Displaying publications 41 - 60 of 104 in total

Abstract:
Sort:
  1. Tan CW, Chan YF, Sim KM, Tan EL, Poh CL
    PLoS One, 2012;7(5):e34589.
    PMID: 22563456 DOI: 10.1371/journal.pone.0034589
    Enterovirus 71 (EV-71) is the main causative agent of hand, foot and mouth disease (HFMD). In recent years, EV-71 infections were reported to cause high fatalities and severe neurological complications in Asia. Currently, no effective antiviral or vaccine is available to treat or prevent EV-71 infection. In this study, we have discovered a synthetic peptide which could be developed as a potential antiviral for inhibition of EV-71. Ninety five synthetic peptides (15-mers) overlapping the entire EV-71 capsid protein, VP1, were chemically synthesized and tested for antiviral properties against EV-71 in human Rhabdomyosarcoma (RD) cells. One peptide, SP40, was found to significantly reduce cytopathic effects of all representative EV-71 strains from genotypes A, B and C tested, with IC(50) values ranging from 6-9.3 µM in RD cells. The in vitro inhibitory effect of SP40 exhibited a dose dependent concentration corresponding to a decrease in infectious viral particles, total viral RNA and the levels of VP1 protein. The antiviral activity of SP40 peptide was not restricted to a specific cell line as inhibition of EV-71 was observed in RD, HeLa, HT-29 and Vero cells. Besides inhibition of EV-71, it also had antiviral activities against CV-A16 and poliovirus type 1 in cell culture. Mechanism of action studies suggested that the SP40 peptide was not virucidal but was able to block viral attachment to the RD cells. Substitutions of arginine and lysine residues with alanine in the SP40 peptide at positions R3A, R4A, K5A and R13A were found to significantly decrease antiviral activities, implying the importance of positively charged amino acids for the antiviral activities. The data demonstrated the potential and feasibility of SP40 as a broad spectrum antiviral agent against EV-71.
  2. Sam IC, Loong SK, Michael JC, Chua CL, Wan Sulaiman WY, Vythilingam I, et al.
    PLoS One, 2012;7(11):e50476.
    PMID: 23209750 DOI: 10.1371/journal.pone.0050476
    Mosquito-borne Chikungunya virus (CHIKV) has recently re-emerged globally. The epidemic East/Central/South African (ECSA) strains have spread for the first time to Asia, which previously only had endemic Asian strains. In Malaysia, the ECSA strain caused an extensive nationwide outbreak in 2008, while the Asian strains only caused limited outbreaks prior to this. To gain insight into these observed epidemiological differences, we compared genotypic and phenotypic characteristics of CHIKV of Asian and ECSA genotypes isolated in Malaysia.
  3. NikNadia N, Sam IC, Khaidir N, Ngui R, Lim YA, Goh XT, et al.
    PLoS One, 2016;11(2):e0148767.
    PMID: 26866912 DOI: 10.1371/journal.pone.0148767
    Enterovirus A71 (EV-A71), which is transmitted by the fecal-oral route, causes hand, foot and mouth disease and, rarely, severe neurological complications. In Malaysia, the indigenous rural community (Orang Asli) has a high prevalence of parasitic diseases due to poor sanitation, water supply and hygiene practices. This cross-sectional study compared the seroepidemiology of EV-A71 among rural Orang Asli and urban Kuala Lumpur populations in West Malaysia, and determined the risk factors associated with EV-A71 seropositivity in rural Orang Asli. Seropositive rates were determined by neutralization assay. EV-A71 seropositivity was strongly associated with increasing age in both populations. Rural Orang Asli children ≤12 years had significantly higher EV-A71 seropositivity rates than urban Kuala Lumpur children (95.5% vs 57.6%, P < 0.001), and also higher rates in the age groups of 1-3, 4-6 and 7-12 years. Multivariate analysis confirmed that age ≤12 years (adjusted OR 8.1, 95% CI 3.2-20.7, P < 0.001) and using untreated water (adjusted OR 6.2, 95% CI 2.3-16.6, P < 0.001) were independently associated with EV-A71 seropositivity in the Orang Asli population. Supply of clean drinking water may reduce the risk of EV-A71 infection. With significantly higher EV-A71 seropositive rates, younger rural children should be a priority target for future vaccination programs in Malaysia.
