METHOD: The model was formulated by integrating the Caputo fractional derivative with the previous cancer treatment model. Thereafter, the linear-quadratic with the repopulation model was coupled into the model to account for the cells' population decay due to radiation. The treatment process was then simulated with numerical variables, numerical parameters, and radiation parameters. The numerical parameters which included the proliferation coefficients of the cells, competition coefficients of the cells, and the perturbation constant of the normal cells were obtained from previous literature. The radiation and numerical parameters were obtained from reported clinical data of six patients treated with radiotherapy. The patients had tumor volumes of 24.1cm3, 17.4cm3, 28.4cm3, 18.8cm3, 30.6cm3, and 12.6cm3 with fractionated doses of 2 Gy for the first two patients and 1.8 Gy for the other four. The initial tumor volumes were used to obtain initial populations of cells after which the treatment process was simulated in MATLAB. Subsequently, a global sensitivity analysis was done to corroborate the model with clinical data. Finally, 96 radiation protocols were simulated by using the biologically effective dose formula. These protocols were used to obtain a regression equation connecting the value of the Caputo fractional derivative with the fractionated dose.
RESULTS: The final tumor volumes, from the results of the simulations, were 3.58cm3, 8.61cm3, 5.68cm3, 4.36cm3, 5.75cm3, and 6.12cm3, while those of the normal cells were 23.87cm3, 17.29cm3, 28.17cm3, 18.68cm3, 30.33cm3, and 12.55cm3. The sensitivity analysis showed that the most sensitive model factors were the value of the Caputo fractional derivative and the proliferation coefficient of the cancer cells. Lastly, the obtained regression equation accounted for 99.14% of the prediction.
CONCLUSION: The model can simulate a cancer treatment process and predict the results of other radiation protocols.
OBJECTIVE: This study aims to determine the background of recent studies on wheelchair control based on BCI for disability and map the literature survey into a coherent taxonomy. The study intends to identify the most important aspects in this emerging field as an impetus for using BCI for disability in electric-powered wheelchair (EPW) control, which remains a challenge. The study also attempts to provide recommendations for solving other existing limitations and challenges.
METHODS: We systematically searched all articles about EPW control based on BCI for disability in three popular databases: ScienceDirect, IEEE and Web of Science. These databases contain numerous articles that considerably influenced this field and cover most of the relevant theoretical and technical issues.
RESULTS: We selected 100 articles on the basis of our inclusion and exclusion criteria. A large set of articles (55) discussed on developing real-time wheelchair control systems based on BCI for disability signals. Another set of articles (25) focused on analysing BCI for disability signals for wheelchair control. The third set of articles (14) considered the simulation of wheelchair control based on BCI for disability signals. Four articles designed a framework for wheelchair control based on BCI for disability signals. Finally, one article reviewed concerns regarding wheelchair control based on BCI for disability signals.
DISCUSSION: Since 2007, researchers have pursued the possibility of using BCI for disability in EPW control through different approaches. Regardless of type, articles have focused on addressing limitations that impede the full efficiency of BCI for disability and recommended solutions for these limitations.
CONCLUSIONS: Studies on wheelchair control based on BCI for disability considerably influence society due to the large number of people with disability. Therefore, we aim to provide researchers and developers with a clear understanding of this platform and highlight the challenges and gaps in the current and future studies.
METHODS: A 3-step framework was proposed, consisting of: (1) 3D LV model reconstruction from motion-corrected 4D cine-MRI; (2) Registration of 2D LGE-MRI with 4D cine-MRI; (3) LV contour extraction from the intersection of LGE slices with the LV model. The framework was evaluated against cardiac MRI data from 27 patients scanned within 6 months after acute myocardial infarction. We compared the use of local Pearson's correlation (LPC) and normalized mutual information (NMI) as similarity measures for the registration. The use of 2 and 6 long-axis (LA) cine-MRI scans was also compared. The accuracy of the framework was evaluated using manual segmentation, and the interobserver variability of the scar volume derived from the segmented LV was determined using Bland-Altman analysis.
RESULTS: LPC outperformed NMI as a similarity measure for the proposed framework using 6 LA scans, with Hausdorrf distance (HD) of 1.19 ± 0.53 mm versus 1.51 ± 2.01 mm (endocardial) and 1.21 ± 0.48 mm versus 1.46 ± 1.78 mm (epicardial), respectively. Segmentation using 2 LA scans was comparable to 6 LA scans with a HD of 1.23 ± 0.70 mm (endocardial) and 1.25 ± 0.74 mm (epicardial). The framework yielded a lower interobserver variability in scar volumes compared with manual segmentation.
CONCLUSION: The framework showed high accuracy and robustness in delineating LV in LGE-MRI and allowed for bidirectional mapping of information between LGE- and cine-MRI scans, crucial in personalized model studies for treatment planning.