Displaying publications 41 - 49 of 49 in total

Abstract:
Sort:
  1. Rafatullah M, Sulaiman O, Hashim R, Ahmad A
    J Hazard Mater, 2010 May 15;177(1-3):70-80.
    PMID: 20044207 DOI: 10.1016/j.jhazmat.2009.12.047
    In this article, the use of low-cost adsorbents for the removal of methylene blue (MB) from solution has been reviewed. Adsorption techniques are widely used to remove certain classes of pollutants from waters, especially those which are not easily biodegradable. The removal of MB, as a pollutant, from waste waters of textile, paper, printing and other industries has been addressed by the researchers. Currently, a combination of biological treatment and adsorption on activated carbon is becoming more common for removal of dyes from wastewater. Although commercial activated carbon is a preferred adsorbent for color removal, its widespread use is restricted due to its relatively high cost which led to the researches on alternative non-conventional and low-cost adsorbents. The purpose of this review article is to organize the scattered available information on various aspects on a wide range of potentially low-cost adsorbents for MB removal. These include agricultural wastes, industrial solid wastes, biomass, clays minerals and zeolites. Agricultural waste materials being highly efficient, low cost and renewable source of biomass can be exploited for MB remediation. It is evident from a literature survey of about 185 recently published papers that low-cost adsorbents have demonstrated outstanding removal capabilities for MB.
  2. Rafatullah M, Sulaiman O, Hashim R, Ahmad A
    J Hazard Mater, 2009 Oct 30;170(2-3):969-77.
    PMID: 19520510 DOI: 10.1016/j.jhazmat.2009.05.066
    The present study proposed the use of meranti sawdust in the removal of Cu(II), Cr(III), Ni(II) and Pb(II) ions from synthetic aqueous solutions. Batch adsorption studies showed that meranti sawdust was able to adsorb Cu(II), Cr(III), Ni(II) and Pb(II) ions from aqueous solutions in the concentration range 1-200mg/L. The adsorption was favoured with maximum adsorption at pH 6, whereas the adsorption starts at pH 1 for all metal ions. The effects of contact time, initial concentration of metal ions, adsorbent dosage and temperature have been reported. The applicability of Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm was tried for the system to completely understand the adsorption isotherm processes. The adsorption kinetics tested with pseudo-first-order and pseudo-second-order models yielded high R(2) values from 0.850 to 0.932 and from 0.991 to 0.999, respectively. The meranti sawdust was found to be cost effective and has good efficiency to remove these toxic metal ions from aqueous solution.
  3. Oyekanmi AA, Ahmad A, Hossain K, Rafatullah M
    PLoS One, 2019;14(5):e0216878.
    PMID: 31091269 DOI: 10.1371/journal.pone.0216878
    The adsorption of rhodamine B (RhB) using acid modified banana peels has been examined. Chemical characteristics of the adsorbents were observed in order to determine active functional groups. The major functional groups on the surface were OH, C = O, C = C and C-O-C. Interactions between operational parameters were studied using the central composite design (CCD) of response surface methodology (RSM). The predictions of the model output indicated that operational factors influenced responses at a confidence level of 95% (P<0.05). The optimum conditions for adsorption were pH 2 at a 0.2 g/L dose within 60 minutes of contact time. Isotherm studies were carried out using the optimized process variables. The data revealed that RhB adsorption fitted the Langmuir isotherm equation while the reduction of COD followed the Freundlich isotherm. Kinetic experiments fitted the pseudo second order model for RhB removal and COD reduction. The adsorption mechanism was not the only rate controlling step. Diffusion through the boundary layer described the pattern of adsorption.
