CASE PRESENTATION: A child with diabetes diagnosed at age 8 years, harbored a PAX4 variant, c.890G>A (p.Gly297Asp), initially classified as variant of uncertain significance. Eleven family members (7 adults and 4 children) with and without diabetes across 3 generations were genotyped. The variant co-segregated with diabetes or prediabetes across 3 generations of the family. The variant is reclassified as likely pathogenic according to standard guidelines.
CONCLUSIONS: Genetic testing is essential to confirm PAX4-MODY as the presentation is variable even within the same family. PAX4 mutation needs to be considered in MODY genetic testing in Asian patients.
OBJECTIVE: The present study aims to investigate the effects of a standardized raw extract of C. asiatica (RECA) on hydrogen peroxide (H2O2)-induced oxidative stress and apoptotic death in neural-like cells derived from mouse embryonic stem (ES) cell line.
METHODS: A transgenic mouse ES cell (46C) was differentiated into neural-like cells using 4-/4+ protocol with addition of all-trans retinoic acid. These cells were then exposed to H2O2 for 24 h. The effects of RECA on H2O2-induced neural-like cells were assessed through cell viability, apoptosis, and reactive oxygen species (ROS) assays, as well as neurite length measurement. The gene expression levels of neuronal-specific and antioxidant markers were assessed by RT-qPCR analysis.
RESULTS: Pre-treatment with H2O2 for 24 hours, in a dose-dependent manner, damaged neural-like cells as marked by a decrease in cell viability, substantial increase in intracellular ROS accumulation, and increase in apoptotic rate compared to untreated cells. These cells were used to treat with RECA. Treatment with RECA for 48 h remarkably restored cell survival and promoted neurite outgrowth in the H2O2- damaged neurons by increasing cell viability and decreasing ROS activity. RT-qPCR analysis revealed that RECA upregulated the level of antioxidant genes such as thioredoxin-1 (Trx-1) and heme oxygenase-1 (HO-1) of treated cells, as well as the expression level of neuronal-specific markers such as Tuj1 and MAP2 genes, suggesting their contribution in neuritogenic effect.
CONCLUSION: Our findings indicate that RECA promotes neuroregenerative effects and exhibits antioxidant properties, suggesting a valuable synergistic activity of its phytochemical constituents, thus, making the extract a promising candidate in preventing or treating oxidative stress-associated Alzheimer's disease.
OBJECTIVE: In this research, we investigated how miR-138-siRNAs-HIF-1a and miR-21-siRNAs-HVCN1 affect apoptosis in hypoxic mice.
METHODS: On the first and third days after delivery, the YKL40, HIF-1a, HVCN1, and S100b genes were compared between two groups of preterm infants with and without maternal inflammation. Afterward, the miRNAs were transfected into cell lines to monitor variations in YKL40, HIF-1a, HVCN1, and S100b gene expression and nerve cell apoptosis. We changed the expression of S100b, HVCN1, and HIF-1a genes by using specific siRNAs injected into mice. Using real-time PCR, Western blotting, flow cytometry (FCM), and immunofluorescence, and changes in gene expression were evaluated (IHC).
RESULTS: HVCN1 gene expression showed a strong negative correlation with epilepsy in both groups of infants (P<0.001). Significant correlations between epilepsy and the expression levels of the S100b, YKL40, and HIF-1a genes were found (P<0.001). According to FCM, after transfecting miRNA-431 and miRNA-34a into cell lines, the apoptosis index (A.I.) were 41.6 3.3 and 34.5 5.2%, respectively, while the A.I. were 9.6 2.7 and 7.1 4.2% after transfecting miRNA-21 and miRNA-138. MiR-138-siRNAs-HIF-1a and miR-21-siRNAs-HVCN1 were simultaneously injected into hypoxic mice, and IHC double-labeling revealed that this reduced apoptosis and seizures compared to the hypoxic group.
CONCLUSION: Our findings demonstrate that miR-138-siRNAs-HIF-1a and miR-21-siRNAs-HVCN1 injections prevent cerebral ischemia-induced brain damage in hypoxia mice by increasing HVCN1 and HIF-1a and decreasing S100b, which in turn lessens apoptosis and epilepsy in hypoxic mice.
