Displaying publications 41 - 60 of 93 in total

Abstract:
Sort:
  1. Latif MT, Dominick D, Ahamad F, Khan MF, Juneng L, Hamzah FM, et al.
    Sci Total Environ, 2014 Jun 1;482-483:336-48.
    PMID: 24662202 DOI: 10.1016/j.scitotenv.2014.02.132
    Rural background stations provide insight into seasonal variations in pollutant concentrations and allow for comparisons to be made with stations closer to anthropogenic emissions. In Malaysia, the designated background station is located in Jerantut, Pahang. A fifteen-year data set focusing on ten major air pollutants and four meteorological variables from this station were analysed. Diurnal, monthly and yearly pollutant concentrations were derived from hourly continuous monitoring data. Statistical methods employed included principal component regression (PCR) and sensitivity analysis. Although only one of the yearly concentrations of the pollutants studied exceeded national and World Health Organisation (WHO) guideline standards, namely PM10, seven of the pollutants (NO, NO2, NOx, O3, PM10, THC and CH4) showed a positive upward trend over the 15-year period. High concentrations of PM10 were recorded during severe haze episodes in this region. Whilst, monthly concentrations of most air pollutants, such as: PM10, O3, NOx, NO2, CO and NmHC were recorded at higher concentrations between June and September, during the southwest monsoon. Such results correspond with the mid-range transport of pollutants from more urbanised and industrial areas. Diurnal patterns, rationed between major air pollutants and sensitivity analysis, indicate the influence of local traffic emissions on air quality at the Jerantut background station. Although the pollutant concentrations have not shown a rapid increase, an alternative background station will need to be assigned within the next decade if development projects in the surrounding area are not halted.
    Matched MeSH terms: Air Pollutants/analysis*
  2. Tay JH, Jaafar S, Mohd Tahir N
    Bull Environ Contam Toxicol, 2014 Mar;92(3):329-33.
    PMID: 24435136 DOI: 10.1007/s00128-014-1203-z
    A short-term investigation on the chemical composition of rainwater was carried out at five selected sampling stations in Kuantan district, Pahang, Malaysia. Sampling of rainwater was conducted by event basis between September and November 2011. Rainwater samples were collected using polyethylene containers and the parameters measured were cations (sodium, potassium, ammonium, calcium and magnesium) and anions (chlorides, nitrates and sulphates). The average pH value for rainwater samples was 6.0 ± 0.57 in which most of the sampling sites exhibited pH values >5.6. Calcium and sulphate were the most abundant cation and anion, respectively, whilst the concentrations of other major ions varied according to sampling location.
    Matched MeSH terms: Air Pollutants/analysis*
  3. Khokhar MF, Nisar M, Noreen A, Khan WR, Hakeem KR
    Environ Sci Pollut Res Int, 2017 Jan;24(3):2827-2839.
    PMID: 27838904 DOI: 10.1007/s11356-016-7907-3
    This study emphasizes on near surface observation of chemically active trace gases such as nitrogen dioxide (NO2) over Islamabad on a regular basis. Absorption spectroscopy using backscattered extraterrestrial light source technique was used to retrieve NO2 differential slant column densities (dSCDs). Mini multi-axis-differential optical absorption spectroscopy (MAX-DOAS) instrument was used to perform ground-based measurements at Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST) Islamabad, Pakistan. Tropospheric vertical column densities (VCDs) of NO2 were derived from measured dSCDs by using geometric air mass factor approach. A case study was conducted to identify the impact of different materials (glass, tinted glass, and acrylic sheet of various thicknesses used to cover the instrument) on the retrieval of dSCDs. Acrylic sheet of thickness 5 mm was found most viable option for casing material as it exhibited negligible impact in the visible wavelength range. Tropospheric NO2 VCD derived from ground-based mini MAX-DOAS measurements exceeded two times the Pak-NEQS levels and showed a reasonable comparison (r (2) = 0.65, r = 0.81) with satellite observations (root mean square bias of 39 %) over Islamabad, Pakistan.
