Displaying publications 381 - 400 of 531 in total

Abstract:
Sort:
  1. Au SL, Tan SH, Harikrishna K, Napis S
    J. Biochem. Mol. Biol. Biophys., 2002 Oct;6(5):301-8.
    PMID: 12385964
    Four ADP-glucose pyrophosphorylase cDNA clones were isolated from mature leaves and pith of sago palm by the polymerase chain reaction (PCR) technique. Three of them (agpp10, agpp12 and agpl19) encoded the AGP large subunit, while the fourth clone (agpl1) encoded the small subunit. agpp10 and agpp12 were isolated from pith, agpl19 was isolated from mature leaves, while agpl1 from both tissues. In addition, a full-length cDNA of agpl1 was successfully isolated from a cDNA library of mature leaves by a PCR-based screening technique. Semi-quantitative analysis suggests that agpp10 and agpp12 were detectable only in pith, agpl19 only in leaves, while agpl1 was expressed in both leaves and pith tissues.
    Matched MeSH terms: Amino Acid Sequence
  2. Chong LK, Omar AR, Yusoff K, Hair-Bejo M, Aini I
    Acta Virol., 2001;45(4):217-26.
    PMID: 11885928
    The complete nucleotide sequences encoding precursor polyprotein (VP2-VP3-VP4) and VP5 of a highly virulent (hv) infectious bursal disease virus (IBDV), UPM97/61 was determined. Comparison of the deduced amino acid sequences with the published ones revealed 8 common amino acid substitutions, which were found only in the hv IBDV including the UPM97/61 strain. Three of the amino acid substitutions (222 Ala, 256 Ile and 294 Ile) were used as a marker for determining hv IBDV strains. The other five substitutions (685 Asn, 715 Ser, 751 Asp, 990 Val and 1005 Ala) were also conserved in hv IBDV strains isolated in various countries. UPM97/61 strain demonstrated also 8 unique amino acid substitutions of which 3 were in VP2, 4 in VP3 and 1 in VP4. There was 1 unique amino acid substitution in VP5 at position 19 (Asp-->Gly) not found in other strains. However, all the strains have a conserved 49 Arg. The amino acid sequence of UPM97/61 strain differed by 1.09% from the Japanese (OKYM) and Hong Kong (HK46) strains, and by 1.48% from the Israeli (IBDVKS) and European (UK661) strains. Hence, UPM97/61 is more closely related to the hv strains from Asia. However, phylogenetic analysis indicated that the origin of UPM97/61 might be the same as that of other hv strains isolated from other parts of the world.
    Matched MeSH terms: Amino Acid Sequence
  3. Brown BA, Oberste MS, Alexander JP, Kennett ML, Pallansch MA
    J Virol, 1999 Dec;73(12):9969-75.
    PMID: 10559310
    Enterovirus 71 (EV71) (genus Enterovirus, family Picornaviridae), a common cause of hand, foot, and mouth disease (HFMD), may also cause severe neurological diseases, such as encephalitis and poliomyelitis-like paralysis. To examine the genetic diversity and rate of evolution of EV71, we have determined and analyzed complete VP1 sequences (891 nucleotides) for 113 EV71 strains isolated in the United States and five other countries from 1970 to 1998. Nucleotide sequence comparisons demonstrated three distinct EV71 genotypes, designated A, B, and C. The genetic variation within genotypes (12% or fewer nucleotide differences) was less than the variation between genotypes (16.5 to 19.7%). Strains of all three genotypes were at least 94% identical to one another in deduced amino acid sequence. The EV71 prototype strain, BrCr-CA-70, isolated in California in 1970, is the sole member of genotype A. Strains isolated in the United States and Australia during the period from 1972 to 1988, a 1994 Colombian isolate, and isolates from a large HFMD outbreak in Malaysia in 1997 are all members of genotype B. Although strains of genotype B continue to circulate in other parts of the world, none have been isolated in the United States since 1988. Genotype C contains strains isolated in 1985 or later in the United States, Canada, Australia, and the Republic of China. The annual rate of evolution within both the B and C genotypes was estimated to be approximately 1.35 x 10(-2) substitutions per nucleotide and is similar to the rate observed for poliovirus. The results indicate that EV71 is a genetically diverse, rapidly evolving virus. Its worldwide circulation and potential to cause severe disease underscore the need for additional surveillance and improved methods to identify EV71 in human disease.
