METHODS: A total of 308 samples was collected and microscopically screened from the NHP in the wild (n = 163), urban (n = 76), and captive (n = 69) populations. The samples were taken from 12 species of local NHPs.
RESULTS: At least, 44 species of GI parasites comprising of protozoans (seven species), nematodes (26 species), cestodes (five species), trematodes (five species), and pentastomida (one species) were detected. There were no significant differences for the overall prevalence and no great differences in GI parasite species among the wild, urban, and captive NHP populations.
CONCLUSION: The most common GI parasite was Ascaris spp. (49.7%), followed by Oesophagostomum spp. (26.9%), and 31 species discovered in this study are of known public health importance.
METHODS: H. contortus specimens (n = 57) were isolated from wild blue sheep (Pseudois nayaur) inhabiting Helan Mountains (HM), China and additional H. contortus specimens (n = 20) were isolated from domestic sheep that were grazed near the natural habitat of the blue sheep. Complete ITS2 (second internal transcribed spacer) sequences and partial sequences of the nad4 (nicotinamide dehydrogenase subunit 4 gene) gene were amplified to determine the sequence variations and population genetic diversities between these two populations. Also, 142 nad4 haplotype sequences of H. contortus from seven other geographical regions of China were retrieved from database to further examine the H. contortus population structure.
RESULTS: Sequence analysis revealed 10 genotypes (ITS2) and 73 haplotypes (nad4) among the 77 specimens, with nucleotide diversities of 0.007 and 0.021, respectively, similar to previous studies in other countries, such as Pakistan, Malaysia and Yemen. Phylogenetic analyses (BI, MP, NJ) of nad4 sequences showed that there were no noticeable boundaries among H. contortus populations from different geographical origin and population genetic analyses revealed that most of the variation (94.21%) occurred within H. contortus populations. All phylogenetic analyses indicated that there was little genetic differentiation but a high degree of gene flow among the H. contortus populations among wild blue sheep and domestic ruminants in China.
CONCLUSIONS: The current work is the first genetic characterization of H. contortus isolated from wild blue sheep in the Helan Mountains region. The results revealed a low genetic differentiation and high degree of gene flow between the H. contortus populations from sympatric wild blue sheep and domestic sheep, indicating regular cross-infection between the sympatrically reared ruminants.
METHODS: By comparing the patterns of floral visitation and levels of genetic diversity in adherent pollen loads among floral visitors, we evaluated the contribution of each flower visitor to pollination.
KEY RESULTS: The big-eyed bug, Geocoris sp., a major thrips predator, was an inadvertent pollinator, and importantly contributed to cross-pollination. The total outcross pollen adhering to thrips was approximately 30% that on the big-eyed bugs. Similarly, 63% of alleles examined in S. acuminata seeds and seedlings occurred in pollen adhering to big-eyed bugs; about 30% was shared with pollen from thrips.
CONCLUSIONS: During mass flowering, big-eyed bugs likely travel among flowering S. acuminata trees, attracted by the abundant thrips. Floral visitation patterns of big-eyed bugs vs. other insects suggest that these bugs can maintain their population size between flowering by preying upon another thrips (Haplothrips sp.) that inhabits stipules of S. acuminata throughout the year and quickly respond to mass flowering. Thus, thrips and big-eyed bugs are essential components in the pollination of S. acuminata.
METHODS: An agent-based model (ABM) is a relatively new approach that provides a framework for analyzing the heterogeneity of the interactions, along with biological and environmental factors in such complex systems. The objective of this research is to design and develop an ABM that uses Geospatial Information System (GIS) capabilities, biological behaviors of vectors and reservoir hosts, and an improved Susceptible-Exposed-Infected-Recovered (SEIR) epidemic model to explore the spread of ZCL. Various scenarios were implemented to analyze the future ZCL spreads in different parts of Maraveh Tappeh County, in the northeast region of Golestan Province in northeastern Iran, with alternative socio-ecological conditions.
RESULTS: The results confirmed that the spread of the disease arises principally in the desert, low altitude areas, and riverside population centers. The outcomes also showed that the restricting movement of humans reduces the severity of the transmission. Moreover, the spread of ZCL has a particular temporal pattern, since the most prevalent cases occurred in the fall. The evaluation test also showed the similarity between the results and the reported spatiotemporal trends.
