Displaying publications 41 - 60 of 196 in total

Abstract:
Sort:
  1. Fish-Low CY, Abubakar S, Othman F, Chee HY
    Malays J Pathol, 2019 Apr;41(1):41-46.
    PMID: 31025636
    INTRODUCTION: Dengue virus (DENV), the causative agent of dengue disease exists in sylvatic and endemic ecotypes. The cell morphological changes and viral morphogenesis of two dengue ecotypes were examined at the ultrastructural level to identify potential similarities and differences in the surrogate model of enzootic host.

    MATERIALS AND METHODS: Vero cells were inoculated with virus at a multiplicity of infection (MOI) of 0.1. Cell cultures were harvested over a time course and processed for transmission electron microscopic imaging.

    RESULTS: The filopodia protrusions on cell periphery preceded virus entry. Additionally, sylvatic DENV infection was found spreading slower than the endemic DENV. Morphogenesis of both dengue ecotypes was alike but at different level of efficiency in the permissive cells.

    CONCLUSIONS: This is the first ultrastructural study on sylvatic DENV and this comparative study revealed the similarities and differences of cellular responses and morphogenesis of two dengue ecotypes in vitro. The study revealed the weaker infectivity of sylvatic DENV in the surrogate model of enzootic host, which supposed to support better replication of enzootic DENV than endemic DENV.

    Matched MeSH terms: Cercopithecus aethiops
  2. Imada T, Abdul Rahman MA, Kashiwazaki Y, Tanimura N, Syed Hassan S, Jamaluddin A
    J Vet Med Sci, 2004 Jan;66(1):81-3.
    PMID: 14960818
    Eight clones of monoclonal antibodies (Mabs) to Nipah virus (NV) were produced against formalin-inactivated NV antigens. They reacted positive by indirect immunofluorescent antibody test, and one of them also demonstrated virus neutralizing activity. They were classified into six different types based on their biological properties. These Mabs will be useful for immunodiagnosis of NV infections in animals and further research studies involving the genomes and proteins of NV.
    Matched MeSH terms: Cercopithecus aethiops
  3. Lee JH, Hammoud DA, Cong Y, Huzella LM, Castro MA, Solomon J, et al.
    J Infect Dis, 2020 05 11;221(Suppl 4):S419-S430.
    PMID: 31687756 DOI: 10.1093/infdis/jiz502
    Nipah virus (NiV) is an emerging virus associated with outbreaks of acute respiratory disease and encephalitis. To develop a neurological model for NiV infection, we exposed 6 adult African green monkeys to a large-particle (approximately 12 μm) aerosol containing NiV (Malaysian isolate). Brain magnetic resonance images were obtained at baseline, every 3 days after exposure for 2 weeks, and then weekly until week 8 after exposure. Four of six animals showed abnormalities reminiscent of human disease in brain magnetic resonance images. Abnormalities ranged from cytotoxic edema to vasogenic edema. The majority of lesions were small infarcts, and a few showed inflammatory or encephalitic changes. Resolution or decreased size in some lesions resembled findings reported in patients with NiV infection. Histological lesions in the brain included multifocal areas of encephalomalacia, corresponding to known ischemic foci. In other regions of the brain there was evidence of vasculitis, with perivascular infiltrates of inflammatory cells and rare intravascular fibrin thrombi. This animal model will help us better understand the acute neurological features of NiV infection and develop therapeutic approaches for managing disease caused by NiV infection.
    Matched MeSH terms: Cercopithecus aethiops*
  4. Wang HJ, Liu L, Li XF, Ye Q, Deng YQ, Qin ED, et al.
    J Gen Virol, 2016 07;97(7):1551-1556.
    PMID: 27100268 DOI: 10.1099/jgv.0.000486
    Duck Tembusu virus (DTMUV), a newly identified flavivirus, has rapidly spread to China, Malaysia and Thailand. The potential threats to public health have been well-highlighted; however its virulence and pathogenesis remain largely unknown. Here, by using reverse genetics, a recombinant chimeric DTMUV based on Japanese encephalitis live vaccine strain SA14-14-2 was obtained by substituting the corresponding prM and E genes (named ChinDTMUV). In vitro characterization demonstrated that ChinDTMUV replicated efficiently in mammalian cells with small-plaque phenotype in comparison with its parental viruses. Mouse tests showed ChinDTMUV exhibited avirulent phenotype in terms of neuroinvasiveness, while it retained neurovirulence from its parental virus DTMUV. Furthermore, immunization with ChinDTMUV was evidenced to elicit robust IgG and neutralizing antibody responses in mice. Overall, we successfully developed a viable chimeric DTMUV, and these results provide a useful platform for further investigation of the pathogenesis of DTMUV and development of a live attenuated DTMUV vaccine candidate.
    Matched MeSH terms: Cercopithecus aethiops
  5. Shafee N, AbuBakar S
    J Gen Virol, 2003 Aug;84(Pt 8):2191-2195.
    PMID: 12867651 DOI: 10.1099/vir.0.19022-0
    Apoptosis was detected in Vero cell cultures expressing transfected dengue virus type 2 (DENV-2) genes. Approximately 17.5 and 51.5 % of cells expressing NS3 serine protease and NS2B-NS3(185) serine protease precursor protein [NS2B-NS3(185)(pro)] genes, respectively, were apoptotic. The percentage of apoptotic cells was significantly higher in cell cultures expressing NS2B-NS3(185)(pro). NS2B-NS3(185)(pro) was detected as NS2B-NS3(185)(pro)-EGFP fusion protein in cytoplasmic vesicular structures in the apoptotic cells. Site-directed mutagenesis which replaced His(51) with Ala within the protease catalytic triad significantly reduced the ability of the expressed NS3 and NS2B-NS3(185)(pro) to induce apoptosis. Results from the present study showed that DENV-2-encoded NS3 serine protease induces apoptosis, which is enhanced in cells expressing its precursor, NS2B-NS3(185)(pro). These findings suggest the importance of NS2B as a cofactor to NS3 protease-induced apoptosis.
    Matched MeSH terms: Cercopithecus aethiops
  6. Hassandarvish P, Oo A, Jokar A, Zukiwski A, Proniuk S, Abu Bakar S, et al.
    J Antimicrob Chemother, 2017 09 01;72(9):2438-2442.
    PMID: 28666323 DOI: 10.1093/jac/dkx191
    Objectives: With no clinically effective antiviral options available, infections and fatalities associated with dengue virus (DENV) have reached an alarming level worldwide. We have designed this study to evaluate the efficacy of the celecoxib derivative AR-12 against the in vitro replication of all four DENV serotypes.