  4. Li L, Woo YY, de Bruyne JA, Nathan AM, Kee SY, Chan YF, et al.
    PLoS One, 2018;13(12):e0209720.
    PMID: 30566518 DOI: 10.1371/journal.pone.0209720
    [This corrects the article DOI: 10.1371/journal.pone.0205795.].
  5. Tan CW, Tee HK, Lee MH, Sam IC, Chan YF
    PLoS One, 2016;11(9):e0162771.
    PMID: 27617744 DOI: 10.1371/journal.pone.0162771
    Enterovirus A71 (EV-A71) causes major outbreaks of hand, foot and mouth disease, and is occasionally associated with neurological complications and death in children. Reverse genetics is widely used in the field of virology for functional study of viral genes. For EV-A71, such tools are limited to clones that are transcriptionally controlled by T7/SP6 bacteriophage promoter. This is often time-consuming and expensive. Here, we describe the development of infectious plasmid DNA-based EV-A71 clones, for which EV-A71 genome expression is under transcriptional control by the CMV-intermediate early promoter and SV40 transcriptional-termination signal. Transfection of this EV-A71 infectious DNA produces good virus yield similar to in vitro-transcribed EV-A71 infectious RNA, 6.4 and 5.8 log10PFU/ml, respectively. Infectious plasmid with enhanced green fluorescence protein and Nano luciferase reporter genes also produced good virus titers, with 4.3 and 5.0 log10 PFU/ml, respectively. Another infectious plasmid with both CMV and T7 promoters was also developed for easy manipulation of in vitro transcription or direct plasmid transfection. Transfection with either dual-promoter infectious plasmid DNA or infectious RNA derived from this dual-promoter clone produced infectious viral particles. Incorporation of hepatitis delta virus ribozyme, which yields precise 3' ends of the DNA-launched EV-A71 genomic transcripts, increased infectious viral production. In contrast, the incorporation of hammerhead ribozyme in the DNA-launched EV-A71 resulted in lower virus yield, but improved the virus titers for T7 promoter-derived infectious RNA. This study describes rapid and robust reverse genetic tools for EV-A71.
  6. Oong XY, Ng KT, Tan JL, Chan KG, Kamarulzaman A, Chan YF, et al.
    PLoS One, 2017;12(1):e0170610.
    PMID: 28129386 DOI: 10.1371/journal.pone.0170610
    Reassortment of genetic segments between and within influenza B lineages (Victoria and Yamagata) has been shown to generate novel reassortants with unique genetic characteristics. Based on hemagglutinin (HA) and neuraminidase (NA) genes, recent surveillance study has identified reassortment properties in B/Phuket/3073/2013-like virus, which is currently used in the WHO-recommended influenza vaccine. To understand the potential reassortment patterns for all gene segments, four B/Phuket/3073/2013-like viruses and two unique reassortants (one each from Yamagata and Victoria) detected in Malaysia from 2012-2014 were subjected to whole-genome sequencing. Each gene was phylogenetically classified into lineages, clades and sub-clades. Three B/Phuket/3073/2013-like viruses from Yamagata lineage were found to be intra-clade reassortants, possessing PA and NA genes derived from Stockholm/12-like sub-clade, while the remaining genes from Wisconsin/01-like sub-clade (both sub-clades were within Yamagata Clade 3/Yam-3). However, the other B/Phuket/3073/2013-like virus had NS gene that derived from Stockholm/12-like sub-clade instead of Wisconsin/01-like sub-clade. One inter-clade reassortant had Yamagata Clade 2/Yam-2-derived HA and NP, and its remaining genes were Yam-3-derived. Within Victoria Clade 1/Vic-1 in Victoria lineage, one virus had intra-clade reassortment properties: HA and PB2 from Vic-1B sub-clade, MP and NS from a unique sub-clade "Vic-1C", and the remaining genes from Vic-1A sub-clade. Although random reassortment event may generate unique reassortants, detailed phylogenetic classification of gene segments showed possible genetic linkage between PA and NA genes in B/Phuket/3073/2013-like viruses, which requires further investigation. Understanding on reassortment patterns in influenza B evolution may contribute to future vaccine design.
  7. Chua CL, Sam IC, Chiam CW, Chan YF
    PLoS One, 2017;12(2):e0171989.