    Matched MeSH terms: Air Pollutants/analysis*
  4. Monirul IM, Masjuki HH, Kalam MA, Zulkifli NWM, Shancita I
    Environ Sci Pollut Res Int, 2017 Aug;24(22):18479-18493.
    PMID: 28646309 DOI: 10.1007/s11356-017-9333-6
    The aim of this study is to investigate the effect of the polymethyl acrylate (PMA) additive on the formation of particulate matter (PM) and nitrogen oxide (NOX) emission from a diesel coconut and/or Calophyllum inophyllum biodiesel-fueled engine. The physicochemical properties of 20% of coconut and/or C. inophyllum biodiesel-diesel blend (B20), 0.03 wt% of PMA with B20 (B20P), and diesel fuel were measured and compared to ASTM D6751, D7467, and EN 14214 standard. The test results showed that the addition of PMA additive with B20 significantly improves the cold-flow properties such as pour point (PP), cloud point (CP), and cold filter plugging point (CFPP). The addition of PMA additives reduced the engine's brake-specific energy consumption of all tested fuels. Engine emission results showed that the additive-added fuel reduce PM concentration than B20 and diesel, whereas the PM size and NOX emission both increased than B20 fuel and baseline diesel fuel. Also, the effect of adding PMA into B20 reduced Carbon (C), Aluminum (Al), Potassium (K), and volatile materials in the soot, whereas it increased Oxygen (O), Fluorine (F), Zinc (Zn), Barium (Ba), Chlorine (Cl), Sodium (Na), and fixed carbon. The scanning electron microscope (SEM) results for B20P showed the lower agglomeration than B20 and diesel fuel. Therefore, B20P fuel can be used as an alternative to diesel fuel in diesel engines to lower the harmful emissions without compromising the fuel quality.
    Matched MeSH terms: Air Pollutants/analysis*
  5. Idris SA', Hanafiah MM, Khan MF, Hamid HHA
    Chemosphere, 2020 Sep;255:126932.
    PMID: 32402880 DOI: 10.1016/j.chemosphere.2020.126932
    The aim of the present study was to investigate the potential sources of heavy metals in fine air particles (PM2.5) and benzene, toluene, ethylbenzene, and isomeric xylenes (BTEX) in gas phase indoor air. PM2.5 samples were collected using a low volume sampler. BTEX samples were collected using passive sampling onto sorbent tubes and analyzed using gas chromatography-mass spectrometry (GC-MS). For the lower and upper floors of the evaluated building, the concentrations of PM2.5 were 96.4 ± 2.70 μg/m3 and 80.2 ± 3.11 μg/m3, respectively. The compositions of heavy metals in PM2.5 were predominated by iron (Fe), zinc (Zn), and aluminum (Al) with concentration of 500 ± 50.07 ng/m3, 466 ± 77.38 ng/m3, and 422 ± 147.38 ng/m3. A principal component analysis (PCA) showed that the main sources of BTEX were originated from vehicle emissions and exacerbate because of temperature variations. Hazard quotient results for BTEX showed that the compounds were below acceptable limits and thus did not possess potential carcinogenic risks. However, a measured output of lifetime cancer probability revealed that benzene and ethylbenzene posed definite carcinogenic risks. Pollutants that originated from heavy traffic next to the sampling site contributed to the indoor pollution.
    Matched MeSH terms: Air Pollutants/analysis
  6. Rawi NA, Jalaludin J, Chua PC
    Biomed Res Int, 2015;2015:248178.