  4. Aslam M, Abdullah AZ, Rafatullah M, Fawad A
    PMID: 35083668 DOI: 10.1007/s11356-021-18066-1
    The seed extract of Abelmoschus esculentus (AE), also known as Okra, was used as a source of reducing and capping agents to synthesized biogenic titanium dioxide nanoparticles (TiO2 NPs) due to its rich flavonoid contents. The synthesized AE-TiO2 nanoparticles were further evaluated by the effect of loading of TiO2 NPs and irradiation time on the photocatalytic degradation of methylene blue dye. The synthesized TiO2 NPs were then characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), energy dispersive X-ray spectroscopy (EDS), Fourier transformed infrared (FTIR) spectroscopy, Raman spectra, UV-visible spectrophotometry, and particle size distribution (PSD). The findings confirmed the successful synthesis of the spherical anatase phase of TiO2 NPs, as well as the existence of phytochemicals in the extract, which were involved in the capping/stabilization of NPs. The synthesized TiO2 NPs were found to be 60-120 nm in size and almost uniformly distributed throughout the sample. The photocatalytic activity measured in a 300 mL cylindrical photochemical reactor and irradiated with 250 watts UV lamp was investigated based on methylene blue degradation. Effects of irradiation time and catalyst loading were elucidated and correlated with the characteristics of the catalysts. The findings revealed that the synthesized TiO2 NPs were well-dispersed, stable, and could achieve more than 80 % degradation in 240 min of irradiation with 90 mg/L of AE-TiO2 NPs loading compared to only 70 % by the commercial one. These results suggested that AE-TiO2 NPs possesses significant catalytic activity, and the photocatalytic process could be used to degrade, decolorize, and mineralize the methylene blue dye. The polyphenolic tannins present in the extract were the reason behind the desirable characteristics of the nanoparticles and better photocatalytic activity of AE-TiO2 NPs.
  5. Qutob M, Hussein MA, Alamry KA, Rafatullah M
    RSC Adv, 2022 Jun 22;12(29):18373-18396.
    PMID: 35799916 DOI: 10.1039/d2ra02469a
    Water scarcity and the accumulation of recalcitrance compounds into the environment are the main reasons behind the attraction of researchers to use advanced oxidation processes (AOPs). Many AOP systems have been used to treat acetaminophen (ACT) from an aqueous medium, which leads to generating different kinetics, mechanisms, and by-products. In this work, state-of-the-art studies on ACT by-products and their biotoxicity, as well as proposed degradation pathways, have been collected, organized, and summarized. In addition, the Fukui function was used for predicting the most reactive sites in the ACT molecule. The most frequently detected by-products in this review were hydroquinone, 1,4-benzoquinone, 4-aminophenol, acetamide, oxalic acid, formic acid, acetic acid, 1,2,4-trihydroxy benzene, and maleic acid. Both the experimental and prediction tests revealed that N-(3,4-dihydroxy phenyl) acetamide was mutagenic. Meanwhile, N-(2,4-dihydroxy phenyl) acetamide and malonic acid were only found to be mutagenic in the prediction test. The findings of the LC50 (96 h) test revealed that benzaldehyde is the most toxic ACT by-products and hydroquinone, N-(3,4-dihydroxyphenyl)formamide, 4-methylbenzene-1,2-diol, benzoquinone, 4-aminophenol, benzoic acid, 1,2,4-trihydroxybenzene, 4-nitrophenol, and 4-aminobenzene-1,2-diol considered harmful. The release of them into the environment without treatment may threaten the ecosystem. The degradation pathway based on the computational method was matched with the majority of ACT proposed pathways and with the most frequent ACT by-products. This study may contribute to enhance the degradation of ACT by AOP systems.
  6. H P S AK, Saurabh CK, A S A, Nurul Fazita MR, Syakir MI, Davoudpour Y, et al.
    Carbohydr Polym, 2016 Oct 05;150:216-26.
    PMID: 27312632 DOI: 10.1016/j.carbpol.2016.05.028
    Chitin is one of the most abundant natural polymers in world and it is used for the production of chitosan by deacetylation. Chitosan is antibacterial in nature, non-toxic, and biodegradable thus it can be used for the production of biodegradable film which is a green alternative to commercially available synthetic counterparts. However, their poor mechanical and thermal properties restricted its wide spread applications. Chitosan is highly compatible with other biopolymers thus its blending with cellulose and/or incorporation of nanofiber isolated from cellulose namely cellulose nanofiber and cellulose nanowhiskers are generally useful. Cellulosic fibers in nano scale are attractive reinforcement in chitosan to produce environmental friendly composite films with improved physical properties. Thus chitosan based composites have wide applicability and potential in the field of biomedical, packaging and water treatment. This review summarises properties and preparation procedure of chitosan-cellulose blends and nano size cellulose reinforcement in chitosan bionanocomposites for different applications.