    PMID: 28182795 DOI: 10.1371/journal.pone.0171989
    The antibody isotype IgM appears earlier than IgG, within days of onset of symptoms, and is important during the early stages of the adaptive immune response. Little is known about the functional role of IgM during infection with chikungunya virus (CHIKV), a recently reemerging arbovirus that has caused large global outbreaks. In this study, we studied antibody responses in 102 serum samples collected during CHIKV outbreaks in Malaysia. We described the neutralizing role of IgM at different times post-infection and examined the independent contributions of IgM and IgG towards the neutralizing capacity of human immune sera during the early phase of infection, including the differences in targets of neutralizing epitopes. Neutralizing IgM starts to appear as early as day 4 of symptoms, and their appearance from day 6 is associated with a reduction in viremia. IgM acts in a complementary manner with the early IgG, but plays the main neutralizing role up to a point between days 4 and 10 which varies between individuals. After this point, total neutralizing capacity is attributable almost entirely to the robust neutralizing IgG response. IgM preferentially binds and targets epitopes on the CHIKV surface E1-E2 glycoproteins, rather than individual E1 or E2. These findings provide insight into the early antibody responses to CHIKV, and have implications for design of diagnostic serological assays.
  8. Li L, Woo YY, de Bruyne JA, Nathan AM, Kee SY, Chan YF, et al.
    PLoS One, 2018;13(10):e0205795.
    PMID: 30321228 DOI: 10.1371/journal.pone.0205795
    OBJECTIVES: To describe the severity, human adenovirus (HAdV) type and respiratory morbidity following adenovirus pneumonia in children.

    METHODOLOGY: Retrospective review of children under 12 years of age, admitted with HAdV pneumonia, between January 2011 and July 2013, in a single centre in Malaysia. HAdV isolated from nasopharyngeal secretions were typed by sequencing hypervariable regions 1-6 of the hexon gene. Patients were reviewed for respiratory complications.

    RESULTS: HAdV was detected in 131 children of whom 92 fulfilled inclusion criteria. Median (range) age was 1.1 (0.1-8.0) years with 80% under 2 years. Twenty percent had severe disease with a case-fatality rate of 5.4%. Duration of admission (p = 0.02) was independently associated with severe illness. Twenty-two percent developed respiratory complications, the commonest being bronchiolitis obliterans (15.2%) and recurrent wheeze (5.4%). The predominant type shifted from HAdV1 and HAdV3 in 2011 to HAdV7 in 2013. The commonest types identified were types 7 (54.4%), 1(17.7%) and 3 (12.6%). Four out of the five patients who died were positive for HAdV7. Infection with type 7 (OR 8.90, 95% CI 1.32, 59.89), family history of asthma (OR 14.80, 95% CI 2.12-103.21) and need for invasive or non-invasive ventilation (OR 151.84, 95% CI 9.93-2.32E) were independent predictors of respiratory complications.

    CONCLUSIONS: One in five children admitted with HAdV pneumonia had severe disease and 22% developed respiratory complications. Type 7 was commonly isolated in children with severe disease. Family history of asthma need for invasive or non-invasive ventilation and HAdV 7 were independent predictors of respiratory complications.

  9. Aw-Yong KL, Sam IC, Koh MT, Chan YF
    PLoS One, 2016;11(11):e0165659.
    PMID: 27806091 DOI: 10.1371/journal.pone.0165659
    Enterovirus A71 (EV-A71) is one of the main causative agents of hand, foot and mouth disease (HFMD). Unlike other enteroviruses that cause HFMD, EV-A71 is more frequently associated with severe neurological complications and fatality. To date, no effective licensed antivirals are available to combat EV-A71 infection. Little is known about the immunogenicity of viral non-structural proteins in humans. Previous studies have mainly focused on characterization of epitopes of EV-A71 structural proteins by using immunized animal antisera. In this study, we have characterized human antibody responses against the structural and non-structural proteins of EV-A71. Each viral protein was cloned and expressed in either bacterial or mammalian systems, and tested with antisera by western blot. Results revealed that all structural proteins (VP1-4), and non-structural proteins 2A, 3C and 3D were targets of EV-A71 IgM, whereas EV-A71 IgG recognized all the structural and non-structural proteins. Sixty three synthetic peptides predicted to be immunogenic in silico were synthesized and used for the characterization of EV-A71 linear B-cell epitopes. In total, we identified 22 IgM and four IgG dominant epitopes. Synthetic peptide PEP27, corresponding to residues 142-156 of VP1, was identified as the EV-A71 IgM-specific immunodominant epitope. PEP23, mapped to VP1 41-55, was recognized as the EV-A71 IgG cross-reactive immunodominant epitope. The structural protein VP1 is the major immunodominant site targeted by anti-EV-A71 IgM and IgG antibodies, but epitopes against non-structural proteins were also detected. These data provide new understanding of the immune response to EV-A71 infection, which benefits the development of diagnostic tools, potential therapeutics and subunit vaccine candidates.