    PMID: 25984527 DOI: 10.1155/2015/248178
    Indoor air quality (IAQ) has been the object of several studies due to its adverse health effects on children. Methods. A cross-sectional comparative study was carried out among Malay children in Balakong (2 studied preschools) and Bangi (2 comparative preschools), Selangor, with the aims of determining IAQ and its association with respiratory health. 61 and 50 children aged 5-6 years were selected as studied and comparative groups. A questionnaire was used to obtain an exposure history and respiratory symptoms. Lung function test was carried out. IAQ parameters obtained include indoor concentration of particulate matter (PM), volatile organic compounds (VOCs), carbon monoxide (CO), carbon dioxide (CO2), temperature, air velocity (AV), and relative humidity. Results. There was a significant difference between IAQ in studied and comparative preschools for all parameters measured (P < 0.001) except for CO2 and AV. Studied preschools had higher PM and CO concentration. FVC, FEV1, FVC% and FEV1% predicted values were significantly lower among studied group. Exposures to PM, VOCs, and CO were associated with wheezing. Conclusion. The finding concluded that exposures to poor IAQ might increase the risk of getting lung function abnormality and respiratory problems among study respondents.
    Matched MeSH terms: Air Pollutants/analysis
  7. Zhou F, Cui J, Zhou J, Yang J, Li Y, Leng Q, et al.
    Sci Total Environ, 2018 Aug 15;633:776-784.
    PMID: 29602116 DOI: 10.1016/j.scitotenv.2018.03.217
    Atmospheric deposition nitrogen (ADN) increases the N content in soil and subsequently impacts microbial activity of soil. However, the effects of ADN on paddy soil microbial activity have not been well characterized. In this study, we studied how red paddy soil microbial activity responses to different contents of ADN through a 10-months ADN simulation on well managed pot experiments. Results showed that all tested contents of ADN fluxes (27, 55, and 82kgNha-1 when its ratio of NH4+/NO3--N (RN) was 2:1) enhanced the soil enzyme activity and microbial biomass carbon and nitrogen and 27kgNha-1 ADN had maximum effects while comparing with the fertilizer treatment. Generally, increasing of both ADN flux and RN (1:2, 1:1 and 2:1 with the ADN flux of 55kgNha-1) had similar reduced effects on microbial activity. Furthermore, both ADN flux and RN significantly reduced soil bacterial alpha diversity (p<0.05) and altered bacterial community structure (e.g., the relative abundances of genera Dyella and Rhodoblastus affiliated to Proteobacteria increased). Redundancy analysis demonstrated that ADN flux and RN were the main drivers in shaping paddy soil bacteria community. Overall, the results have indicated that increasing ADN flux and ammonium reduced soil microbial activity and changed the soil bacterial community. The finding highlights how paddy soil microbial community response to ADN and provides information for N management in paddy soil.
    Matched MeSH terms: Air Pollutants/analysis*
  8. Hassan NA, Hashim Z, Hashim JH
    Asia Pac J Public Health, 2016 Mar;28(2 Suppl):38S-48S.
    PMID: 26141092 DOI: 10.1177/1010539515592951
    This review discusses how climate undergo changes and the effect of climate change on air quality as well as public health. It also covers the inter relationship between climate and air quality. The air quality discussed here are in relation to the 5 criteria pollutants; ozone (O3), carbon dioxide (CO2), nitrogen dioxide (NO2), sulfur dioxide (SO2), and particulate matter (PM). Urban air pollution is the main concern due to higher anthropogenic activities in urban areas. The implications on health are also discussed. Mitigating measures are presented with the final conclusion.
    Matched MeSH terms: Air Pollutants/analysis*
  9. Haider K, Khokhar MF, Chishtie F, RazzaqKhan W, Hakeem KR
    Environ Sci Pollut Res Int, 2017 Mar;24(8):7617-7629.
    PMID: 28120226 DOI: 10.1007/s11356-016-8359-5
    Like other developing countries, Pakistan is also facing changes in temperature per decade and other climatic abnormalities like droughts and torrential rains. In order to assess and identify the extent of temperature change over Pakistan, the whole Pakistan was divided into five climatic zones ranging from very cold to hot and dry climates. Similarly, seasons in Pakistan are defined on the basis of monsoon variability as winter, pre-monsoon, monsoon, and post-monsoon. This study primarily focuses on the comparison of surface temperature observations from Pakistan Meteorological Department (PMD) network with PRECIS (Providing Regional Climates for Impacts Studies) model simulations. Results indicate that PRECIS underestimates the temperature in Northern Pakistan and during the winter season. However, there exists a fair agreement between PRECIS output and observed datasets in the lower plain and hot areas of the country. An absolute increase of 0.07 °C is observed in the mean temperature over Pakistan during the time period of 1951-2010. Especially, the increase is more significant (0.7 °C) during the last 14 years (1997-2010). Moreover, SCIAMACHY observations were used to explore the evolution of atmospheric CO2 levels in comparison to temperature over Pakistan. CO2 levels have shown an increasing trend during the first decade of the twenty-first century.
