Displaying publications 41 - 60 of 301 in total

Abstract:
Sort:
  1. Syed HK, Liew KB, Loh GO, Peh KK
    Food Chem, 2015 Mar 1;170:321-6.
    PMID: 25306352 DOI: 10.1016/j.foodchem.2014.08.066
    A stability-indicating HPLC-UV method for the determination of curcumin in Curcuma longa extract and emulsion was developed. The system suitability parameters, theoretical plates (N), tailing factor (T), capacity factor (K'), height equivalent of a theoretical plate (H) and resolution (Rs) were calculated. Stress degradation studies (acid, base, oxidation, heat and UV light) of curcumin were performed in emulsion. It was found that N>6500, T<1.1, K' was 2.68-3.75, HETP about 37 and Rs was 1.8. The method was linear from 2 to 200 μg/mL with a correlation coefficient of 0.9998. The intra-day precision and accuracy for curcumin were ⩽0.87% and ⩽2.0%, while the inter-day precision and accuracy values were ⩽2.1% and ⩽-1.92. Curcumin degraded in emulsion under acid, alkali and UV light. In conclusion, the stability-indicating method could be employed to determine curcumin in bulk and emulsions.
  2. Tan TB, Yussof NS, Abas F, Mirhosseini H, Nehdi IA, Tan CP
    Food Chem, 2016 Aug 15;205:155-62.
    PMID: 27006226 DOI: 10.1016/j.foodchem.2016.03.008
    The stability of lutein nanodispersions was evaluated during storage and when exposed to different environmental conditions. Lutein nanodispersions were prepared using Tween 80, sodium dodecyl sulfate (SDS), sodium caseinate (SC) and SDS-Tween 80 as the emulsifiers. During eight weeks of storage, all samples showed remarkable physical stability. However, only the SC-stabilized nanodispersion showed excellent chemical stability. Under different environmental conditions, the nanodispersions exhibited a varied degree of stability. All nanodispersions showed constant particle sizes at temperatures between 30 and 60°C. However, at pH 2-8, only the SC-stabilized nanodispersion was physically unstable. The addition of NaCl (300-400mM) only caused flocculation in nanodispersion stabilized by SDS-Tween 80. All nanodispersions were physically stable when subjected to different centrifugation speeds. Only Tween 80-stabilized nanodispersion was stable against the effect of freeze-thaw cycles (no phase separation observed). In this study, there was no particular emulsifier that was effective against all of the environmental conditions tested.
  3. Ho S, Thoo YY, Young DJ, Siow LF
    Food Chem, 2019 Mar 01;275:594-599.
    PMID: 30724238 DOI: 10.1016/j.foodchem.2018.09.117
    Catechin is astringent in taste, sparingly soluble in water and sensitive to oxygen, light and pH. These properties restrict its application in food products. The present study investigated the stability of inclusion complex (IC) and catechin in various food matrices and investigated in vitro recovery profile of catechin and IC in liquid, semi-solid and solid food matrices. Besides, the sensory profile of IC added yogurt was also determined. Results showed that IC and catechin was more stable in solid matrix compared to semi-solid and liquid matrices. IC added in milk and yogurt show the highest percentage recovery of catechin compared to IC added in cheese and catechin added in all the matrices in in vitro digestive system. Through IC, β-CD masked the bitterness of catechin. These results suggest that protection of antioxidant such as catechin by β-CD inclusion complex may have applications in functional foods and health supplements.
  4. Bhat R, Goh KM
    Food Chem, 2017 Jan 15;215:470-6.
    PMID: 27542500 DOI: 10.1016/j.foodchem.2016.07.160
    Hand-pressed strawberry juice samples were subjected to sonication treatments (0, 15 and 30min at 20°C, 25kHz frequency). Physicochemical properties (°Brix, pH, water activity, viscosity, titratable acidity, cloud assessment and turbidity), antioxidant compounds and activity (total phenolics, ascorbic acid, anthocyanins, free radical scavenging activity), polyphenoloxidase enzyme activity, browning degree and microbial load were evaluated. Results showed non-significant changes for °Brix, pH, water activity, titratable acidity and colour parameters in sonicated samples compared to control (0min). Sonication treatments resulted in reduced viscosity and increased cloudiness and turbidity. Overall, treatment for 30min showed significant enhancement in bioactive compounds under study. Besides, sonication treatment imparted non-significant changes in polyphenoloxidase activity and in browning degree. However, sonication was incompetent in reducing microbial load. Results generated from this study were encouraging and this is expected to provide platform for future commercial applications on a pilot scale.