  10. Tee HK, Tan CW, Yogarajah T, Lee MHP, Chai HJ, Hanapi NA, et al.
    PLoS Pathog, 2019 11;15(11):e1007863.
    PMID: 31730673 DOI: 10.1371/journal.ppat.1007863
    Enterovirus A71 (EV-A71) causes hand, foot and mouth disease epidemics with neurological complications and fatalities. However, the neuropathogenesis of EV-A71 remains poorly understood. In mice, adaptation and virulence determinants have been mapped to mutations at VP2-149, VP1-145 and VP1-244. We investigate how these amino acids alter heparin-binding phenotype and shapes EV-A71 virulence in one-day old mice. We constructed six viruses with varying residues at VP1-98, VP1-145 (which are both heparin-binding determinants) and VP2-149 (based on the wild type 149K/98E/145Q, termed KEQ) to generate KKQ, KKE, KEE, IEE and IEQ variants. We demonstrated that the weak heparin-binder IEE was highly lethal in mice. The initially strong heparin-binding IEQ variant acquired an additional mutation VP1-K244E, which confers weak heparin-binding phenotype resulting in elevated viremia and increased virus antigens in mice brain, with subsequent high virulence. IEE and IEQ-244E variants inoculated into mice disseminated efficiently and displayed high viremia. Increasing polymerase fidelity and impairing recombination of IEQ attenuated the virulence, suggesting the importance of population diversity in EV-A71 pathogenesis in vivo. Combining in silico docking and deep sequencing approaches, we inferred that virus population diversity is shaped by electrostatic interactions at the five-fold axis of the virus surface. Electrostatic surface charges facilitate virus adaptation by generating poor heparin-binding variants for better in vivo dissemination in mice, likely due to reduced adsorption to heparin-rich peripheral tissues, which ultimately results in increased neurovirulence. The dynamic switching between heparin-binding and weak heparin-binding phenotype in vivo explained the neurovirulence of EV-A71.
  11. NikNadia N, Sam IC, Rampal S, WanNorAmalina W, NurAtifah G, Verasahib K, et al.
    PLoS Negl Trop Dis, 2016 Mar;10(3):e0004562.
    PMID: 27010319 DOI: 10.1371/journal.pntd.0004562
    Enterovirus A71 (EV-A71) is an important emerging pathogen causing large epidemics of hand, foot and mouth disease (HFMD) in children. In Malaysia, since the first EV-A71 epidemic in 1997, recurrent cyclical epidemics have occurred every 2-3 years for reasons that remain unclear. We hypothesize that this cyclical pattern is due to changes in population immunity in children (measured as seroprevalence). Neutralizing antibody titers against EV-A71 were measured in 2,141 residual serum samples collected from children ≤12 years old between 1995 and 2012 to determine the seroprevalence of EV-A71. Reported national HFMD incidence was highest in children <2 years, and decreased with age; in support of this, EV-A71 seroprevalence was significantly associated with age, indicating greater susceptibility in younger children. EV-A71 epidemics are also characterized by peaks of increased genetic diversity, often with genotype changes. Cross-sectional time series analysis was used to model the association between EV-A71 epidemic periods and EV-A71 seroprevalence adjusting for age and climatic variables (temperature, rainfall, rain days and ultraviolet radiance). A 10% increase in absolute monthly EV-A71 seroprevalence was associated with a 45% higher odds of an epidemic (adjusted odds ratio, aOR1.45; 95% CI 1.24-1.69; P<0.001). Every 10% decrease in seroprevalence between preceding and current months was associated with a 16% higher odds of an epidemic (aOR = 1.16; CI 1.01-1.34 P<0.034). In summary, the 2-3 year cyclical pattern of EV-A71 epidemics in Malaysia is mainly due to the fall of population immunity accompanying the accumulation of susceptible children between epidemics. This study will impact the future planning, timing and target populations for vaccine programs.