    Matched MeSH terms: Air Pollutants/analysis*
  10. Tan SY, Praveena SM, Abidin EZ, Cheema MS
    Environ Sci Pollut Res Int, 2018 Dec;25(34):34623-34635.
    PMID: 30315534 DOI: 10.1007/s11356-018-3396-x
    This study aimed to determine bioavailable heavy metal concentrations (As, Cd, Co, Cu, Cr, Ni, Pb, Zn) and their potential sources in classroom dust collected from children's hand palms in Rawang (Malaysia). This study also aimed to determine the association between bioavailable heavy metal concentration in classroom dust and children's respiratory symptoms. Health risk assessment (HRA) was applied to evaluate health risks (non-carcinogenic and carcinogenic) due to heavy metals in classroom dust. The mean of bioavailable heavy metal concentrations in classroom dust found on children's hand palms was shown in the following order: Zn (1.25E + 01 μg/g) > Cu (9.59E-01 μg/g) > Ni (5.34E-01 μg/g) > Cr (4.72E-02 μg/g) > Co (2.34E-02 μg/g) > As (1.77E-02 μg/g) > Cd (9.60E-03 μg/g) > Pb (5.00E-03 μg/g). Hierarchical cluster analysis has clustered 17 sampling locations into three clusters, whereby cluster 1 (S3, S4, S6, S15) located in residential areas and near to roads exposed to vehicle emissions, cluster 2 (S10, S12, S9, S7) located near Rawang town and cluster 3 (S13, S16, S1, S2, S8, S14, S11, S17, S5) located near industrial, residential and plantation areas. Emissions from vehicles, plantations and industrial activities were found as the main sources of heavy metals in classroom dust in Rawang. There is no association found between bioavailable heavy metal concentrations and respiratory symptoms, except for Cu (OR = 0.03). Health risks (non-carcinogenic and carcinogenic risks) indicated that there are no potential non-carcinogenic and carcinogenic risks of heavy metals in classroom dust toward children health.
    Matched MeSH terms: Air Pollutants/analysis
  11. Othman M, Latif MT, Mohamed AF
    Ecotoxicol Environ Saf, 2018 Feb;148:293-302.
    PMID: 29080527 DOI: 10.1016/j.ecoenv.2017.10.034
    This study intends to determine the health impacts from two office life cycles (St.1 and St.2) using life cycle assessment (LCA) and health risk assessment of indoor metals in coarse particulates (particulate matter with diameters of less than 10µm). The first building (St.1) is located in the city centre and the second building (St.2) is located within a new development 7km away from the city centre. All life cycle stages are considered and was analysed using SimaPro software. The trace metal concentrations were determined by inductively couple plasma-mass spectrometry (ICP-MS). Particle deposition in the human lung was estimated using the multiple-path particle dosimetry model (MPPD). The results showed that the total human health impact for St.1 (0.027 DALY m-2) was higher than St.2 (0.005 DALY m-2) for a 50-year lifespan, with the highest contribution from the operational phase. The potential health risk to indoor workers was quantified as a hazard quotient (HQ) for non-carcinogenic elements, where the total values for ingestion contact were 4.38E-08 (St.1) and 2.59E-08 (St.2) while for dermal contact the values were 5.12E-09 (St.1) and 2.58E-09 (St.2). For the carcinogenic risk, the values for dermal and ingestion routes for both St.1 and St.2 were lower than the acceptable limit which indicated no carcinogenic risk. Particle deposition for coarse particles in indoor workers was concentrated in the head, followed by the pulmonary region and tracheobronchial tract deposition. The results from this study showed that human health can be significantly affected by all the processes in office building life cycle, thus the minimisation of energy consumption and pollutant exposures are crucially required.