    Matched MeSH terms: Amino Acid Sequence
  4. Kianizadeh M, Aini I, Omar AR, Yusoff K, Sahrabadi M, Kargar R
    Acta Virol., 2002;46(4):247-51.
    PMID: 12693862
    Nine Newcastle disease virus (NDV) isolates from Newcastle disease (ND) outbreaks in different regions of Iran were characterized at molecular level. Sequence analysis revealed that the isolates shared two pairs of arginine and a phenylalanine at the N-terminus of the fusion (F) protein cleavage site similarly to other velogenic isolates of NDV characterized earlier. Eight of the nine isolates had the same amino acid sequence as VOL95, a Russian NDV isolate from 1995. However, one isolate, MK13 showed 5 amino acid substitutions, of which 3 have been reported for other velogenic NDV isolates. These results suggest that the origin of the outbreaks of ND in different parts of Iran in 1995-1998 is VOL95.
    Matched MeSH terms: Amino Acid Sequence
  5. Nathan S, Li H, Mohamed R, Embi N
    J. Biochem. Mol. Biol. Biophys., 2002 Feb;6(1):45-53.
    PMID: 12186782
    We have used the phagemid pComb3H to construct recombinant phages displaying the single chain variable fragment (ScFv) towards exotoxin of Burkholderia pseudomallei. Variable heavy and light chain fragments were amplified from the hybridoma 6E6A8F3B line, with a wide spectrum of primers specific to mouse antibody genes. Through overlapping extension polymerase chain reaction, the heavy and light chain fragments were linked to form the ScFv which was subsequently cloned into the phage display vector and transformed into ER2537 cells to yield a complexity of 10(8) clones. The transformants were screened by four rounds of biopanning against the exotoxin and resulted in selective enrichment of exotoxin-binding antibodies by 301 fold. The phage pool from the final round of selection displayed antibodies of high-affinity to the exotoxin as demonstrated by ELISA. Several clones were selected randomly from this pool and analysed by restriction enzyme digestion, fingerprinting and sequencing. Restriction analysis confirmed that all clones carried a 700-800 bp insert whose sequences, in general, corresponded to that of mouse IgG. Fingerprinting profiles delineated the antibodies into two families with different CDR sequences.
    Matched MeSH terms: Amino Acid Sequence
  6. Kho CL, Tan WS, Yusoff K
    J. Biochem. Mol. Biol. Biophys., 2002 Apr;6(2):117-21.
    PMID: 12186767
    The phosphoprotein (P) gene of a heat stable Newcastle disease virus (NDV) was cloned, sequenced and expressed in Escherichia coli. SDS-PAGE analysis of the recombinant P protein (395 amino acids) and a C-terminal extension derivative (424 amino acids), gave rise to two distinct protein bands with molecular masses of approximately 53-55 and 56-58 kDa, respectively, which are approximately 26-30% heavier than those calculated from the deduced amino acid sequences. The differences in molecular mass on SDS-PAGE are thought to be attributed to the acidic nature of the P protein (pI=6.27) and also the different degrees of phosphorylation in the prokaryotic cell. Amino acid sequence comparison of the P protein among the published NDV strains showed that they were highly conserved particularly at the putative phosphorylation sites.
    Matched MeSH terms: Amino Acid Sequence
  7. Hoque MM, Omar AR, Hair-Bejo M, Aini I
    J. Biochem. Mol. Biol. Biophys., 2002 Apr;6(2):93-9.
    PMID: 12186763
    Previously we have shown that very virulent infectious bursal disease viruses (vvIBDV) that are SspI, TaqI and StyI positive (92/04, 97/61 and 94/B551) but not SspI and TaqI positive and StyI negative (94/273) cause high mortality, up to 80% in specific-pathogen-free chickens with significant damage of the bursal as well as nonbursal tissues. In this study, we sequenced the VP2 gene (1351 bp) of the 92/04, 94/273 and 94/B551 and compared them with other IBDV strains. All the isolates have the unique amino acid residues at positions 222A, 256I, 294I and 299S found in other vvIBDV strains. The deduced VP2 amino acids encoded by 92/04 is identical to the vvIBDV strains from Israel (IBDVKS), Japan (OKYM) and Europe (UK661), whereas the 94/273 and 94/B551 isolates have one to three amino acid substitutions. The 94/273 has two amino acid substitutions at positions 254 G to S and at 270 A to E that have not been reported before from vvIBDV strains. The 94/B551 also has one amino acid substitution at position 300 E to S, which is uncommon among other vvIBDV strains. However, phylogenetic analysis suggested that the isolates are very close to each other and all of them may have derived from the same origin as vvIBDV strains isolated from China, Japan and Europe. Even though antigenic index analysis of the 94/273 and 94/B551 indicated that the isolates are unique compared to other IBDV strains, their antigenic variation remain to be determined by monoclonal antibody study.