  12. Chong YM, Sam IC, Chong J, Kahar Bador M, Ponnampalavanar S, Syed Omar SF, et al.
    PLoS Negl Trop Dis, 2020 11;14(11):e0008744.
    PMID: 33253226 DOI: 10.1371/journal.pntd.0008744
    Malaysia had 10,219 confirmed cases of COVID-19 as of September 20, 2020. About 33% were associated with a Tablighi Jamaat religious mass gathering held in Kuala Lumpur between February 27 and March 3, 2020, which drove community transmission during Malaysia's second wave. We analysed genome sequences of SARS-CoV-2 from Malaysia to better understand the molecular epidemiology and spread. We obtained 58 SARS-CoV-2 whole genome sequences from patients in Kuala Lumpur and performed phylogenetic analyses on these and a further 57 Malaysian sequences available in the GISAID database. Nine different SARS-CoV-2 lineages (A, B, B.1, B.1.1, B.1.1.1, B.1.36, B.2, B.3 and B.6) were detected in Malaysia. The B.6 lineage was first reported a week after the Tablighi mass gathering and became predominant (65.2%) despite being relatively rare (1.4%) globally. Direct epidemiological links between lineage B.6 viruses and the mass gathering were identified. Increases in reported total cases, Tablighi-associated cases, and community-acquired B.6 lineage strains were temporally linked. Non-B.6 lineages were mainly travel-associated and showed limited onward transmission. There were also temporally correlated increases in B.6 sequences in other Southeast Asian countries, India and Australia, linked to participants returning from this event. Over 95% of global B.6 sequences originated from Asia Pacific. We also report a nsp3-C6310A substitution found in 47.3% of global B.6 sequences which was associated with reduced sensitivity using a commercial diagnostic real-time PCR assay. Lineage B.6 became the predominant cause of community transmission in Malaysia after likely introduction during a religious mass gathering. This event also contributed to spikes of lineage B.6 in other countries in the Asia-Pacific. Mass gatherings can be significant causes of local and global spread of COVID-19. Shared genomic surveillance can be used to identify SARS-CoV-2 transmission chains to aid prevention and control, and to monitor diagnostic molecular assays. Clinical Trial Registration: COVID-19 paper.
  13. Chua CL, Sam IC, Merits A, Chan YF
    PLoS Negl Trop Dis, 2016 08;10(8):e0004960.
    PMID: 27571254 DOI: 10.1371/journal.pntd.0004960
    BACKGROUND: Chikungunya virus (CHIKV) is a re-emerging mosquito-borne virus which causes epidemics of fever, severe joint pain and rash. Between 2005 and 2010, the East/Central/South African (ECSA) genotype was responsible for global explosive outbreaks across India, the Indian Ocean and Southeast Asia. From late 2013, Asian genotype CHIKV has caused outbreaks in the Americas. The characteristics of cross-antibody efficacy and epitopes are poorly understood.

    METHODOLOGY/PRINCIPAL FINDINGS: We characterized human immune sera collected during two independent outbreaks in Malaysia of the Asian genotype in 2006 and the ECSA genotype in 2008-2010. Neutralizing capacity was analyzed against representative clinical isolates as well as viruses rescued from infectious clones of ECSA and Asian CHIKV. Using whole virus antigen and recombinant E1 and E2 envelope glycoproteins, we further investigated antibody binding sites, epitopes, and antibody titers. Both ECSA and Asian sera demonstrated stronger neutralizing capacity against the ECSA genotype, which corresponded to strong epitope-antibody interaction. ECSA serum targeted conformational epitope sites in the E1-E2 glycoprotein, and E1-E211K, E2-I2T, E2-H5N, E2-G118S and E2-S194G are key amino acids that enhance cross-neutralizing efficacy. As for Asian serum, the antibodies targeting E2 glycoprotein correlated with neutralizing efficacy, and I2T, H5N, G118S and S194G altered and improved the neutralization profile. Rabbit polyclonal antibody against the N-terminal linear neutralizing epitope from the ECSA sequence has reduced binding capacity and neutralization efficacy against Asian CHIKV. These findings imply that the choice of vaccine strain may impact cross-protection against different genotypes.

