Displaying publications 41 - 60 of 412 in total

Abstract:
Sort:
  1. Shuhaimi-Othman M, Nadzifah Y, Nur-Amalina R, Umirah NS
    Chemosphere, 2013 Mar;90(11):2631-6.
    PMID: 23246727 DOI: 10.1016/j.chemosphere.2012.11.030
    Freshwater quality criteria for copper (Cu), cadmium (Cd), aluminum (Al), and manganese (Mn) were developed with particular reference to aquatic biota in Malaysia, and based on USEPA's guidelines. Acute toxicity tests were performed on eight different freshwater domestic species in Malaysia, which were Macrobrachiumlanchesteri (prawn), two fish -Poeciliareticulata and Rasborasumatrana, Melanoidestuberculata (snail), Stenocyprismajor (ostracod), Chironomusjavanus (midge larvae), Naiselinguis (annelid), and Duttaphrynusmelanostictus (tadpole), to determine 96-h LC50 values for Cu, Cd, Al, and Mn. The final acute values (FAVs) for Cu, Cd, Al, and Mn were 2.5, 3.0, 977.8, and 78.3 μgL(-1), respectively. Using an estimated acute-to-chronic ratio (ACR) of 8.3, the value for final chronic value (FCV) was derived. Based on FAV and FCV, a Criterion Maximum Concentration (CMC) and a criterion Continuous Concentration (CCC) for Cu, Cd, Al, and Mn of 1.3, 1.5, 488.9, and 39.1 μgL(-1) and 0.3, 0.36, 117.8, and 9.4 μgL(-1), respectively, were derived. The results of this study provide useful data for deriving national or local water quality criteria for Cu, Cd, Al, and Mn based on aquatic biota in Malaysia. Based on LC50 values, this study indicated that R.sumatrana, M.lanchesteri, C.javanus, and N.elinguis were the most sensitive to Cu, Cd, Al, and Mn, respectively.
  2. Ghanem OB, Shah SN, Lévêque JM, Mutalib MIA, El-Harbawi M, Khan AS, et al.
    Chemosphere, 2018 Mar;195:21-28.
    PMID: 29248749 DOI: 10.1016/j.chemosphere.2017.12.018
    Over the past decades, Ionic liquids (ILs) have gained considerable attention from the scientific community in reason of their versatility and performance in many fields. However, they nowadays remain mainly for laboratory scale use. The main barrier hampering their use in a larger scale is their questionable ecological toxicity. This study investigated the effect of hydrophobic and hydrophilic cyclic cation-based ILs against four pathogenic bacteria that infect humans. For that, cations, either of aromatic character (imidazolium or pyridinium) or of non-aromatic nature, (pyrrolidinium or piperidinium), were selected with different alkyl chain lengths and combined with both hydrophilic and hydrophobic anionic moieties. The results clearly demonstrated that introducing of hydrophobic anion namely bis((trifluoromethyl)sulfonyl)amide, [NTF2] and the elongation of the cations substitutions dramatically affect ILs toxicity behaviour. The established toxicity data [50% effective concentration (EC50)] along with similar endpoint collected from previous work against Aeromonas hydrophila were combined to developed quantitative structure-activity relationship (QSAR) model for toxicity prediction. The model was developed and validated in the light of Organization for Economic Co-operation and Development (OECD) guidelines strategy, producing good correlation coefficient R2 of 0.904 and small mean square error (MSE) of 0.095. The reliability of the QSAR model was further determined using k-fold cross validation.
  3. Hai T, Alshahri AH, Mohammed AS, Sharma A, Almujibah HR, Mohammed Metwally AS, et al.
    Chemosphere, 2023 Sep;334:138980.
    PMID: 37207897 DOI: 10.1016/j.chemosphere.2023.138980
    The use of renewable fuels leads to reduction in the use of fossil fuels and environmental pollutants. In this study, the design and analysis of a CCPP based on the use of syngas produced from biomass is discussed. The studied system includes a gasifier system to produce syngas, an external combustion gas turbine and a steam cycle to recover waste heat from combustion gases. Design variables include syngas temperature, syngas moisture content, CPR, TIT, HRSG operating pressure, and PPTD. The effect of design variables on performance components such as power generation, exergy efficiency and total cost rate of the system is investigated. Also, through multi-objective optimization, the optimal design of the system is done. Finally, it is observed that at the final decisioned optimal point, the produced power is 13.4 MW, the exergy efficiency is 17.2%, and the TCR is 118.8 $/h.