    Matched MeSH terms: Air Pollutants/analysis
  12. Ramakreshnan L, Aghamohammadi N, Fong CS, Bulgiba A, Zaki RA, Wong LP, et al.
    Environ Sci Pollut Res Int, 2018 Jan;25(3):2096-2111.
    PMID: 29209970 DOI: 10.1007/s11356-017-0860-y
    Seasonal haze episodes and the associated inimical health impacts have become a regular crisis among the ASEAN countries. Even though many emerging experimental and epidemiological studies have documented the plausible health effects of the predominating toxic pollutants of haze, the consistency among the reported findings by these studies is poorly understood. By addressing such gap, this review aimed to critically highlight the evidence of physical and psychological health impacts of haze from the available literature in ASEAN countries. Systematic literature survey from six electronic databases across the environmental and medical disciplines was performed, and 20 peer-reviewed studies out of 384 retrieved articles were selected. The evidence pertaining to the health impacts of haze based on field survey, laboratory tests, modelling and time-series analysis were extracted for expert judgement. In specific, no generalization can be made on the reported physical symptoms as no specific symptoms recorded in all the reviewed studies except for throat discomfort. Consistent evidence was found for the increase in respiratory morbidity, especially for asthma, whilst the children and the elderly are deemed to be the vulnerable groups of the haze-induced respiratory ailments. A consensual conclusion on the association between the cardiovascular morbidity and haze is unfeasible as the available studies are scanty and geographically limited albeit of some reported increased cases. A number of modelling and simulation studies demonstrated elevating respiratory mortality rates due to seasonal haze exposures over the years. Besides, evidence on cancer risk is inconsistent where industrial and vehicular emissions are also expected to play more notable roles than mere haze exposure. There are insufficient regional studies to examine the association between the mental health and haze. Limited toxicological studies in ASEAN countries often impede a comprehensive understanding of the biological mechanism of haze-induced toxic pollutants on human physiology. Therefore, the lack of consistent evidence among the reported haze-induced health effects as highlighted in this review calls for more intensive longitudinal and toxicological studies with greater statistical power to disseminate more reliable and congruent findings to empower the institutional health planning among the ASEAN countries.
    Matched MeSH terms: Air Pollutants/analysis*
  13. Abualqumboz MS, Malakahmad A, Mohammed NI
    J Air Waste Manag Assoc, 2016 06;66(6):597-608.
    PMID: 27249105 DOI: 10.1080/10962247.2016.1154115
    Landfills throughout the world are contributing to the global warming problem. This is due to the existence of the most important greenhouse gases (GHG) in landfill gas (LFG); namely, methane (CH4) and carbon dioxide (CO2). The aim of this paper is quantifying the total potential emissions, as well as the variation in production with time of CH4 from a proposed landfill (El Fukhary landfill) in the Gaza Strip, Palestine. Two different methods were adopted in order to quantify the total potential CH4 emissions; the Default methodology based on the intergovernmental panel on climate change (IPCC) 1996 revised guidelines and the Landfill Gas Emissions model (LandGEM V3.02) provided by the United States Environmental Protection Agency (EPA). The second objective of the study has been accomplished using the Triangle gas production model. The results obtained from both Default and LandGEM methods were found to be nearly the same. For 25 years of disposing MSW, El Fukhary landfill expected to have potential CH4 emissions of 1.9542 ± 0.0037 ×109 m3. Triangle model showed that the peak production in term of CH4 would occur in 2043; 28 years beyond the open year. Moreover, the model shows that 50 % of the gas will be produced approximately at the middle of the total duration of gas production. Proper control of Methane emissions from El Fukhary landfill is highly suggested in order to reduce the harmful effects on the environment.