    CONCLUSION/SIGNIFICANCE: Immune serum from humans infected with CHIKV of either ECSA or Asian genotypes showed differences in binding and neutralization characteristics. These findings have implications for the continued outbreaks of co-circulating CHIKV genotypes and effective design of vaccines and diagnostic serological assays.

  14. Fu JYL, Chua CL, Abu Bakar AS, Vythilingam I, Wan Sulaiman WY, Alphey L, et al.
    PLoS Negl Trop Dis, 2023 Jun;17(6):e0011423.
    PMID: 37307291 DOI: 10.1371/journal.pntd.0011423
    BACKGROUND: Emerging arboviruses such as chikungunya and Zika viruses have unexpectedly caused widespread outbreaks in tropical and subtropical regions recently. Ross River virus (RRV) is endemic in Australia and has epidemic potential. In Malaysia, Aedes mosquitoes are abundant and drive dengue and chikungunya outbreaks. We assessed risk of an RRV outbreak in Kuala Lumpur, Malaysia by determining vector competence of local Aedes mosquitoes and local seroprevalence as a proxy of human population susceptibility.

    METHODOLOGY/PRINCIPAL FINDINGS: We assessed oral susceptibility of Malaysian Ae. aegypti and Ae. albopictus by real-time PCR to an Australian RRV strain SW2089. Replication kinetics in midgut, head and saliva were determined at 3 and 10 days post-infection (dpi). With a 3 log10 PFU/ml blood meal, infection rate was higher in Ae. albopictus (60%) than Ae. aegypti (15%; p<0.05). Despite similar infection rates at 5 and 7 log10 PFU/ml blood meals, Ae. albopictus had significantly higher viral loads and required a significantly lower median oral infectious dose (2.7 log10 PFU/ml) than Ae. aegypti (4.2 log10 PFU/ml). Ae. albopictus showed higher vector competence, with higher viral loads in heads and saliva, and higher transmission rate (RRV present in saliva) of 100% at 10 dpi, than Ae. aegypti (41%). Ae. aegypti demonstrated greater barriers at either midgut escape or salivary gland infection, and salivary gland escape. We then assessed seropositivity against RRV among 240 Kuala Lumpur inpatients using plaque reduction neutralization, and found a low rate of 0.8%.

    CONCLUSIONS/SIGNIFICANCE: Both Ae. aegypti and Ae. albopictus are susceptible to RRV, but Ae. albopictus displays greater vector competence. Extensive travel links with Australia, abundant Aedes vectors, and low population immunity places Kuala Lumpur, Malaysia at risk of an imported RRV outbreak. Surveillance and increased diagnostic awareness and capacity are imperative to prevent establishment of new arboviruses in Malaysia.

  15. Gonçalves-Carneiro D, Mastrocola E, Lei X, DaSilva J, Chan YF, Bieniasz PD
    Nat Microbiol, 2022 Oct;7(10):1558-1567.
    PMID: 36075961 DOI: 10.1038/s41564-022-01223-8
    Attenuation of a virulent virus is a proven approach for generating vaccines but can be unpredictable. For example, synonymous recoding of viral genomes can attenuate replication but sometimes results in pleiotropic effects that confound rational vaccine design. To enable specific, conditional attenuation of viruses, we examined target RNA features that enable zinc finger antiviral protein (ZAP) function. ZAP recognized CpG dinucleotides and targeted CpG-rich RNAs for depletion, but RNA features such as CpG numbers, spacing and surrounding nucleotide composition that enable specific modulation by ZAP were undefined. Using synonymously mutated HIV-1 genomes, we defined several sequence features that govern ZAP sensitivity and enable stable attenuation. We applied rules derived from experiments with HIV-1 to engineer a mutant enterovirus A71 genome whose attenuation was stable and strictly ZAP-dependent, both in cell culture and in mice. The conditionally attenuated enterovirus A71 mutant elicited neutralizing antibodies that were protective against wild-type enterovirus A71 infection and disease in mice. ZAP sensitivity can thus be readily applied for the rational design of conditionally attenuated viral vaccines.
  16. Chong YM, Sam IC, Ponnampalavanar S, Syed Omar SF, Kamarulzaman A, Munusamy V, et al.
    Microbiol Resour Announc, 2020 May 14;9(20).