  5. Omar MM, Wan Ibrahim WA, Elbashir AA
    Food Chem, 2014 Sep 1;158:302-9.
    PMID: 24731346 DOI: 10.1016/j.foodchem.2014.02.045
    A sol-gel hybrid sorbent, methyltrimethoxysilane-tetraethoxysilane (MTMOS-TEOS) was successfully used as new dispersive solid phase extraction (dSPE) sorbent material in the determination of acrylamide in several Sudanese foods and analysis using GC-MS. Several important dSPE parameters were optimised. Under the optimised conditions, excellent linearity (r(2)>0.9998) was achieved using matrix matched standard calibration in the concentration range 50-1000 μg kg(-1). The limits of detection (LOD) and limit of quantification ranged from 9.1 to 12.8 μg/kg and 27.8-38.9 μg/kg, respectively. The precision (RSD%) of the method was ⩽6.6% and recoveries of acrylamide obtained were in the range of 88-103%, (n=3). The LOD obtained is comparable with the LODs of primary secondary amine dSPE. The proposed MTMOS-TEOS dSPE method is direct and safe for acrylamide analysis, showed reliable method validation performances and good cleanup effects. It was successfully applied to the analysis of acrylamide in real food samples.
  6. Mudgil P, Kamal H, Priya Kilari B, Mohd Salim MAS, Gan CY, Maqsood S
    Food Chem, 2021 Aug 15;353:129374.
    PMID: 33740505 DOI: 10.1016/j.foodchem.2021.129374
    Camel milk proteins are an important substrate for bioactive peptides generation. This study investigates in-vitro antidiabetic effect (via inhibition of α-amylase (AA), α-glucosidase (AG) and dipeptidyl peptidase IV (DPP-IV)) of bovine (BC) and camel casein (CC) hydrolysates. Further, effect of simulated gastrointestinal digestion (SGID) on inhibitory potential of generated hydrolysates was also explored. Both BC and CC hydrolysates displayed potent inhibitory properties against AA (IC50 value- 0.58 & 0.59 mg/mL), AG (IC50 value- 1.04 & 0.59 mg/mL) and DPP-IV (IC50 value- 0.62 & 0.66 mg/mL), respectively. Among different peptides identified in BC and CC hydrolysates, it was observed that FLWPEYGAL was predicted to be most potent inhibitory peptide against AA. While LPTGWLM, MFE and GPAHCLL as most active inhibitor of AG and HLPGRG, QNVLPLH and PLMLP were predicted to be active against DPP-IV. Overall, BC and CC hydrolysates can be proposed to be used in different food formulations as functional antidiabetic agents.
  7. Wu Y, Wang K, Liu Q, Liu X, Mou B, Lai OM, et al.
    Food Chem, 2022 Jan 15;367:130700.
    PMID: 34352694 DOI: 10.1016/j.foodchem.2021.130700
    Present study prepared curcumin-loaded nanoliposomes using bovine milk, krill phospholipids and cholesterol; and investigated the effects of cholesterol on membrane characteristics, storage stability and antibacterial properties of the curcumin nanoliposomes. Bovine milk phospholipids which have higher saturation than krill phospholipids resulted in formation of curcumin-loaded nanoliposomes with higher encapsulation efficiency (84.78%), larger absolute value of zeta potential and vesicle size (size: 159.15 ± 5.27 nm, zeta potential: -28.3 ± 0.62 mV). Cholesterol helps to formation of a more hydrophobic, compact and tighter bilayer membrane structure which improved the storage stability of nanoliposomes under alkaline (66.25 ± 0.46%), heat (43.25 ± 0.69%) and sunlight (49.44 ± 1.78%) conditions. In addition, curcumin-loaded nanoliposomes can effectively target infectious bacteria which secrete pore-forming toxins such as Staphylococcus aureus by causing the bacterial cell wall to lysis. Findings from present work can guide future development of novel antibacterial agents for use in food preservation.
  8. Ilieva F, Kostadinović Veličkovska S, Dimovska V, Mirhosseini H, Spasov H
    Food Chem, 2017 Feb 1;216:309-15.