  4. Mak TMW, Yu IKM, Xiong X, Zaman NQ, Yaacof N, Hsu SC, et al.
    Chemosphere, 2021 Jul;274:129750.
    PMID: 33549880 DOI: 10.1016/j.chemosphere.2021.129750
    To tackle the crisis associated with the rising commercial food waste generation, it is imperative to comprehend how corporates' recycling behaviour is influenced by different industry structures and economies. This study aims to fill in the information gap that various factors might be affecting corporates' recycling behaviour in two different economies due to environmental inequality by comparing upper-middle-income region (Malaysia) and high-income region (Hong Kong), respectively. A questionnaire survey regarding food waste management according to the Theory of Planned Behaviour was conducted with representatives coming from diverse industries of the hotel, food and beverage, and property management. The questionnaire responses were evaluated based on quantitative structural equation modelling and correlation analysis. The analysis results showed that the model fit the data well, explaining 78% of the variance in recycling behaviour. The findings demonstrated that the most substantial factor on individual's recycling intention by Malaysian commercial food waste generators was perceived behavioural control, and logistics and management incentives. Subjective norms demonstrated significant and adverse effects on the behaviour of food waste recycling. The variable of administrative incentives and corporate support presented strong positive correlations with moral attitudes as well as logistics and management incentives. Hotel industries from both Hong Kong and Malaysia have a higher acceptance level on human resources regarding food waste recycling. In comparison, food and beverage industries from both regions have a lower acceptance level. These findings could enrich our knowledge of the concerns in establishing regional policy strategies to encourage economic behavioural changes for sustainable development.
  5. Haron MJ, Wan Yunus WM, Yong NL, Tokunaga S
    Chemosphere, 1999 Dec;39(14):2459-66.
    PMID: 10581698
    Iron(III)-poly(hydroxamic acid) resin complex has been studied for its sorption abilities with respect to arsenate and arsenite anions from an aqueous solution. The complex was found effective in removing the arsenate anion in the pH range of 2.0 to 5.5. The maximum sorption capacity was found to be 1.15 mmol/g. The sorption selectivity showed that arsenate sorption was not affected by chloride, nitrate and sulphate. The resin was tested and found effective for removal of arsenic ions from industrial wastewater samples.
  6. Sulong NA, Latif MT, Sahani M, Khan MF, Fadzil MF, Tahir NM, et al.
    Chemosphere, 2019 Mar;219:1-14.
    PMID: 30528968 DOI: 10.1016/j.chemosphere.2018.11.195
    This study aimed to determine the distribution and potential health risks of polycyclic aromatic hydrocarbons (PAHs) in PM2.5 collected in Kuala Lumpur during different monsoon seasons. The potential sources of PM2.5 were investigated using 16 priority PAHs with additional of biomass tracers namely levoglucosan (LV), mannosan (MN) and galactosan (GL). This study also investigated the cytotoxic potential of the extracted PAHs towards V79-4 cells. A high-volume air sampler (HVS) was used to collect PM2.5 samples for 24 h. PAHs were extracted using dichloromethane (DCM) while biomass tracers were extracted by a mixture of DCM/methanol (3:1) before analysis with gas chromatography-mass spectrometry (GC-MS). The cytotoxicity of the PAHs extract was determined by assessing the cell viability through the reduction of tetrazolium salts (MTT). The results showed that the total mean ± SD concentrations of PAHs during the southwest (SW) and northeast (NE) monsoons were 2.51 ± 0.93 ng m-3 and 1.37 ± 0.09 ng m-3, respectively. Positive matrix factorization (PMF) using PAH and biomass tracer concentrations suggested four potential sources of PM2.5; gasoline emissions (29.1%), natural gas and coal burning (28.3%), biomass burning (22.3%), and diesel and heavy oil combustion (20.3%). Health risk assessment showed insignificant incremental lifetime cancer risk (ILCR) of 2.40E-07 for 70 years of exposure. MTT assay suggested that PAHs extracts collected during SW monsoon have cytotoxic effect towards V79-4 cell at the concentrations of 25 μg mL-1, 50 μg mL-1, 100 μg mL-1 whereas non-cytotoxic effect was observed on the PAHs sample collected during NE monsoon.