    IMPLICATIONS: Although, GHG emissions are extensively discussed in the developed countries throughout the world, it has gained little concern in the developing countries because they are forced most of the time to put environmental concerns at the end of their priority list. The paper shows that developing countries have to start recognizing their fault and change their way of dealing with environmental issues especially GHG emissions (mainly Methane and carbon dioxide). The authors estimated the potential methane emissions from a proposed central landfill that has been approved to be built in Palestine, a country that is classified as a developing country.

    Matched MeSH terms: Air Pollutants/analysis*
  14. Soyiri IN, Reidpath DD, Sarran C
    Int J Biometeorol, 2013 Jul;57(4):569-78.
    PMID: 22886344 DOI: 10.1007/s00484-012-0584-0
    Asthma is a chronic condition of great public health concern globally. The associated morbidity, mortality and healthcare utilisation place an enormous burden on healthcare infrastructure and services. This study demonstrates a multistage quantile regression approach to predicting excess demand for health care services in the form of asthma daily admissions in London, using retrospective data from the Hospital Episode Statistics, weather and air quality. Trivariate quantile regression models (QRM) of asthma daily admissions were fitted to a 14-day range of lags of environmental factors, accounting for seasonality in a hold-in sample of the data. Representative lags were pooled to form multivariate predictive models, selected through a systematic backward stepwise reduction approach. Models were cross-validated using a hold-out sample of the data, and their respective root mean square error measures, sensitivity, specificity and predictive values compared. Two of the predictive models were able to detect extreme number of daily asthma admissions at sensitivity levels of 76 % and 62 %, as well as specificities of 66 % and 76 %. Their positive predictive values were slightly higher for the hold-out sample (29 % and 28 %) than for the hold-in model development sample (16 % and 18 %). QRMs can be used in multistage to select suitable variables to forecast extreme asthma events. The associations between asthma and environmental factors, including temperature, ozone and carbon monoxide can be exploited in predicting future events using QRMs.
    Matched MeSH terms: Air Pollutants/analysis
  15. Jabal MH, Abdulmunem AR, Abd HS
    J Air Waste Manag Assoc, 2019 01;69(1):109-118.
    PMID: 30215577 DOI: 10.1080/10962247.2018.1523070
    Plant (vegetable) oil has been evaluated as a substitute for mineral oil-based lubricants because of its natural and environmentally friendly characteristics. Availability of vegetable oil makes it a renewable source of bio-oils. Additionally, vegetable oil-based lubricants have shown potential for reducing hydrocarbon and carbon dioxide (CO2) emissions when utilized in internal combustion (IC) engines and industrial operations. In this study, sunflower oil was investigated to study its lubricant characteristics under different loads using the four-ball tribometer and the exhaust emissions were tested using a four-stroke, single-cylinder diesel engine. All experimental works conformed to American Society for Testing and Materials standard (ASTM D4172-B). Under low loads, sunflower oil showed adequate tribological characteristics (antifriction and antiwear) compared with petroleum oil samples. The results also demonstrated that the sunflower oil-based lubricant was more effective in reducing the emission levels of carbon monoxide (CO), CO2, and hydrocarbons under different test conditions. Therefore, sunflower oil has the potential to be used as lubricant of mating components.Implications: An experimental investigation of the characteristics of nonedible sunflower oil tribological behaviors and potential as a renewable source for biofluids alternative to the petroleum oils was carried out. The level of emissions of a four-stroke, single-cylinder diesel engine using sunflower oil as a biolubricant was evaluated.
    Matched MeSH terms: Air Pollutants/analysis*
  16. Lee CC, Tran MV, Choo CW, Tan CP, Chiew YS
    Environ Pollut, 2020 Oct;265(Pt A):115058.
