Displaying publications 41 - 47 of 47 in total

Abstract:
Sort:
  1. Al Qabbani A, Rani KGA, Syarif J, AlKawas S, Sheikh Abdul Hamid S, Samsudin AR, et al.
    PLoS One, 2023;18(4):e0283922.
    PMID: 37018321 DOI: 10.1371/journal.pone.0283922
    Current immunological issues in bone grafting regarding the transfer of xenogeneic donor bone cells into the recipient are challenging the industry to produce safer acellular natural matrices for bone regeneration. The aim of this study was to investigate the efficacy of a novel decellularization technique for producing bovine cancellous bone scaffold and compare its physicochemical, mechanical, and biological characteristics with demineralized cancellous bone scaffold in an in-vitro study. Cancellous bone blocks were harvested from a bovine femoral head (18-24 months old) subjected to physical cleansing and chemical defatting, and further processed in two ways. Group I was subjected to demineralization, while Group II underwent decellularization through physical, chemical, and enzymatic treatments. Both were then freeze-dried, and gamma radiated, finally producing a demineralized bovine cancellous bone (DMB) scaffold and decellularized bovine cancellous bone (DCC) scaffold. Both DMB and DCC scaffolds were subjected to histological evaluation, scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS), fourier-transform infrared spectroscopy (FTIR), quantification of lipid, collagen, and residual nucleic acid content, and mechanical testing. The osteogenic potential was investigated through the recellularization of scaffolds with human osteoblast cell seeding and examined for cell attachment, proliferation, and mineralization by Alizarin staining and gene expression. DCC produced a complete acellular extracellular matrix (ECM) with the absence of nucleic acid content, wider pores with extensive interconnectivity and partially retaining collagen fibrils. DCC demonstrated a higher cell proliferation rate, upregulation of osteogenic differentiation markers, and substantial mineralized nodules production. Our findings suggest that the decellularization technique produced an acellular DCC scaffold with minimal damage to ECM and possesses osteogenic potential through the mechanisms of osteoconduction, osteoinduction, and osteogenesis in-vitro.
  2. Herlinawati H, Marwa M, Ismail N, Junaidi, Liza LO, Situmorang DDB
    Heliyon, 2024 Aug 15;10(15):e35148.
    PMID: 39170322 DOI: 10.1016/j.heliyon.2024.e35148
    The premise of this study, utilizing content analysis and descriptive qualitative designs, posited that teachers' comprehension of 21st-century/4Cs skills' could define the caliber of educational materials in higher education institutions. The study aimed to ascertain how 21st-century skills were incorporated in teachers' term evaluations and instructional plans, and to explore teachers' understanding of these skills. From 2022 to 2023, this research was carried out at the Faculty of Education in one university in Indonesia. There were 54 documents collected, which included 27 teachers' term evaluations and 27 instructional plans. Four teachers were interviewed to collect information related to their 4Cs competencies' familiarity, opinions, and the challenges of the 4Cs competencies integration. To evaluate the collected documents, this study utilized the Career Technical Education (CTE) Career Ready Practices checklist, a 21st-Century Skills/4Cs rubric encompassing "Communication," "Creativity," "Critical Thinking," and "Collaboration." The research indicated that teachers' term evaluations and instructional plans have incorporated 4C skills in the categories of "Not yet reached competency" and "Approaching competency." The research suggests that teachers' understanding of 4Cs competencies can be initially assessed through their instructional materials, 4Cs competencies, familiarity, positive opinions, and challenges. Teachers must have familiarity with 4Cs competencies in order to provide these skills in their instructional materials/plans and develop teaching with the 4Cs competencies. A multifaceted strategy is needed for the next research, including focused professional development, collaboration among educators, institutional leaders' support, and alignment with larger educational priorities and goals.
  3. Aimanan K, Mohd Nor MR, Ling W, Che Ghazali K, Ahmad Hamidi AJ, Hayati F, et al.
    Radiol Case Rep, 2021 Nov;16(11):3457-3460.
    PMID: 34527123 DOI: 10.1016/j.radcr.2021.08.031
    Trocar site incisional hernia (TSIH) is an unpleasant complication of laparoscopic surgery. A 70-year-old male with low rectal carcinoma underwent a laparoscopic abdominoperineal resection after completion of neoadjuvant radiotherapy. The postoperative recovery was smooth; however, he developed abdominal distension and pain over the previous drain site after removal on day 3. In view of diagnostic ambiguity, an imaging tool was requested as an adjunct to further management. Computed tomography of the abdomen showed small bowel obstruction secondary to herniated ileal loops passing through the right iliac fossa anterior abdominal wall defect at the previous drainage site. An exploration was made and the rectus defect was closed using a non-absorbable suture.
  4. Bhuiyan MR, Abdullah J, Hashim N, Al Farid F, Ahsanul Haque M, Uddin J, et al.
    PeerJ Comput Sci, 2022;8:e895.
    PMID: 35494812 DOI: 10.7717/peerj-cs.895
    This research enhances crowd analysis by focusing on excessive crowd analysis and crowd density predictions for Hajj and Umrah pilgrimages. Crowd analysis usually analyzes the number of objects within an image or a frame in the videos and is regularly solved by estimating the density generated from the object location annotations. However, it suffers from low accuracy when the crowd is far away from the surveillance camera. This research proposes an approach to overcome the problem of estimating crowd density taken by a surveillance camera at a distance. The proposed approach employs a fully convolutional neural network (FCNN)-based method to monitor crowd analysis, especially for the classification of crowd density. This study aims to address the current technological challenges faced in video analysis in a scenario where the movement of large numbers of pilgrims with densities ranging between 7 and 8 per square meter. To address this challenge, this study aims to develop a new dataset based on the Hajj pilgrimage scenario. To validate the proposed method, the proposed model is compared with existing models using existing datasets. The proposed FCNN based method achieved a final accuracy of 100%, 98%, and 98.16% on the proposed dataset, the UCSD dataset, and the JHU-CROWD dataset, respectively. Additionally, The ResNet based method obtained final accuracy of 97%, 89%, and 97% for the proposed dataset, UCSD dataset, and JHU-CROWD dataset, respectively. The proposed Hajj-Crowd-2021 crowd analysis dataset and the model outperformed the other state-of-the-art datasets and models in most cases.
  5. Asmani AZA, Zainuddin AFF, Azmi Murad NA, Mohd Darwis NH, Suhaimi NS, Zaini E, et al.
    Pathol Res Pract, 2024 Nov;263:155627.
    PMID: 39357185 DOI: 10.1016/j.prp.2024.155627
    Antibody-based treatment was first used in 1891 for the treatment of diphtheria. Since then, monoclonal antibodies (mAbs) have been developed to treat many diseases such as cancer and act as vaccines. However, murine-derived therapeutic mAbs were found to be highly immunogenic, and caused anti-drug antibodies (ADAs) reaction, reducing their efficacy and causing severe infusion reactions. Fully human, humanised, and chimeric antibodies were then introduced for better therapeutic efficacy. With the introduction of immune response associated with mAbs immunogenicity. This review explores the immunogenicity of mAbs, its mechanism, contributing factors, and its impact on therapeutic efficacy. It also discusses immunogenicity assessment for preclinical studies and strategies for minimising immunogenicity for effective therapeutic treatment in various diseases. Finally, predicting immunogenicity in drug development is essential for selecting top drug candidates. A lot of methods can be implemented by the researchers and developers to reduce the development of ADAs while simultaneously minimising the immunogenicity reaction of mAbs.
  6. Mohamad Razif MI, Nizar N, Zainal Abidin NH, Muhammad Ali SN, Wan Zarimi WNN, Khotib J, et al.
    Expert Rev Vaccines, 2023;22(1):629-642.
    PMID: 37401128 DOI: 10.1080/14760584.2023.2232450
    INTRODUCTION: mRNA vaccines have been developed as a promising cancer management. It is noted that specification of the antigen sequence of the target antigen is necessary for the design and manufacture of an mRNA vaccine.