  7. Sekine M, Akizuki S, Kishi M, Kurosawa N, Toda T
    Chemosphere, 2020 Apr;244:125381.
    PMID: 31805460 DOI: 10.1016/j.chemosphere.2019.125381
    Sulfide inhibition to nitrifying bacteria has prevented the integration of digestate nitrification and biogas desulfurization to simplify anaerobic digestion systems. In this study, liquid digestate with NaHS solution was treated using nitrifying sludge in a sequential-batch reactor with a long fill period, with an ammonium loading rate of 293 mg-N L-1 d-1 and a stepwise increase in the sulfide loading rate from 0 to 32, 64, 128, and 256 mg-S L-1 d-1. Batch bioassays and microbial community analysis were also conducted with reactor sludge under each sulfide loading rate to quantify the microbial acclimatization to sulfide. In the reactor, sulfide was completely removed. Complete nitrification was maintained up to a sulfide load of 128 mg-S L-1 d-1, which is higher than that in previous reports and sufficient for biogas treatment. In the batch bioassays, the sulfide tolerance of NH4+ oxidizing activity (the 50% inhibitory sulfide concentration) increased fourfold over time with the compositional shift of nitrifying bacteria to Nitrosomonas nitrosa and Nitrobacter spp. However, the sulfur removal rate of the sludge slightly decreased, although the abundance of the sulfur-oxidizing bacteria Hyphomicrobium increased by 30%. Therefore, nitrifying sludge was probably acclimatized to sulfide not by the increasing sulfide removal rate but rather by the increasing nitrifying bacteria, which have high sulfide tolerance. Successful simultaneous nitrification and desulfurization were achieved using a sequential-batch reactor with a long fill period, which was effective in facilitating the present acclimatization.
  8. Yaseen ZM, Melini Wan Mohtar WH, Homod RZ, Alawi OA, Abba SI, Oudah AY, et al.
    Chemosphere, 2024 Jan 29;352:141329.
    PMID: 38296204 DOI: 10.1016/j.chemosphere.2024.141329
    This study proposes different standalone models viz: Elman neural network (ENN), Boosted Tree algorithm (BTA), and f relevance vector machine (RVM) for modeling arsenic (As (mg/kg)) and zinc (Zn (mg/kg)) in marine sediments owing to anthropogenic activities. A heuristic algorithm based on the potential of RVM and a flower pollination algorithm (RVM-FPA) was developed to improve the prediction performance. Several evaluation indicators and graphical methods coupled with visualized cumulative probability function (CDF) were used to evaluate the accuracy of the models. Akaike (AIC) and Schwarz (SCI) information criteria based on Dickey-Fuller (ADF) and Philip Perron (PP) tests were introduced to check the reliability and stationarity of the data. The prediction performance in the verification phase indicated that RVM-M2 (PBAIS = -o.0465, MAE = 0.0335) and ENN-M2 (PBAIS = 0.0043, MAE = 0.0322) emerged as the best model for As (mg/kg) and Zn (mg/kg), respectively. In contrast with the standalone approaches, the simulated hybrid RVM-FPA proved merit and the most reliable, with a 5 % and 18 % predictive increase for As (mg/kg) and Zn (mg/kg), respectively. The study's findings validated the potential for estimating complex HMs through intelligent data-driven models and heuristic optimization. The study also generated valuable insights that can inform the decision-makers and stockholders for environmental management strategies.
  9. Eguchi A, Isobe T, Ramu K, Tue NM, Sudaryanto A, Devanathan G, et al.
    Chemosphere, 2013 Mar;90(9):2365-71.