    Matched MeSH terms: Amino Acid Sequence
  8. Chong SP, Jangi MS, Wan KL
    J. Biochem. Mol. Biol. Biophys., 2002 Apr;6(2):123-8.
    PMID: 12186768
    VCP (Valosin-Containing Protein), a member of the AAA (ATPases Associated to a variety of cellular Activities) family of proteins, possesses a duplicated highly conserved ATPase domain. An expressed sequence tag (EST), representing a clone from the Eimeria tenella merozoite cDNA library, was found to have high similarity to VCP genes from other organisms. A complete sequence derived from the corresponding clone (designated eth060) shows amino acid identity of 42-62% with other members of the VCP subfamily. Sequence analysis identified a putative ATPase domain in the eth060 sequence. This domain was PCR-amplified using gene-specific primers and cloned into a pBAD/Thio-TOPO expression vector. Expression in Escherichia coli demonstrated that the putative ATPase domain, which consists of 414 amino acid residues, produced a fusion protein of approximately 60 kDa in size.
    Matched MeSH terms: Amino Acid Sequence
  9. Ravichandran M, Doolan DL, Cox-Singh J, Hoffman SL, Singh B
    Parasite Immunol., 2000 Sep;22(9):469-73.
    PMID: 10972854
    Considerable effort is directed at the development of a malaria vaccine that elicits antigen-specific T-cell responses against pre-erythrocytic antigens of Plasmodium falciparum. Genetic restriction of host T-cell responses and polymorphism of target epitopes on parasite antigens pose obstacles to the development of such a vaccine. Liver stage-specific antigen-1 (LSA-1) is a prime candidate vaccine antigen and five T-cell epitopes that are degenerately restricted by HLA molecules common in most populations have been identified on LSA-1. To define the extent of polymorphism within these T-cell epitopes, the N-terminal non-repetitive region of the LSA-1 gene from Malaysian P. falciparum field isolates was sequenced and compared with data of isolates from Brazil, Kenya and Papua New Guinea. Three of the T-cell epitopes were completely conserved while the remaining two were highly conserved in the isolates examined. Our findings underscore the potential of including these HLA-degenerate T-cell epitopes of LSA-1 in a subunit vaccine.
    Matched MeSH terms: Amino Acid Sequence
  10. Barloy F, Lecadet MM, Delécluse A
    Gene, 1998 May 12;211(2):293-9.
    PMID: 9602158
    Three new open reading frames were found downstream from cbm71, a toxin gene from Clostridium bifermentans malaysia (Cbm) strain CH18. The first one (91bp downstream) called cbm72, is 1857bp long and encodes a 71727-Da protein (Cbm72) with a sequence similar to that of Bacillus thuringiensis delta-endotoxins. This protein shows no significant toxicity to mosquito larvae. The two others, cbm17.1 (462bp) and cbm17.2 (459bp), are copies of the same gene encoding Cbm P18 and P16 polypeptides and located 426bp and 1022bp downstream from cbm72, respectively. They encode 17189-Da and 17451-Da proteins with sequences 44.6% similar to that of Aspergillus fumigatus hemolysin; however, they were not hemolytic in the conditions tested.
    Matched MeSH terms: Amino Acid Sequence
  11. Adams SC, Broom AK, Sammels LM, Hartnett AC, Howard MJ, Coelen RJ, et al.
    Virology, 1995 Jan 10;206(1):49-56.
    PMID: 7530394
    Previous studies have found Kunjin (KUN) virus isolates from within Australia to be genetically homogenous and that the envelope protein of the type strain (MRM61C) was unglycosylated and lacked a potential glycosylation site. We investigated the extent of antigenic variation between KUN virus isolates from Australia and Sarawak using an immunoperoxidase assay and a panel of six monoclonal antibodies. The glycosylation status of the E protein of each virus was also determined by N glycosidase F (PNGase F) digestion and limited sequence analysis. The results showed that KUN viruses isolated within Australia oscillated between three antigenic types defined by two epitopes whose expression was influenced by passage history and host cell type. In contrast an isolate from Sarawak formed a stable antigenic type that was not influenced by passage history and was distinct from all Australian isolates. PNGase F digestions of KUN isolates indicated that 19 of the 33 viruses possessed a glycosylated E protein. Nucleotide sequence of the 5' third of the E gene of selected KUN isolates revealed that a single base change in PNGase F sensitive strains changed the tripeptide N-Y-F (amino acids 154-156 of the published sequence) to the potential glycosylation site N-Y-S. Further analysis revealed that passage history also had a significant influence on glycosylation.