    PMID: 27596425 DOI: 10.1016/j.foodchem.2016.08.049
    The main objectives of this study were to (i) isolate newly autochthonous yeast strains from the Tikveš region of Macedonia and (ii) test their impact on the quality of red wines from Vranec and Cabernet Sauvignon grape varieties. The newly isolated yeast strains were obtained by spontaneous fermentation of grape must from Vranec and Cabernet Sauvignon varieties collected from ten different micro-regions in Macedonia. The grapevines from both varieties grown in "Barovo" micro-region were the richest sources of yeast strains. In addition, the molecular identification and typing of strains were also carried out. The monomeric anthocyanins, polyphenolic content and other oenochemical characteristics of the wines were also compared with the wines from commercial yeast strain "SiHa". The Vranec wine from yeast strain F-8 and Cabernet Sauvignon wine from yeast strain F-20 had significantly (p<0.05) higher concentrations of monomeric anthocyanins and total phenolic compounds than other wines.
  9. Palanisamy U, Cheng HM, Masilamani T, Subramaniam T, Ling LT, Radhakrishnan AK
    Food Chem, 2008 Jul 1;109(1):54-63.
    PMID: 26054264 DOI: 10.1016/j.foodchem.2007.12.018
    The rind of rambutan, which is normally discarded was found to contain extremely high antioxidant activity when assessed using several methods. Although having a yield of only 18%, the ethanolic rambutan rind extract had a total phenolic content of 762±10mg GAE/g extract, which is comparable to that of a commercial preparation of grape seed extract. Comparing the extract's pro-oxidant capabilities with vitamin C, α-tocopherol, grape seed and green tea, the rind had the lowest pro-oxidant capacity. In addition, the extract at 100μg/ml was seen to limit oxidant-induced cell death (DPPH at 50μM) by apoptosis to an extent similar to that of grape seed. The extracts were not cytotoxic to normal mouse fibroblast cells or splenocytes while the powderised rind was seen to have heavy metals contents far below the permissible levels for nutraceuticals. Our study for the first time reveals the high phenolic content, low pro-oxidant capacity and strong antioxidant activity of the extract from rind of Nephelium lappaceum. This extract, either alone or in combination with other active principles, can be used in cosmetic, nutraceutical and pharmaceutical applications.
  10. Hew KS, Asis AJ, Tan TB, Yusoff MM, Lai OM, Nehdi IA, et al.
    Food Chem, 2020 Mar 01;307:125545.
    PMID: 31654951 DOI: 10.1016/j.foodchem.2019.125545
    Corresponding the high presence of 3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters (GE) in refined palm oil, this paper re-evaluated degumming and bleaching processes of physical palm oil refining to reduce the amount of said contaminants. Separation-free water degumming was incorporated into the process, and this significantly (p 
  11. Ling AJW, Chang LS, Babji AS, Latip J, Koketsu M, Lim SJ
    Food Chem, 2022 Jan 15;367:130755.
    PMID: 34390910 DOI: 10.1016/j.foodchem.2021.130755
    Sialic acids are a group of nine-carbon α-keto acids. Sialic acid exists in more than 50 forms, with the natural types discovered as N-acetylneuraminic acid (Neu5Ac), deaminoneuraminic acid (2-keto-3-deoxy-nonulononic acid or Kdn), and N-glycolylneuraminic acid (Neu5Gc). Sialic acid level varies depending on the source, where edible bird's nest (EBN), predominantly Neu5Ac, is among the major sources of sialic acid. Due to its high nutritive value and complexity, sialic acid has been studied extensively through acid, aqueous, and enzymatic extraction. Although detection by chromatographic methods or mass spectrometry is common, the isolation and recovery work remained limited. Sialic acid is well-recognised for its bioactivities, including brain and cognition development, immune-enhancing, anti-hypertensive, anticancer, and skin whitening properties. Therefore, sialic acid can be used as a functional ingredient in the various industries. This paper reviews the current trend in the biochemistry, sources, extraction, and functions of sialic acids with special reference to EBN.
  12. Dong L, Li Y, Chen Q, Liu Y, Qiao Z, Sang S, et al.
    Food Chem, 2023 Aug 15;417:135861.
    PMID: 36906946 DOI: 10.1016/j.foodchem.2023.135861
    Advanced glycosylation end products (AGEs) are a series of complex compounds which generate in the advanced phase of Maillard reaction, which can pose a non-negligible risk to human health. This article systematically encompasses AGEs in milk and dairy products under different processing conditions, influencing factors, inhibition mechanism and levels among the different categories of dairy products. In particular, it describes the effects of various sterilization techniques on the Maillard reaction. Different processing techniques have a significant effect on AGEs content. In addition, it clearly articulates the determination methods of AGEs and even discusses its immunometabolism via gut microbiota. It is observed that the metabolism of AGEs can affect the composition of the gut microbiota, which further has an impact on intestinal function and the gut-brain axis. This research also provides a suggestion for AGEs mitigation strategies, which are beneficial to optimize the dairy production, especially innovative processing technology application.