    PMID: 23149186 DOI: 10.1016/j.chemosphere.2012.10.027
    In Asian developing countries, large amounts of municipal wastes are dumped into open dumping sites each day without adequate management. This practice may cause several adverse environmental consequences and increase health risks to local communities. These dumping sites are contaminated with many chemicals including brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs). BFRs may be released into the environment through production processes and through the disposal of plastics and electronic wastes that contain them. The purpose of this study was to elucidate the status of BFR pollution in municipal waste dumping sites in Asian developing countries. Soil samples were collected from six open waste dumping sites and five reference sites in Cambodia, India, Indonesia, Malaysia, and Vietnam from 1999 to 2007. The results suggest that PBDEs are the dominant contaminants in the dumping sites in Asian developing countries, whereas HBCD contamination remains low. Concentrations of PBDEs and HBCDs ranged from ND to 180 μg/kg dry wt and ND to 1.4 μg/kg dry wt, respectively, in the reference sites and from 0.20 to 430 μg/kg dry wt and ND to 2.5 μg/kg dry wt, respectively, in the dumping sites. Contamination levels of PBDEs in Asian municipal dumping sites were comparable with those reported from electronic waste dismantling areas in Pearl River delta, China.
  10. Latif MT, Abd Hamid HH, Ahamad F, Khan MF, Mohd Nadzir MS, Othman M, et al.
    Chemosphere, 2019 Dec;237:124451.
    PMID: 31394440 DOI: 10.1016/j.chemosphere.2019.124451
    This study aims to determine the composition of BTEX (benzene, toluene, ethylbenzene and xylene) and assess the risk to health at different sites in Malaysia. Continuous monitoring of BTEX in Kuala Lumpur City Centre, Kuala Terengganu, Kota Kinabalu and Fraser Hill were conducted using Online Gas Chromatograph. For comparison, BTEX at selected hotspot locations were determined by active sampling method using sorbent tubes and Thermal Desorption Gas Chromatography Mass Spectrometry. The hazard quotient (HQ) for non-carcinogenic and the life-time cancer risk (LTCR) of BTEX were calculated using the United States Environmental Protection Agency (USEPA) health risk assessment (HRA) methods. The results showed that the highest total BTEX concentrations using continuous monitoring were recorded in the Kuala Lumpur City Centre (49.56 ± 23.71 μg/m3). Toluene was the most dominant among the BTEX compounds. The average concentrations of benzene ranged from 0.69 ± 0.45 μg/m3 to 6.20 ± 3.51 μg/m3. Measurements using active sampling showed that BTEX concentrations dominated at the roadside (193.11 ± 114.57 μg/m3) in comparison to petrol station (73.08 ± 30.41 μg/m3), petrochemical industry (32.10 ± 13.13 μg/m3) and airport (25.30 ± 6.17 μg/m3). Strong correlations among BTEX compounds (p<0.01, r>0.7) at Kuala Lumpur City Centre showed that BTEX compounds originated from similar sources. The values of HQ at all stations were <1 indicating the non-carcinogenic risk are negligible and do not pose threats to human health. The LTCR value based on benzene inhalation (1.59 × 10-5) at Kuala Lumpur City Centre were between 1 × 10-4 and 1 × 10-5, representing a probable carcinogenic risk.
  11. Ranjbari M, Esfandabadi ZS, Ferraris A, Quatraro F, Rehan M, Nizami AS, et al.
    Chemosphere, 2022 Feb 15.
    PMID: 35181422 DOI: 10.1016/j.chemosphere.2022.133968
    Investment in biofuels as sustainable alternatives for fossil fuels has gained momentum over the last decade due to the global environmental and health concerns regarding fossil fuel consumption. Hence, effective management of biofuel supply chain (BSC) components, including biomass feedstock production, biomass logistics, biofuel production in biorefineries, and biofuel distribution to consumers, is crucial in transitioning towards a low-carbon and circular economy (CE). The present study aims to render an inclusive knowledge map of the BSC-related scientific production. In this vein, a systematic review, supported by a keywords co-occurrence analysis and qualitative content analysis, was carried out on a total of 1975 peer-reviewed journal articles in the target literature. The analysis revealed four major research hotspots in the BSC literature, including (1) biomass-to-biofuel supply chain design and planning, (2) environmental impacts of biofuel production, (3) biomass to bioenergy, and (4) techno-economic analysis of biofuel production. Besides, the findings showed that the following subject areas of research in the BSC research community have recently attracted more attention: (i) global warming and climate change mitigation, (ii) development of the third-generation biofuels produced from algal biomass, which has recently gained momentum in the CE debate, and (iii) government incentives, pricing, and subsidizing policies. The provided insights shed light on the understanding of researchers, stakeholders, and policy-makers involved in the sustainable energy sector by outlining the main research backgrounds, developments, and tendencies within the BSC arena. Looking at the provided knowledge map, potential research directions in BSCs towards implementing the CE model, including (i) integrative policy convergence at macro, meso, and micro levels, and (ii) industrializing algae-based biofuel production towards the CE transition, were proposed.