    Matched MeSH terms: Amino Acid Sequence
  12. Jeyaseelan K, Armugam A, Lachumanan R, Tan CH, Tan NH
    Biochim. Biophys. Acta, 1998 Apr 10;1380(2):209-22.
    PMID: 9565688
    Cardiotoxins are the most abundant toxin components of cobra venom. Although many cardiotoxins have been purified and characterized by amino acid sequencing and other pharmacological and biochemical studies, to date only five cardiotoxin cDNAs from Taiwan cobra (Naja naja atra), three cDNAs from Chinese cobra (Naja atra) and two more of uncertain origin (either Chinese or Taiwan cobra) have been reported. In this paper we show the existence of four isoforms of cardiotoxin by protein analysis and nine cDNA sequences encoding six isoforms of cardiotoxins (CTX 1-3, 4a, 4b and 5) from N. n. sputatrix by cDNA cloning. This forms the first report on the cloning and characterization of several cardiotoxin genes from a single species of a spitting cobra. The cDNAs encoding these isoforms, obtained by reverse transcription-polymerase chain reaction (RT-PCR), were subsequently expressed in Escherichia coli. The native and recombinant cardiotoxins were first characterized by Western blotting and N-terminal protein sequencing. These proteins were also found to have different levels of cytolytic activity on cultured baby hamster kidney cells. Four of the isoforms (CTX 1, 2, 4 and 5) are unique to N. n. sputatrix, with CTX 2 being the most abundant species constituting about 50% of the total cardiotoxins. The isoform CTX 3 (20% constitution) is highly homologous to the cardiotoxins of N. n. atra and N. n. naja, indicating that it may be universally present in all Naja naja subspecies. Our studies suggest that the most hydrophilic isoform (CTX 5) could have evolved first followed by the hydrophobic isoforms (CTX 1, 2, 3 and 4). We also speculate that Asiatic cobras could be the modern descendants of the African and Egyptian counterparts.
    Matched MeSH terms: Amino Acid Sequence
  13. Mathew A, Cheng HM, Sam CK, Prasad U
    Clin. Immunol. Immunopathol., 1994 May;71(2):164-8.
    PMID: 7514112
    Inhibition studies were carried out to study possible cross-reactivity between a peptide fragment of the Epstein-Barr virus nuclear antigen, EBNA-1, and keratin/collagen. The 20-amino acid peptide (pAG), derived from a glycine-alanine repeat region of EBNA-1, uniquely makes up about one-third of the viral protein and is a dominant IgA antigenic epitope in patients with nasopharyngeal carcinoma (NPC). A small percentage of normal human sera (NHS) also binds pAG and this reactivity is examined in this study. Ten percent (2/20) and 13.4% (2/15) of IgA-pAG-positive NPC sera and NHS, respectively, were significantly inhibited by keratin in a competitive ELISA system. Conversely, 31.6% (6/19) and 30.8% (4/13) of IgA-keratin-positive NPC sera and NHS, respectively, were significantly inhibited by pAG. This indicated minimum cross-reactivity between IgA serum antibodies to EBNA-1 and keratin. Using collagen as inhibitor, none of 18 and only 2/13 IgA-pAG-positive NPC sera and NHS, respectively, were inhibited. In the collagen ELISA system, only 2/19 (10.5%) and 4/25 (16%) of IgA-collagen-positive NPC sera and NHS, respectively, were inhibited with pAG. Therefore, cross-reactivity with collagen was also low. IgA-pAG-positive NHS may therefore not be a false positive phenomenon, but whether it may represent an early serological profile related to NPC carcinogenesis remains to be determined.
    Matched MeSH terms: Amino Acid Sequence
  14. Cecilia D, Gould EA
    Virology, 1991 Mar;181(1):70-7.