  13. Nor Shafizah I, Irmawati R, Omar H, Yahaya M, Alia Aina A
    Food Chem, 2022 Mar 30;373(Pt B):131668.
    PMID: 34848088 DOI: 10.1016/j.foodchem.2021.131668
    In this study, potassium oxide supported on dolomite adsorbent was used as an adsorbent for free fatty acids (FFAs) treatment in crude palm oil (CPO). The characteristics of the adsorbent were determined by TGA, XRD, SEM, BET and TPD-CO2. Taguchi method was utilized for experimental design and optimum condition determination. There were four parameters and three levels involved in this study: time (30, 60, 90 min), stirring rate (300, 500, 700 rpm), adsorbent dosage (1, 3, 5 wt%) and K2O concentration (5, 10, 15 wt%). The adsorbent had a larger pore size, higher basic strength, and more basic sites in greater efficiency (63%) in FFAs removal from CPO. The optimum conditions were at 30 min time, 700 rpm stirring rate, 5 wt% adsorbent dosage and 15 wt% K2O concentration. Taguchi method simplified determination of experimental parameters and minimized the operating costs.
  14. Asmeda R, Noorlaila A, Norziah MH
    Food Chem, 2016 Jan 15;191:45-51.
    PMID: 26258700 DOI: 10.1016/j.foodchem.2015.05.095
    This research was conducted to investigate the effects of different grinding techniques (dry, semi-wet and wet) of milled rice grains on the damaged starch and particle size distribution of flour produced from a new variety, MR263, specifically related to the pasting and thermal profiles. The results indicated that grinding techniques significantly (p<0.05) affected starch damage content and particle size distribution of rice flour. Wet grinding process yields flour with lowest percentage of starch damage (7.37%) and finest average particle size (8.52μm). Pasting and gelatinization temperature was found in the range of 84.45-89.63°C and 59.86-75.31°C, respectively. Dry ground flour attained the lowest pasting and gelatinization temperature as shown by the thermal and pasting profiles. Correlation analysis revealed that percentage of damaged starch granules had a significant, negative relationship with pasting temperature while average particle size distribution had a significant, strong negative relationship with gelatinization temperature.
  15. Wong FWF, Ariff AB, Abbasiliasi S, Stuckey DC
    Food Chem, 2017 Oct 01;232:245-252.
    PMID: 28490071 DOI: 10.1016/j.foodchem.2017.03.102
    Bacteriocin is an important peptide which can be used as an anti-microbial agent in food. However, simpler and more cost-effective purification methods need to be developed compared to chromatography to enhance its commercial viability. Surfactant precipitation was employed for the first time to purify bacteriocin-like inhibitory substance (BLIS) from a fermentation broth of Pediococcus acidilactici Kp10, and the amount precipitated was investigated as a function of anionic surfactant (AOT) concentration, and pH. Protein recovery from the precipitate was accomplished using solvent extraction, and solvent type, NaCl concentration, and ionic strength of the final solution were optimised. Optimal conditions were; 1.05mM of AOT at pH 4 for precipitation, and acetone extraction (with 1mM NaCl), which resulted in an 86.3% yield, and 53.8 purification factor. This study highlighted the fact that surfactant precipitation can be used as a primary recovery method for BLIS from a complex fermentation broth.
  16. Alrosan M, Tan TC, Mat Easa A, Gammoh S, Alu'datt MH
    Food Chem, 2022 Feb 10;383:132386.
    PMID: 35176718 DOI: 10.1016/j.foodchem.2022.132386
    Due to its high nutritional value and increasing consumption trends, plant-based proteins were used in a variety of dietary products, either in their entirety or as partial substitutions. There is indeed a growing need to produce plant-based proteins as alternatives to dairy-based proteins that have good functional properties, high nutritional values, and high protein digestibility. Among the plant-based proteins, both lentil and quinoa proteins received a lot of attention in recent years as dairy-based protein alternatives. To ensure plant-based proteins a success in food applications, food industries and researchers need to have a comprehensive scientific understanding of these proteins. The demand for proteins is highly dependent on several factors, mainly functional properties, nutritional values, and protein digestibility. Fermentation and protein complexation are recognised to be suitable techniques in enhancing the functional properties, nutritional values, and protein digestibility of these plant-based proteins, making them potential alternatives for dairy-based proteins.
  17. Hsu JL, Wang SS, Ooi CW, Thew XEC, Lai YR, Chiu CY, et al.
    Food Chem, 2023 Apr 16;406:135028.