  12. Hussin F, Aroua MK, Szlachta M
    Chemosphere, 2022 Jan;287(Pt 3):132250.
    PMID: 34547565 DOI: 10.1016/j.chemosphere.2021.132250
    Water pollution is one of the most concerning global environmental problems in this century with the severity and complexity of the issue increases every day. One of the major contributors to water pollution is the discharge of harmful heavy metal wastes into the rivers and water bodies. Without proper treatment, the release of these harmful inorganic waste would endanger the environment by contaminating the food chains of living organisms, hence, leading to potential health risks to humans. The adsorption method has become one of the cost-effective alternative treatments to eliminate heavy metal ions. Since the type of adsorbent material is the most vital factor that determines the effectiveness of the adsorption, continuous efforts have been made in search of cheap adsorbents derived from a variety of waste materials. Fruit waste can be transformed into valuable products, such as biochar, as they are composed of many functional groups, including carboxylic groups and lignin, which is effective in metal binding. The main objective of this study was to review the potential of various types of fruit wastes as an alternative adsorbent for Pb(II) removal. Following a brief overview of the properties and effects of Pb(II), this study discussed the equilibrium isotherms and adsorption kinetic by various adsorption models. The possible adsorption mechanisms and regeneration study for Pb(II) removal were also elaborated in detail to provide a clear understanding of biochar produced using the pyrolysis technique. The future prospects of fruit waste as an adsorbent for the removal of Pb(II) was also highlighted.
  13. Singh R, Samuel MS, Ravikumar M, Ethiraj S, Kirankumar VS, Kumar M, et al.
    Chemosphere, 2023 Dec;344:140311.
    PMID: 37769916 DOI: 10.1016/j.chemosphere.2023.140311
    The carbon dioxide (CO2) crisis is one of the world's most urgent issues. Meeting the worldwide targets set for CO2 capture and storage (CCS) is crucial. Because it may significantly reduce energy consumption compared to traditional amine-based adsorption capture, adsorption dependant CO2 capture is regarded as one of the most hopeful techniques in this paradigm. The expansion of unique, critical edge adsorbent materials has received most of the research attention to date, with the main objective of improving adsorption capacity and lifespan while lowering the temperature of adsorption, thereby lowering the energy demand of sorbent revival. There are specific materials needed for each step of the carbon cycle, including capture, regeneration, and conversion. The potential and efficiency of metal-organic frameworks (MOFs) in overcoming this obstacle have recently been proven through research. In this study, we pinpoint MOFs' precise structural and chemical characteristics that have contributed to their high capture capacity, effective regeneration and separation processes, and efficient catalytic conversions. As prospective materials for the next generation of energy storage and conversion applications, carbon-based compounds like graphene, carbon nanotubes, and fullerenes are receiving a lot of interest. Their distinctive physicochemical characteristics make them suitable for these popular study topics, including structural stability and flexibility, high porosity, and customizable physicochemical traits. It is possible to precisely design the interior of MOFs to include coordinatively unsaturated metal sites, certain heteroatoms, covalent functionalization, various building unit interactions, and integrated nanoscale metal catalysts. This is essential for the creation of MOFs with improved performance. Utilizing the accuracy of MOF chemistry, more complicated materials must be built to handle selectivity, capacity, and conversion all at once to achieve a comprehensive solution. This review summarizes, the most recent developments in adsorption-based CO2 combustion capture, the CO2 adsorption capacities of various classes of solid sorbents, and the significance of advanced carbon nanomaterials for environmental remediation and energy conversion. This review also addresses the difficulties and potential of developing carbon-based electrodes for energy conversion and storage applications.
  14. Wahid NB, Latif MT, Suratman S
    Chemosphere, 2013 Jun;91(11):1508-16.