    AREAS COVERED: The steps involved in preparing the mRNA-based cancer vaccines are isolation of the mRNA cancer from the target protein using the nucleic acid RNA-based vaccine, sequence construction to prepare the DNA template, in vitro transcription for protein translation from DNA into mRNA strand, 5' cap addition and poly(A) tailing to stabilize and protect the mRNA from degradation and purification process to remove contaminants produced during preparation.

    EXPERT OPINION: Lipid nanoparticles, lipid/protamine/mRNA nanoparticles, and cell-penetrating peptides have been used to formulate mRNA vaccine and to ensure vaccine stability and delivery to the target site. Delivery of the vaccine to the target site will trigger adaptive and innate immune responses. Two predominant factors of the development of mRNA-based cancer vaccines are intrinsic influence and external influence. In addition, research relating to the dosage, route of administration, and cancer antigen types have been observed to positively impact the development of mRNA vaccine.

  7. Onikanni SA, Lawal B, Munyembaraga V, Bakare OS, Taher M, Khotib J, et al.
    Molecules, 2023 Jul 30;28(15).
    PMID: 37570723 DOI: 10.3390/molecules28155752
    Glucokinase plays an important role in regulating the blood glucose level and serves as an essential therapeutic target in type 2 diabetes management. Entada africana is a medicinal plant and highly rich source of bioactive ligands with the potency to develop new target drugs for glucokinase such as diabetes and obesity. Therefore, the study explored a computational approach to predict identified compounds from Entada africana following its intermolecular interactions with the allosteric binding site of the enzymes. We retrieved the three-dimensional (3D) crystal structure of glucokinase (PDB ID: 4L3Q) from the online protein data bank and prepared it using the Maestro 13.5, Schrödinger Suite 2022-3. The compounds identified were subjected to ADME, docking analysis, pharmacophore modeling, and molecular simulation. The results show the binding potential of the identified ligands to the amino acid residues, thereby suggesting an interaction of the amino acids with the ligand at the binding site of the glucokinase activator through conventional chemical bonds such as hydrogen bonds and hydrophobic interactions. The compatibility of the molecules was highly observed when compared with the standard ligand, thereby leading to structural and functional changes. Therefore, the bioactive components from Entada africana could be a good driver of glucokinase, thereby paving the way for the discovery of therapeutic drugs for the treatment of diabetes and its related complications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links