    PMID: 32409547 DOI: 10.1128/MRA.00383-20
    We sequenced four severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from Malaysia during the second wave of infection and found unique mutations which suggest local evolution. Circulating Malaysian strains represent introductions from different countries, particularly during the first wave of infection. Genome sequencing is important for understanding local epidemiology.
  17. Wong HV, Chan YF, Sam IC, Sulaiman WY, Vythilingam I
    Methods Mol Biol, 2016;1426:119-28.
    PMID: 27233266 DOI: 10.1007/978-1-4939-3618-2_11
    In vivo infection of mosquitoes is an important method to study and characterize arthropod-borne viruses. Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is transmitted primarily by Aedes mosquitoes. In this chapter, we describe a protocol for infection of CHIKV in two species of Aedes mosquitoes, Aedes aegypti and Aedes albopictus, together with the isolation of CHIKV in different parts of the infected mosquito such as midgut, legs, wings, salivary gland, head, and saliva. This allows the study of viral infection, replication and dissemination within the mosquito vector.
  18. Chiam CW, Sam IC, Chan YF, Wong KT, Ong KC
    Methods Mol Biol, 2016;1426:235-40.
    PMID: 27233276 DOI: 10.1007/978-1-4939-3618-2_21
    Immunohistochemistry is a histological technique that allows detection of one or more proteins of interest within a cell using specific antibody binding, followed by microscopic visualization of a chromogenic substrate catalyzed by peroxidase and/or alkaline phosphatase. Here, we describe a method to localize Chikungunya virus (CHIKV) antigens in formalin-fixed and paraffin-embedded infected mouse brain.
  19. Chua CL, Sam IC, Chan YF
    Methods Mol Biol, 2016;1426:51-61.
    PMID: 27233260 DOI: 10.1007/978-1-4939-3618-2_5
    Chikungunya virus (CHIKV) is a mosquito-borne arbovirus which poses a major threat to global public health. Definitive CHIKV diagnosis is crucial, especially in distinguishing the disease from dengue virus, which co-circulates in endemic areas and shares the same mosquito vectors. Laboratory diagnosis is mainly based on serological or molecular approaches. The E2 glycoprotein is a good candidate for serological diagnosis since it is the immunodominant antigen during the course of infection, and reacts with seropositive CHIKV sera. In this chapter, we describe the generation of stable clone Sf9 (Spodoptera frugiperda) cells expressing secreted, soluble, and native recombinant CHIKV E2 glycoprotein. We use direct plasmid expression in insect cells, rather than the traditional technique of generating recombinant baculovirus. This recombinant protein is useful for serological diagnosis of CHIKV infection.
  20. Tan CW, Poh CL, Sam IC, Chan YF
    J Virol, 2013 Jan;87(1):611-20.
    PMID: 23097443 DOI: 10.1128/JVI.02226-12
    Enterovirus 71 (EV-71) infections are usually associated with mild hand, foot, and mouth disease in young children but have been reported to cause severe neurological complications with high mortality rates. To date, four EV-71 receptors have been identified, but inhibition of these receptors by antagonists did not completely abolish EV-71 infection, implying that there is an as yet undiscovered receptor(s). Since EV-71 has a wide range of tissue tropisms, we hypothesize that EV-71 infections may be facilitated by using receptors that are widely expressed in all cell types, such as heparan sulfate. In this study, heparin, polysulfated dextran sulfate, and suramin were found to significantly prevent EV-71 infection. Heparin inhibited infection by all the EV-71 strains tested, including those with a single-passage history. Neutralization of the cell surface anionic charge by polycationic poly-d-lysine and blockage of heparan sulfate by an anti-heparan sulfate peptide also inhibited EV-71 infection. Interference with heparan sulfate biosynthesis either by sodium chlorate treatment or through transient knockdown of N-deacetylase/N-sulfotransferase-1 and exostosin-1 expression reduced EV-71 infection in RD cells. Enzymatic removal of cell surface heparan sulfate by heparinase I/II/III inhibited EV-71 infection. Furthermore, the level of EV-71 attachment to CHO cell lines that are variably deficient in cell surface glycosaminoglycans was significantly lower than that to wild-type CHO cells. Direct binding of EV-71 particles to heparin-Sepharose columns under physiological salt conditions was demonstrated. We conclude that EV-71 infection requires initial binding to heparan sulfate as an attachment receptor.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links