    PMID: 1704661
    The Sarawak strain of Japanese encephalitis virus (JE-Sar) is virulent in 3-week-old mice when inoculated intraperitoneally. The nucleotide sequence for the envelope glycoprotein (E) of this virus was determined and compared with the published sequences of four other strains. There were several silent nucleotide differences and five codon changes. Monoclonal antibodies (MAbs) against the E protein of JE-Sar virus were prepared and characterized. MAb-resistant mutants of JE-Sar were selected to determine if mutations in the E protein gene could affect its virulence for mice. Eight mutants were isolated using five different MAbs that identified virus-specific or group-reactive epitopes on the E protein. The mutants lost either complete or partial reactivity with selecting MAb. Several showed decreased virulence in 3-week-old mice after intraperitoneal inoculation. Two (r27 and r30) also showed reduced virulence in 2-week-old mice. JE-Sar and the derived mutants were comparable in their virulence for mice, when inoculated intracranially. Mutant r30 but not r27 induced protective immunity in adult mice against intracranial challenge with parent virus. However, r27-2 did induce protective immunity against itself. Nucleotide sequencing of the E coding region for the mutants revealed single base changes in both r30 and r27 resulting in a predicted change from isoleucine to serine at position 270 in r30 and from glycine to aspartic acid at position 333 in r27. The altered capacity of the mutants to induce protective immunity is consistent with the immunogenicity changes predicted by computer analysis using the Protean II program.
    Matched MeSH terms: Amino Acid Sequence
  15. Chee HY, AbuBakar S
    Biochem Biophys Res Commun, 2004 Jul 16;320(1):11-7.
    PMID: 15207695
    Binding of dengue virus 2 (DENV-2) to C6/36 mosquito cells protein was investigated. A 48 kDa DENV-2-binding C6/36 cells protein (D2BP) was detected in a virus overlay protein-binding assay. The binding occurred only to the C6/36 cells cytosolic protein fraction and it was inhibited by free D2BP. D2BP was shown to bind to DENV-2 E in the far-Western-binding studies and using mass spectrometry (MS) and MS/MS, peptide masses of the D2BP that matched to beta-tubulin and alpha-tubulin chains were identified. These findings suggest that DENV-2 through DENV-2 E binds directly to a 48 kDa tubulin or tubulin-like protein of C6/36 mosquito cells.
    Matched MeSH terms: Amino Acid Sequence
  16. Zainal Z, Sajari R, Ismail I
    J. Biochem. Mol. Biol. Biophys., 2002 Dec;6(6):415-9.
    PMID: 14972797
    Ornithine decarboxylase (ODC) is an enzyme of one of the two pathways of putrescine biosynthesis in plants. The genes encoding ODC have previously been cloned from Datura stramonium and human. Using differential screening, we isolated ODC cDNA clone from a cDNA library of ripening Capsicum annuum fruit. The cDNA clone designated CUKM10 contains an insert of 1523 bp. The longest open reading frame potentially encodes a peptide of 345 amino acids with an estimated molecular mass of 47 kDa and exhibit striking similarity to other ODCs. Expression analysis showed that the capODC hybridised to a single transcript with a size of 1.7 kb. The capODC transcript was first observed in early ripening and increased steadily until it reached fully ripening stage. From the observation it is suggested that capODC is developmentally regulated especially during later stage of ripening.
    Matched MeSH terms: Amino Acid Sequence
  17. Kong LL, Omar AR, Hair-Bejo M, Aini I, Seow HF
    Arch Virol, 2004 Feb;149(2):425-34.
    PMID: 14745606
    The deduced amino acid sequences of segment A and B of two very virulent Infectious bursal disease virus (vvIBDV) isolates, UPM94/273 and UPM97/61 were compared with 25 other IBDV strains. Twenty amino acid residues (8 in VP1, 5 in VP2, 2 in VP3, 4 in VP4, 1 in VP5) that were common to vvIBDV strains were detected. However, UPM94/273 is an exceptional vvIBDV with usual amino acid substitutions. The differences in the divergence of segment A and B indicated that the vvIBDV strains may have been derived from genetic reassortment of a single ancestral virus or both segments have different ability to undergo genetic variation due to their different functional constraints.
    Matched MeSH terms: Amino Acid Sequence
  18. Tsuchida N, Hamada K, Shiina M, Kato M, Kobayashi Y, Tohyama J, et al.
    Clin Genet, 2018 12;94(6):538-547.
