsis mangiferae (Henn.) Steyaert (2,3) and were consistently isolated from the diseased mango leaves on acidified (0.06% lactic acid) potato dextrose agar (PDA) medium incubated at 25 ± 1°C. Initially, the fungus grew (3 mm per day) on PDA as a white, chalky colony that subsequently turned gray after 2 weeks. Acervuli developed in culture after continuous exposure to light for 9 to 12 days at 20 to 30°C. Abundant conidia oozed from the acervulus as a creamy mass. The conidia (17.6 to 25.4 μm long and 4.8 to 7.1 μm wide) were fusiform and usually straight to slightly curved with four septa. Three median cells were olivaceous and larger than the hyaline apical and basal cells. The apical cells bore three (rarely four) cylindrical appendages. Pathogenicity tests were conducted with either 3-day-old mycelial discs or conidial suspension (105 conidia per ml) obtained from 8- to 10-day-old cultures. Four leaves on each of 10 trees were inoculated. Before inoculation, the leaves were washed with a mild detergent, rinsed with tap water, and then surface sterilized with 70% ethanol. Leaves were wounded with a needle and exposed to either a 5-mm mycelial disc or 0.2 ml of the spore suspension. The inoculated areas were wrapped with cotton pads saturated with sterile water and the leaves were covered with polyethylene bags for 3 days to maintain high relative humidity. Wounded leaves inoculated with PDA discs alone served as controls. The symptoms described above were observed on all inoculated leaves, whereas uninoculated leaves remained completely free from symptoms. Reisolation from the inoculated leaves consistently yielded P. mangiferae, thus fulfilling Koch's postulates. Gray leaf spot is a common disease of mangos in the tropics and is widely distributed in Africa and Asia (1-3); however, to our knowledge, this is the first report of gray leaf spot disease affecting mango in Taiwan. References: (1) T. K. Lim and K. C. Khoo. Diseases and Disorders of Mango in Malaysia. Tropical Press. Malaysia, 1985. (2) J. E. M. Mordue. No. 676 in: CMI Descriptions of Pathogenic Fungi and Bacteria. Surrey, England, 1980. (3) R. C. Ploetz et al. Compendium of Tropical Fruit Diseases. The American Phytopathological Society. St. Paul, MN, 1994.
    Matched MeSH terms: Solanum tuberosum
  20. Sakinah MAI, Latiffah Z
    Plant Dis, 2013 Aug;97(8):1110.
    PMID: 30722495 DOI: 10.1094/PDIS-09-12-0831-PDN
    Rambutan (Nephelium lappaceum L.) is among the tropical fruit grown in Malaysia and the demand for export rose in 2011. A fruit rot was observed between August and December 2011 from several areas in the states of Pulau Pinang and Perak, Malaysia. The symptoms initially appeared as light brown, water-soaked lesions that developed first in the pericarp and pulp, later enlarging and becoming dark brown. Greyish brown mycelia were observed on infected areas that turned yellowish at later stages of infection. Gliocephalotrichum bacillisporum was isolated from infected fruit by surface sterilization techniques. Conidia were mass-transferred onto potato dexstrose agar (PDA) plates and incubated at 27 ± 1°C. Tissue pieces (5 × 5 mm) excised from the margins between infected and healthy areas were then surface sterilized in 1% sodium hypochlorite for 3 to 5 min before being rinsed with distilled water, plated on PDA, and incubated at 27 ± 1°C for 7 days. Ten isolates of G. bacillisporum were obtained. Colonies on PDA were initially white before turning yellow with a feathery appearance. Microscopic characteristics on carnation leaf agar (CLA) consisted of hyaline conidia that were slightly ellipsoid to bacilliform with rounded apex ranging from 6.0 to 8.5 μm long and 2.0 to 2.5 μm wide. Conidiophores (70 to 130 μm long) were mostly single arising from large hypha approximately 13 to 16 μm. The conidiogenous structures were mostly quadriverticillate with dense, short, penicillate branches. The phialides were cylindrical and finger-like. Chlamydospores were present singly, in groups of 2 to 4, or in occasionally branched short chains and were brown in color with thick walls ranging from 11 to 13 μm. The cultural and morphological characteristics of G. bacillisporum isolates in the present study were very similar to previously published descriptions (1) except the conidiophores formed without sterile stipe extensions. All the G. bacillisporum isolates were deposited in culture collection at the Plant Pathology Lab, University Sains Malaysia, Penang. Molecular identification was accomplished from the ITS regions using ITS1 and ITS2 primers, and the β-tubulin gene using Bt2a and Bt2b primers (2). BLAST results from the ITS regions showed a 98 to 99% similarity with sequences of G. bacillisporum isolates reported in GenBank. Accession numbers of G. bacillisporum ITS regions: JX484850, JX484852, JX484853, JX484856, JX484858, JX484860, JX484862, JX484866, JX484867, and JX484868. The identity of G. bacillisporum isolates infecting rambutan was further confirmed by β-tubulin sequences (KC683909, KC683911, KC683912, KC683916, KC683919, KC683920, KC683923, KC683926, and KC683927), which showed 92 to 95% similarity with sequences of G. bacillisporum. Pathogenicity tests were also performed using mycelial plug (5 mm) and sprayed conidial suspensions (20 μl suspension of 106 conidia/ml) prepared from 7-day-old cultures. Inoculated fruits were incubated at 27 ± 1°C and after 10 days, similar rotting symptoms appeared on the fruit surface. The pathogen was reisolated from fruit rot lesions, thus fulfilling Koch's postulates, and tests were repeated twice. To our knowledge, this is the first report of G. bacillisporum causing fruit rot of rambutan (N. lappaceum L.) in Malaysia. References: (1) C. Decock et al. Mycologia 98:488, 2006. (2) N. L. Glass and G. C. Donaldson. Appl. Environ Microbiol. 61:1323, 1995.
    Matched MeSH terms: Solanum tuberosum
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links