    PMID: 36446280 DOI: 10.1016/j.foodchem.2022.135028
    The performance of lysozyme adsorption by the aminated nanofiber membrane immobilized with Reactive Green 19 (RG19) dyes was evaluated in batch and flow systems. The physicochemical properties of the dye-immobilized nanofiber membrane were characterized. The parameters of batch-mode adsorption of lysozyme (e.g., pH, initial dye concentration, and lysozyme concentration) were optimized using the Taguchi method. In a flow process, the factors influencing the dynamic binding performance for lysozyme adsorption in the chicken egg white (CEW) solution include immobilized dye concentration, adsorption pH value, feed flow rate, and feed CEW concentration. The impact of these operating conditions on the lysozyme purification process was investigated. Under optimal conditions, the recovery yield and purification factor of lysozyme achieved from the one-step adsorption process were 98.52% and 143 folds, respectively. The dye-affinity nanofiber membrane also did not exhibit any significant loss in its binding capacity and purification performance after five consecutive uses.
  18. Rahim AA, Nofrizal S, Saad B
    Food Chem, 2014 Mar 15;147:262-8.
    PMID: 24206716 DOI: 10.1016/j.foodchem.2013.09.131
    A rapid reversed-phase high performance liquid chromatographic method using a monolithic column for the determination of eight catechin monomers and caffeine was developed. Using a mobile phase of water:acetonitrile:methanol (83:6:11) at a flow rate of 1.4 mL min(-1), the catechins and caffeine were isocratically separated in about 7 min. The limits of detection and quantification were in the range of 0.11-0.29 and 0.33-0.87 mg L(-1), respectively. Satisfactory recoveries were obtained (94.2-105.2 ± 1.8%) for all samples when spiked at three concentrations (5, 40 and 70 mg L(-1)). In combination with microwave-assisted extraction (MAE), the method was applied to the determination of the catechins and caffeine in eleven tea samples (6 green, 3 black and 2 oolong teas). Relatively high levels of caffeine were found in black tea, but higher levels of the catechins, especially epigallocatechin gallate (EGCG) were found in green teas.
  19. Tan LL, Ahmed SA, Ng SK, Citartan M, Raabe CA, Rozhdestvensky TS, et al.
    Food Chem, 2020 Mar 30;309:125654.
    PMID: 31678669 DOI: 10.1016/j.foodchem.2019.125654
    A specialized DNA extraction method and a SYBR Green quantitative polymerase chain reaction (SyG-qPCR) assay were combined to generate a ready-to-use kit for rapid detection of porcine admixtures in processed meat products. Our qPCR assay utilized repetitive LINE-1 elements specific to the genome of Sus scrofa domesticus (pig) as a target and incorporated internal controls. We improved the genomic DNA extraction method, and reduced extraction times to the minimum. The method was validated for specificity, sensitivity (0.001% w/w) and robustness, and values were compared with those of a commercially available kit. We also tested our method using 121 processed food products and consistently detected amplification only in samples containing pork. Due to its efficiency and cost-effectiveness, our method represents a valuable new method for detecting food adulteration with pork that is superior to existing quality control approaches.
  20. Azilawati MI, Hashim DM, Jamilah B, Amin I
    Food Chem, 2015 Apr 1;172:368-76.
    PMID: 25442566 DOI: 10.1016/j.foodchem.2014.09.093
    The amino acid compositions of bovine, porcine and fish gelatin were determined by amino acid analysis using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate as derivatization reagent. Sixteen amino acids were identified with similar spectral chromatograms. Data pre-treatment via centering and transformation of data by normalization were performed to provide data that are more suitable for analysis and easier to be interpreted. Principal component analysis (PCA) transformed the original data matrix into a number of principal components (PCs). Three principal components (PCs) described 96.5% of the total variance, and 2 PCs (91%) explained the highest variances. The PCA model demonstrated the relationships among amino acids in the correlation loadings plot to the group of gelatins in the scores plot. Fish gelatin was correlated to threonine, serine and methionine on the positive side of PC1; bovine gelatin was correlated to the non-polar side chains amino acids that were proline, hydroxyproline, leucine, isoleucine and valine on the negative side of PC1 and porcine gelatin was correlated to the polar side chains amino acids that were aspartate, glutamic acid, lysine and tyrosine on the negative side of PC2. Verification on the database using 12 samples from commercial products gelatin-based had confirmed the grouping patterns and the variables correlations. Therefore, this quantitative method is very useful as a screening method to determine gelatin from various sources.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links