    PMID: 32806396 DOI: 10.1016/j.envpol.2020.115058
    Due to the increase of the human population and the rapid industrial growth in the past few decades, air quality monitoring is essential to assess the pollutant levels of an area. However, monitoring air quality in a high-density area like Sunway City, Selangor, Malaysia is challenging due to the limitation of the local monitoring network. To establish a comprehensive data for air pollution in Sunway City, a mobile monitoring campaign was employed around the city area with a duration of approximately 6 months, from September 2018 to March 2019. Measurements of air pollutants such as carbon dioxide (CO2) and nitrogen dioxide (NO2) were performed by using mobile air pollution sensors facilitated with a GPS device. In order to acquire a more in-depth understanding on traffic-related air pollution, the measurement period was divided into two different time blocks, which were morning hours (8 a.m.-12 p.m.) and afternoon hours (3 p.m.-7 p.m.). The data set was analysed by splitting Sunway City into different zones and routes to differentiate the conditions of each region. Meteorological variables such as ambient temperature, relative humidity, and wind speed were studied in line with the pollutant concentrations. The air quality in Sunway City was then compared with various air quality standards such as Malaysian Air Quality Standards and World Health Organisation (WHO) guidelines to understand the risk of exposure to air pollution by the residence in Sunway City.
    Matched MeSH terms: Air Pollutants/analysis*
  17. Alam A, Azam M, Abdullah AB, Malik IA, Khan A, Hamzah TA, et al.
    Environ Sci Pollut Res Int, 2015 Jun;22(11):8392-404.
    PMID: 25537287 DOI: 10.1007/s11356-014-3982-5
    Environmental quality indicators are crucial for responsive and cost-effective policies. The objective of the study is to examine the relationship between environmental quality indicators and financial development in Malaysia. For this purpose, the number of environmental quality indicators has been used, i.e., air pollution measured by carbon dioxide emissions, population density per square kilometer of land area, agricultural production measured by cereal production and livestock production, and energy resources considered by energy use and fossil fuel energy consumption, which placed an impact on the financial development of the country. The study used four main financial indicators, i.e., broad money supply (M2), domestic credit provided by the financial sector (DCFS), domestic credit to the private sector (DCPC), and inflation (CPI), which each financial indicator separately estimated with the environmental quality indicators, over a period of 1975-2013. The study used the generalized method of moments (GMM) technique to minimize the simultaneity from the model. The results show that carbon dioxide emissions exert the positive correlation with the M2, DCFC, and DCPC, while there is a negative correlation with the CPI. However, these results have been evaporated from the GMM estimates, where carbon emissions have no significant relationship with any of the four financial indicators in Malaysia. The GMM results show that population density has a negative relationship with the all four financial indicators; however, in case of M2, this relationship is insignificant to explain their result. Cereal production has a positive relationship with the DCPC, while there is a negative relationship with the CPI. Livestock production exerts the positive relationship with the all four financial indicators; however, this relationship with the CPI has a more elastic relationship, while the remaining relationship is less elastic with the three financial indicators in a country. Energy resources comprise energy use and fossil fuel energy consumption, both have distinct results with the financial indicators, as energy demand have a positive and significant relationship with the DCFC, DCPC, and CPI, while fossil fuel energy consumption have a negative relationship with these three financial indicators. The results of the study are of value to both environmentalists and policy makers.
    Matched MeSH terms: Air Pollutants/analysis
  18. Ang TN, Young BR, Taylor M, Burrell R, Aroua MK, Chen WH, et al.
    Chemosphere, 2020 Dec;260:127496.
    PMID: 32659541 DOI: 10.1016/j.chemosphere.2020.127496
    Activated carbons have been reported to be useful for adsorptive removal of the volatile anaesthetic sevoflurane from a vapour stream. The surface functionalities on activated carbons could be modified through aqueous oxidation using oxidising solutions to enhance the sevoflurane adsorption. In this study, an attempt to oxidise the surface of a commercial activated carbon to improve its adsorption capacity for sevoflurane was conducted using 6 mol/L nitric acid, 2 mol/L ammonium persulfate, and 30 wt per cent (wt%) of hydrogen peroxide (H2O2). The adsorption tests at fixed conditions (bed depth: 10 cm, inlet concentration: 528 mg/L, and flow rate: 3 L/min) revealed that H2O2 oxidation gave desirable sevoflurane adsorption (0.510 ± 0.005 mg/m2). A parametric study was conducted with H2O2 to investigate the effect of oxidation conditions to the changes in surface oxygen functionalities by varying the concentration, oxidation duration, and temperature, and the Conductor-like Screening Model for Real Solvents (COSMO-RS) was applied to predict the interactions between oxygen functionalities and sevoflurane. The H2O2 oxidation incorporated varying degrees of both surface oxygen functionalities with hydrogen bond (HB) acceptor and HB donor characters under the studied conditions. Oxidised samples with enriched oxygen functionalities with HB acceptor character and fewer HB donor character exhibited better adsorption capacity for sevoflurane. The presence of a high amount of oxygen functional groups with HB donor character adversely affected the sevoflurane adsorption despite the enrichment of oxygen functional groups with HB acceptor character that have a higher tendency to adsorb sevoflurane.