    PMID: 23336924 DOI: 10.1016/j.chemosphere.2012.12.029
    This study was conducted to determine the composition and source apportionment of surfactant in atmospheric aerosols around urban and semi-urban areas in Malaysia based on ionic compositions. Colorimetric analysis was undertaken to determine the concentrations of anionic surfactants as Methylene Blue Active Substances (MBAS) and cationic surfactants as Disulphine Blue Active Substances (DBAS) using a UV spectrophotometer. Ionic compositions were determined using ion chromatography for cations (Na(+), NH4(+), K(+), Mg(2+), Ca(2+)) and anions (F(-), Cl(-), NO3(-), SO4(2-)). Principle component analysis (PCA) combined with multiple linear regression (MLR) were used to identify the source apportionment of MBAS and DBAS. Results indicated that the concentrations of surfactants at both sampling sites were dominated by MBAS rather than DBAS especially in fine mode aerosols during the southwest monsoon. Three main sources of surfactants were identified from PCA-MLR analysis for MBAS in fine mode samples particularly in Kuala Lumpur, dominated by motor vehicles, followed by soil/road dust and sea spray. Besides, for MBAS in coarse mode, biomass burning/sea spray were the dominant source followed by motor vehicles/road dust and building material.
  15. We ACE, Aris A, Zain NAM, Muda K, Sulaiman S
    Chemosphere, 2021 Jan;263:128209.
    PMID: 33297168 DOI: 10.1016/j.chemosphere.2020.128209
    The present work investigates the feasibility of aerobic granulation for the treatment of low-medium strength domestic wastewater for long-term operation and effects of a static mixer on the properties and removal performances of the aerobic granules formed. The static mixer was installed in a sequential batch reactor to provide higher hydrodynamic shear force in enhancing the formation of the aerobic granules. Aerobic granules were successfully formed in the domestic wastewater, and the granulation treatment system was sustained for a period of 356 days without granules disintegration. Subsequent to the installation, aerobic granules with a low SVI30 of 41.37 mL/gTSS, average diameter 1.11 mm, granular strength with integrity coefficient 10.4% and regular shape with minimum filamentous outgrowth were formed. Mineral concentrations such as Fe, Mg, Ca and Na as well as composition of protein and polysaccharide in tightly bound-extracellular polymeric substance of the aerobic granules were found to be higher under the effect of the static mixer. However, no significant improvement was observed on the TCOD, NH4+-N and TSS removal performance. Good TCOD and TSS removal performance of above 85% and 90%, respectively and moderate NH4+-N removal performance of about 60% were observed throughout the study. Higher simultaneous nitrification and denitrification (SND) efficiency of 56% was observed after the installation of the static mixer, as compared to 21% prior. Therefore, it may be concluded that the installation of the static mixer significantly improved the properties of aerobic granules formation and SND efficiency but not the TCOD, NH4+-N and TSS removal performance.
  16. Wang X, Utsumi M, Gao Y, Li Q, Tian X, Shimizu K, et al.
    Chemosphere, 2016 Mar;147:230-8.
    PMID: 26766360 DOI: 10.1016/j.chemosphere.2015.12.067
    Microcystins-LR (MC-LR) which is a kind of potent hepatotoxin for humans and wildlife can be biodegraded by microbial community. In this study, the capacity of biofilm in degrading MC-LR was investigated with and without additional metal ions (Mn(2+), Zn(2+) and Cu(2+)) at the concentration of 1 mg L(-1). The results indicated that the degradation rate of MC-LR by biofilm was inhibited by introduced Mn(2+) and Cu(2+) during the whole culture period. MC-LR cannot be degraded until a period of culture time passed both in the cases with Zn(2+) and Cu(2+) (2 and 8 days for Zn(2+) and Cu(2+), respectively). The results of mlrA gene analysis showed that the abundance of MC-LR degradation bacteria (MCLDB) in the microbial community under Mn(2+) condition was generally lower than that under no additional metal ion condition. Meanwhile, a two days lag phase for the proliferation of MCLDB occurred after introducing Zn(2+). And a dynamic change of MCLDB from Cu(2+) inhibited species to Cu(2+) promoted species was observed under Cu(2+) condition. The maximum ratio of MCLDB to overall bacteria under various conditions during culture process was found to follow the tendency as: Cu(2+) > Zn(2+) ≈ no additional metal ion (Control) > Mn(2+), suggesting the adverse effect of Mn(2+), no obvious effect of Zn(2+) and positive effect of Cu(2+) on the distribution ratio of MCLDB over the biofilm.