SUBJECTS/METHODS: Vitamin D intake from both food and supplement of 217 pregnant women was assessed using a validated food frequency questionnaire. Hypothetical effect of expanded supplementation and food fortifications strategies were modelled using the consumption data.
RESULTS: The results revealed that more than half (67.7%) of pregnant women had inadequate vitamin D intake (RNI < 15 µg/day). The modelling results demonstrated the potential of universal provision of 10 µg/day of multivitamins supplements in increasing vitamin D intake. Moreover, mandatory fortification of both milk and malted drink at single level of 5 µg/serving would lead to increase in vitamin D intake of Malaysians, particularly pregnant women.
CONCLUSIONS: The outcome of this study can be used as a reference for public health professionals to re-evaluate the existing Malaysian food fortification policies and supplementation recommendation for vitamin D for pregnant women.
OBJECTIVES: The objectives of this study were to identify the top differentially expressed miRNAs (DE-miRNAs) and their corresponding targets in hub gene-miRNA networks, as well as identify novel DE-miRNAs by analyzing three distinct microarray datasets. Additionally, functional enrichment analysis was performed using bioinformatics approaches. Finally, interactions between the 5 top-ranked hub genes and drugs were investigated.
METHODS: Using bioinformatics approaches, three GC profiles from the gene expression omnibus (GEO), namely gene expression omnibus series (GSE)-34526, GSE114419, and GSE137684, were analyzed. Targets of the top DE-miRNAs were predicted using the multiMiR R package, and only miRNAs with validated results were retrieved. Genes that were common between the "DE-miRNA prediction results" and the "existing tissue DE-mRNAs" were designated as differentially expressed genes (DEGs). Gene ontology (GO) and pathway enrichment analyses were implemented for DEGs. In order to identify hub genes and hub DE-miRNAs, the protein-protein interaction (PPI) network and miRNA-mRNA interaction network were constructed using Cytoscape software. The drug-gene interaction database (DGIdb) database was utilized to identify interactions between the top-ranked hub genes and drugs.
RESULTS: Out of the top 20 DE-miRNAs that were retrieved from the GSE114419 and GSE34526 microarray datasets, only 13 of them had "validated results" through the multiMiR prediction method. Among the 13 DE-miRNAs investigated, only 5, namely hsa-miR-8085, hsa-miR-548w, hsa-miR-612, hsa-miR-1470, and hsa-miR-644a, demonstrated interactions with the 10 hub genes in the hub gene-miRNA networks in our study. Except for hsa-miR-612, the other 4 DE-miRNAs, including hsa-miR-8085, hsa-miR-548w, hsa-miR-1470, and hsa-miR-644a, are novel and had not been reported in PCOS pathogenesis before. Also, GO and pathway enrichment analyses identified "pathogenic E. coli infection" in the Kyoto encyclopedia of genes and genomes (KEGG) and "regulation of Rac1 activity" in FunRich as the top pathways. The drug-hub gene interaction network identified ACTB, JUN, PTEN, KRAS, and MAPK1 as potential targets to treat PCOS with therapeutic drugs.
CONCLUSIONS: The findings from this study might assist researchers in uncovering new biomarkers and potential therapeutic drug targets in PCOS treatment.
METHODS: In this single-centre retrospective study, comparative analysis on clinical presentations and laboratory findings was performed between confirmed leptospirosis versus non-leptospirosis cases.
RESULTS: In multivariate logistic regression evidenced by a Hosmer-Lemeshow significance value of 0.979 and Nagelkerke R square of 0.426, the predictors of a leptospirosis case are hypocalcemia (calcium <2.10mmol/L), hypochloremia (chloride <98mmol/L), and eosinopenia (absolute eosinophil count <0.040×109/L). The proposed diagnostic scoring model has a discriminatory power with area under the curve (AUC) 0.761 (p<0.001). A score value of 6 reflected a sensitivity of 0.762, specificity of 0.655, a positive predictive value of 0.38, negative predictive value of 0.91, a positive likelihood ratios of 2.21, and a negative likelihood ratios of 0.36.
CONCLUSION: With further validation in clinical settings, implementation of this diagnostic scoring model is helpful to manage presumed leptospirosis especially in the absence of leptospirosis confirmatory tests.