CONCLUSIONS: This study demonstrates the capability and efficiency of ABM to model and predict the spread of ZCL. The results of the presented approach can be considered as a guide for public health management and controlling the vector population .
METHODS: A systematic review was conducted, based on both published and grey literature. Articles published between 1990 and 2017 were mined for information on the occurrence, prevalence, and geographical distribution of T. saginata taeniosis and bovine cysticercosis in East, Southeast and South Asia.
RESULTS: The presence of T. saginata was described in 15 of 27 countries of the region, including Afghanistan, Cambodia, China, India, Indonesia, Japan, Lao PDR, Malaysia, Mongolia, Nepal, Pakistan, Philippines, South Korea, Thailand and Vietnam. The only country that reported an absence of T. saginata is Japan, although sporadic reports of imported cases and unconfirmed reports of autochthonous infections were identified. Nationwide surveys of taeniosis with systematic sample collection and high sample numbers were available for Cambodia, China, Lao PDR, and South Korea, although speciation of Taenia was not always performed. Regional prevalence of taeniosis and bovine cysticercosis in endemic regions ranged between 0.02-42.6%, and 0.76-46.7%, respectively. However, data for bovine cysticercosis were only available for five countries (Japan, Lao PDR, Mongolia, Pakistan and Vietnam).
CONCLUSIONS: The data indicate a widespread occurrence of T. saginata throughout East, Southeast and South Asia. Identification of Taenia spp. in human infections was frequently not performed, leading to gaps in knowledge about the distribution of human tapeworm infections, mainly in regions where different human Taenia species co-occur. A high prevalence of T. saginata taeniosis and bovine cysticercosis may reflect insufficiencies in sanitation, limited health education standards, and insufficient food safety measures. Therefore, there is a need to improve local surveillance, notification, and overall control systems.
METHODS: Mosquitoes found landing on humans and resting on leaves over a 5-day period at two sites in the Lawas District of northern Sarawak were collected and identified. DNA samples extracted from salivary glands of Anopheles mosquitoes were subjected to nested PCR malaria-detection assays. The small subunit ribosomal RNA (SSU rRNA) gene of Plasmodium was sequenced, and the internal transcribed spacer 2 (ITS2) and mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of the mosquitoes were sequenced from the Plasmodium-positive samples for phylogenetic analysis.
RESULTS: Totals of 65 anophelines and 127 culicines were collected. By PCR, 6 An. balabacensis and 5 An. donaldi were found to have single P. knowlesi infections while 3 other An. balabacensis had either single, double or triple infections with P. inui, P. fieldi, P. cynomolgi and P. knowlesi. Phylogenetic analysis of the Plasmodium SSU rRNA gene confirmed 3 An. donaldi and 3 An. balabacensis with single P. knowlesi infections, while 3 other An. balabacensis had two or more Plasmodium species of P. inui, P. knowlesi, P. cynomolgi and some species of Plasmodium that could not be conclusively identified. Phylogenies inferred from the ITS2 and/or cox1 sequences of An. balabacensis and An. donaldi indicate that they are genetically indistinguishable from An. balabacensis and An. donaldi, respectively, found in Sabah, Malaysian Borneo.
CONCLUSIONS: Previously An. latens was identified as the vector for P. knowlesi in Kapit, central Sarawak, Malaysian Borneo, and now An. balabacensis and An. donaldi have been incriminated as vectors for zoonotic malaria in Lawas, northern Sarawak.
METHODS AND RESULTS: The goats were experimentally infected with a low dose of 2400 Haemonchus contortus, Trichostrongylus spp. and Oesophagostomum spp. at a 6:1:1 ratio. Faecal egg counts (FEC), packed cell volume (PCV), IgA activity against third-stage larvae and peripheral eosinophilia were measured twice a week for eight weeks. The infection generated an IgA response but did not significantly increase peripheral eosinophilia in the 25 infected kids compared with the 4 control animals. FEC was not associated with IgA activity or eosinophilia.
CONCLUSION: A detailed analysis of IgA and eosinophil responses to deliberate nematode infection in Boer goats showed that there was an increase in nematode-specific IgA activity but no detectable eosinophil response. In addition, there was no association between increased IgA activity or eosinophilia with egg counts and worm burdens. These suggest that IgA and eosinophils do not act to control nematode infection in goats.