  17. Gayathiri M, Pulingam T, Lee KT, Sudesh K
    Chemosphere, 2022 Jan 28;294:133764.
    PMID: 35093418 DOI: 10.1016/j.chemosphere.2022.133764
    The use of activated carbon is evidenced by the increased scope of carbon-based applications in various industrial applications including pharmaceutical antidotes, wastewater remediation, aquaculture and toxin removal. Activated carbon produced from biomass waste by various processing methods and conditions is emerging as a promising adsorbent for remediation of the ecosystem due to extensive discharge of pollutants. Methods of producing activated carbon, nature of lignocellulosic biomass waste, and interaction of adsorbent-adsorbate are some of the crucial factors that need to be scrutinized to produce an effective adsorbent. However, these factors have not been thoroughly discussed in the literature. Activated carbon needs to go through continuous and rigorous research and development through optimization of key parameters such as type of activation (physical/chemical) and processing conditions, especially for large-scale production. It is imperative to have a detailed understanding of the preeminent characteristics of the activated carbon such as pore size distribution, total pore volume, surface area, and yield of activated carbon that control the extents of adsorptions and production of activated carbon. To further clarify the involved mechanism, studies should focus on all the possible variables that influence the system. Therefore, this review provides a better understanding of factors that affect the production of an efficient activated carbon, important properties to be used as an adsorbent, and the involved mechanisms during the adsorption process followed by increasing demand for activated carbon in various fields.
  18. Yacob S, Hassan MA, Shirai Y, Wakisaka M, Subash S
    Chemosphere, 2005 Jun;59(11):1575-81.
    PMID: 15894045
    Anthropogenic release of greenhouse gases, especially CO2 and CH4 has been recognized as one of the main causes of global warming. Several measures under the Kyoto Protocol 1997 have been drawn up to reduce the greenhouse gases emission. One of the measures is Clean Development Mechanisms (CDM) that was created to enable developed countries to cooperate with developing countries in emission reduction activities. In Malaysia, palm oil industry particularly from palm oil mill effluent (POME) anaerobic treatment has been identified as an important source of CH4. However, there is no study to quantify the actual CH4 emission from the commercial scale wastewater treatment facility. Hence, this paper shall address the CH4 emission from the open digesting tanks in Felda Serting Hilir Palm Oil Mill. CH4 emission pattern was recorded for 52 weeks from 3600 m3 open digesting tanks. The findings indicated that the CH4 content was between 13.5% and 49.0% which was lower than the value of 65% reported earlier. The biogas flow rate ranged between 0.8l min(-1)m(-2) and 9.8l min(-1)m(-2). Total CH4 emission per open digesting tank was 518.9 kgday(-1). Relationships between CH4 emission and total carbon removal and POME discharged were also discussed. Fluctuation of biogas production was observed throughout the studies as a result of seasonal oil palm cropping, mill activities, variation of POME quality and quantity discharged from the mill. Thus only through long-term field measurement CH4 emission can be accurately estimated.
  19. Suresh R, Rajendran S, Gnanasekaran L, Show PL, Chen WH, Soto-Moscoso M
    Chemosphere, 2023 May;322:138152.
    PMID: 36791812 DOI: 10.1016/j.chemosphere.2023.138152
    Water contamination due to soluble synthetic dyes has serious concerns. Membrane-based wastewater treatments are emerging as a preferred choice for removing dyes from water. Poly(vinylidene fluoride) (PVDF)-based nanomembranes have gained much popularity due to their favorable features. This review explores the application of PVDF-based nanomembranes in synthetic dye removal through various treatments. Different fabrication methods to obtain high performance PVDF-based nanomembranes were discussed under surface coating and blending methods. Studies related to use of PVDF-based nanomembranes in adsorption, filtration, catalysis (oxidant activation, ozonation, Fenton process and photocatalysis) and membrane distillation have been elaborately discussed. Nanomaterials including metal compounds, metals, (synthetic/bio)polymers, metal organic frameworks, carbon materials and their composites were incorporated in PVDF membrane to enhance its performance. The advantages and limitations of incorporating nanomaterials in PVDF-based membranes have been highlighted. The influence of nanomaterials on the surface features, mechanical strength, hydrophilicity, crystallinity and catalytic ability of PVDF membrane was discussed. The conclusion of this literature review was given along with future research.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links