  7. Ibrahim MN, Ngah WS, Norliyana MS, Daud WR, Rafatullah M, Sulaiman O, et al.
    J Hazard Mater, 2010 Oct 15;182(1-3):377-85.
    PMID: 20619537 DOI: 10.1016/j.jhazmat.2010.06.044
    The present study explores the ability of modified soda lignin (MSL) extracted from oil palm empty fruit bunches (EFB) in removing lead (II) ions from aqueous solutions. The effect of contact time, point zero charge (pH(pzc)) and pH of the solution, initial metal ion concentration and adsorbent dosage on the removal process were investigated. Furthermore, the MSL is characterized by SEM, XRF, FT-IR and surface area analysis. Equilibrium adsorption isotherms and kinetics were investigated. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models of adsorption. The kinetic data obtained at different initial concentrations were analyzed using pseudo-first-order and pseudo-second-order models. The results provide strong evidence to support the hypothesis of adsorption mechanism.
  8. Khaldoon S, Lalung J, Maheer U, Kamaruddin MA, Yhaya MF, Alsolami ES, et al.
    Polymers (Basel), 2022 Nov 07;14(21).
    PMID: 36365762 DOI: 10.3390/polym14214770
    Recently, the contribution of earthworms to plastic degradation and their capability to swallow smaller plastic fragments, known as microplastics, has been emphasized. The worm physically changes the size of microplastics and enhances microbial activities to increase the possibility of degradation. However, no research has shown that earthworms can chemically degrade microplastics to an element form, CO2 or H2O. In this review, previous research has been thoroughly explored to analyse the role that earthworms could play in plastic degradation in the soil. Earthworms can significantly affect the physical characteristics of plastics. However, earthworms' abilities to chemically degrade or change the chemical structure of plastics and microplastics have not been observed. Additionally, earthworms exhibit selective feeding behaviour, avoiding areas containing a high plastics concentration and rejecting plastics. Consequently, earthworms' abilities to adapt to the microplastics in soil in the environment can cause a problem. Based on this review, the challenges faced in earthworm application for plastic degradation are mostly expected to be associated with the toxicity and complexity of the plastic material and environmental factors, such as the moisture content of the soil and its temperature, microbial population, and feeding method.
  9. Chukwuma OB, Rafatullah M, Tajarudin HA, Ismail N
    Int J Environ Res Public Health, 2021 Jun 03;18(11).
    PMID: 34204975 DOI: 10.3390/ijerph18116001
    Discovering novel bacterial strains might be the link to unlocking the value in lignocellulosic bio-refinery as we strive to find alternative and cleaner sources of energy. Bacteria display promise in lignocellulolytic breakdown because of their innate ability to adapt and grow under both optimum and extreme conditions. This versatility of bacterial strains is being harnessed, with qualities like adapting to various temperature, aero tolerance, and nutrient availability driving the use of bacteria in bio-refinery studies. Their flexible nature holds exciting promise in biotechnology, but despite recent pointers to a greener edge in the pretreatment of lignocellulose biomass and lignocellulose-driven bioconversion to value-added products, the cost of adoption and subsequent scaling up industrially still pose challenges to their adoption. However, recent studies have seen the use of co-culture, co-digestion, and bioengineering to overcome identified setbacks to using bacterial strains to breakdown lignocellulose into its major polymers and then to useful products ranging from ethanol, enzymes, biodiesel, bioflocculants, and many others. In this review, research on bacteria involved in lignocellulose breakdown is reviewed and summarized to provide background for further research. Future perspectives are explored as bacteria have a role to play in the adoption of greener energy alternatives using lignocellulosic biomass.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links