    Matched MeSH terms: Air Pollutants/analysis*
  19. Mirzaei M, Bekri M
    Environ Res, 2017 Apr;154:345-351.
    PMID: 28161426 DOI: 10.1016/j.envres.2017.01.023
    Climate change and global warming as the key human societies' threats are essentially associated with energy consumption and CO2 emissions. A system dynamic model was developed in this study to model the energy consumption and CO2 emission trends for Iran over 2000-2025. Energy policy factors are considered in analyzing the impact of different energy consumption factors on environmental quality. The simulation results show that the total energy consumption is predicted to reach 2150 by 2025, while that value in 2010 is 1910, which increased by 4.3% yearly. Accordingly, the total CO2 emissions in 2025 will reach 985million tonnes, which shows about 5% increase yearly. Furthermore, we constructed policy scenarios based on energy intensity reduction. The analysis show that CO2 emissions will decrease by 12.14% in 2025 compared to 2010 in the scenario of 5% energy intensity reduction, and 17.8% in the 10% energy intensity reduction scenario. The results obtained in this study provide substantial awareness regarding Irans future energy and CO2 emission outlines.
    Matched MeSH terms: Air Pollutants/analysis*
  20. Norbäck D, Markowicz P, Cai GH, Hashim Z, Ali F, Zheng YW, et al.
    PLoS One, 2014;9(2):e88303.
    PMID: 24523884 DOI: 10.1371/journal.pone.0088303
    There are few studies on associations between respiratory health and allergens, fungal and bacterial compounds in schools in tropical countries. The aim was to study associations between respiratory symptoms in pupils and ethnicity, chemical microbial markers, allergens and fungal DNA in settled dust in schools in Malaysia. Totally 462 pupils (96%) from 8 randomly selected secondary schools in Johor Bahru, Malaysia, participated. Dust was vacuumed from 32 classrooms and analysed for levels of different types of endotoxin as 3-hydroxy fatty acids (3-OH), muramic acid, ergosterol, allergens and five fungal DNA sequences. Multiple logistic regression was applied. Totally 13.1% pupils reported doctor's diagnosed asthma, 10.3% wheeze and 21.1% pollen or pet allergy. Indian and Chinese children had less atopy and asthma than Malay. Carbon dioxide levels were low (380-690 ppm). No cat (Fel d1), dog (Can f 1) or horse allergens (Ecu cx) were detected. The levels of Bloomia tropicalis (Blo t), house dust mite allergens (Der p 1, Der f 1, Der m 1) and cockroach allergens (Per a 1 and Bla g 1) were low. There were positive associations between levels of Aspergillus versicolor DNA and daytime breathlessness, between C14 3-OH and respiratory infections and between ergosterol and doctors diagnosed asthma. There were negative (protective) associations between levels of C10 3-OH and wheeze, between C16 3-OH and day time and night time breathlessness, between cockroach allergens and doctors diagnosed asthma. Moreover there were negative associations between amount of fine dust, total endotoxin (LPS) and respiratory infections. In conclusion, endotoxin at school seems to be mainly protective for respiratory illness but different types of endotoxin could have different effects. Fungal contamination measured as ergosterol and Aspergillus versicolor DNA can be risk factors for respiratory illness. The ethnical differences for atopy and asthma deserve further attention.
    Matched MeSH terms: Air Pollutants/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links