    PMID: 30280376 DOI: 10.1111/cge.13454
    N-methyl-d-aspartate (NMDA) receptors are glutamate-activated ion channels that are widely distributed in the central nervous system and essential for brain development and function. Dysfunction of NMDA receptors has been associated with various neurodevelopmental disorders. Recently, a de novo recurrent GRIN2D missense variant was found in two unrelated patients with developmental and epileptic encephalopathy. In this study, we identified by whole exome sequencing novel heterozygous GRIN2D missense variants in three unrelated patients with severe developmental delay and intractable epilepsy. All altered residues were highly conserved across vertebrates and among the four GluN2 subunits. Structural consideration indicated that all three variants are probably to impair GluN2D function, either by affecting intersubunit interaction or altering channel gating activity. We assessed the clinical features of our three cases and compared them to those of the two previously reported GRIN2D variant cases, and found that they all show similar clinical features. This study provides further evidence of GRIN2D variants being causal for epilepsy. Genetic diagnosis for GluN2-related disorders may be clinically useful when considering drug therapy targeting NMDA receptors.
    Matched MeSH terms: Amino Acid Sequence
  19. Ali MS, Ganasen M, Rahman RN, Chor AL, Salleh AB, Basri M
    Protein J, 2013 Apr;32(4):317-25.
    PMID: 23645400 DOI: 10.1007/s10930-013-9488-z
    A new strain of psychrophilic bacteria (designated strain AMS8) from Antarctic soil was screened for extracellular lipolytic activity and further analyzed using molecular approach. Analysis of 16S rDNA showed that strain AMS8 was similar to Pseudomonas sp. A lipase gene named lipAMS8 was successfully isolated from strain AMS8, cloned, sequenced and overexpressed in Escherichia coli. Sequence analysis revealed that lipAMS8 consist of 1,431 bp nucleotides that encoded a polypeptide consisting of 476 amino acids. It lacked an N-terminal signal peptide and contained a glycine- and aspartate-rich nonapeptide sequence at the C-terminus, which are known to be the characteristics of repeats-in-toxin bacterial lipases. Furthermore, the substrate binding site of lipAMS8 was identified as S(207), D(255) and H(313), based on homology modeling and multiple sequence alignment. Crude lipase exhibited maximum activity at 20 °C and retained almost 50 % of its activity at 10 °C. The molecular weight of lipAMS8 was estimated to be 50 kDa via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimal expression level was attained using the recombinant plasmid pET32b/BL21(DE3) expressed at 15 °C for 8 h, induced by 0.1 mM isopropyl β-D thiogalactoside (IPTG) at E. coli growth optimal density of 0.5.
    Matched MeSH terms: Amino Acid Sequence
  20. Kahar UM, Ng CL, Chan KG, Goh KM
    Appl Microbiol Biotechnol, 2016 Jul;100(14):6291-307.
    PMID: 27000839 DOI: 10.1007/s00253-016-7451-6
    Type I pullulanases are enzymes that specifically hydrolyse α-1,6 linkages in polysaccharides. This study reports the analyses of a novel type I pullulanase (PulASK) from Anoxybacillus sp. SK3-4. Purified PulASK (molecular mass of 80 kDa) was stable at pH 5.0-6.0 and was most active at pH 6.0. The optimum temperature for PulASK was 60 °C, and the enzyme was reasonably stable at this temperature. Pullulan was the preferred substrate for PulASK, with 89.90 % adsorbance efficiency (various other starches, 56.26-72.93 % efficiency). Similar to other type I pullulanases, maltotriose was formed on digestion of pullulan by PulASK. PulASK also reacted with β-limit dextrin, a sugar rich in short branches, and formed maltotriose, maltotetraose and maltopentaose. Nevertheless, PulASK was found to preferably debranch long branches at α-1,6 glycosidic bonds of starch, producing amylose, linear or branched oligosaccharides, but was nonreactive against short branches; thus, no reducing sugars were detected. This is surprising as all currently known type I pullulanases produce reducing sugars (predominantly maltotriose) on digesting starch. The closest homologue of PulASK (95 % identity) is a type I pullulanase from Anoxybacillus sp. LM14-2 (Pul-LM14-2), which is capable of forming reducing sugars from starch. With rational design, amino acids 362-370 of PulASK were replaced with the corresponding sequence of Pul-LM14-2. The mutant enzyme formed reducing sugars on digesting starch. Thus, we identified a novel motif involved in substrate specificity in type I pullulanases. Our characterization may pave the way for the industrial application of this unique enzyme.
    Matched MeSH terms: Amino Acid Sequence
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links