    Methods: Each 24-well plate of Vero cells infected with all four DENV serotypes, singly, was subjected to treatments with various doses of AR-12. Following 48 h of incubation, inhibitory efficacies of AR-12 against the different DENV serotypes were evaluated by conducting a virus yield reduction assay whereby DENV RNA copy numbers present in the collected supernatant were quantified using qRT-PCR. The underlying mechanism(s) possibly involved in the compound's inhibitory activities were then investigated by performing molecular docking on several potential target human and DENV protein domains.

    Results: The qRT-PCR data demonstrated that DENV-3 was most potently inhibited by AR-12, followed by DENV-1, DENV-2 and DENV-4. Our molecular docking findings suggested that AR-12 possibly exerted its inhibitory effects by interfering with the chaperone activities of heat shock proteins.

    Conclusions: These results serve as vital information for the design of future studies involving in vitro mechanistic studies and animal models, aiming to decipher the potential of AR-12 as a potential therapeutic option for DENV infection.

    Matched MeSH terms: Cercopithecus aethiops
  7. Yadav PD, Sudeep AB, Mishra AC, Mourya DT
    Indian J Med Res, 2012 Nov;136(5):792-8.
    PMID: 23287126
    Chittoor virus (CHITV) belongs to genus Orthobunyavirus, family Bunyaviridae. It has been isolated from various species of mosquitoes and pig from different parts of India. Five isolates of CHITV were characterized at the molecular level and compared with other Batai viruses (BATV) to find out any kind of reassortment in their genome.
    Matched MeSH terms: Cercopithecus aethiops
  8. Petz LN, Turell MJ, Padilla S, Long LS, Reinbold-Wasson DD, Smith DR, et al.
    Am J Trop Med Hyg, 2014 Oct;91(4):666-71.
    PMID: 25114013 DOI: 10.4269/ajtmh.13-0218
    Tembusu virus (TMUV) is an important emerging arthropod-borne virus that may cause encephalitis in humans and has been isolated in regions of southeast Asia, including Malaysia, Thailand, and China. Currently, detection and identification of TMUV are limited to research laboratories, because quantitative rapid diagnostic assays for the virus do not exist. We describe the development of sensitive and specific conventional and real-time quantitative reverse transcription polymerase chain reaction assays for detecting TMUV RNA in infected cell culture supernatant and Culex tarsalis mosquitoes. We used this assay to document the replication of TMUV in Cx. tarsalis, where titers increased 1,000-fold 5 days after inoculation. These assays resulted in the detection of virus-specific RNA in the presence of copurified mosquito nucleic acids. The use of these rapid diagnostic assays may have future applications for field pathogen surveillance and may assist in early detection, diagnosis, and control of the associated arthropod-borne pathogens.
    Matched MeSH terms: Cercopithecus aethiops
  9. Hickey AC, Koster JA, Thalmann CM, Hardcastle K, Tio PH, Cardosa MJ, et al.
    Am J Trop Med Hyg, 2013 Dec;89(6):1043-57.
    PMID: 24062475 DOI: 10.4269/ajtmh.13-0145
    Dengue virus (DENV) is considered to be the most important arthropod-borne viral disease and causes more than 100 million human infections annually. To further characterize primary DENV infection in vivo, rhesus macaques were infected with DENV-1, DENV-2, DENV-3, or DENV-4 and clinical parameters, as well as specificity and longevity of serologic responses, were assessed. Overt clinical symptoms were not present after infection. However, abnormalities in blood biochemical parameters consistent with heart, kidney, and liver damage were observed, and changes in plasma fibrinogen, D-dimers, and protein C indicated systemic activation of the blood coagulation pathway. Significant homotypic and heterotypic serum immunoglobulins were present in all animals, and IgG persisted for at least 390 days. Serum neutralizing antibody responses were highly serotype specific by day 120. However, some heterotypic neutralizing activity was noted in infected animals. Identification of serotype-specific host responses may help elucidate mechanisms that mediate severe DENV disease after reinfection.
    Matched MeSH terms: Cercopithecus aethiops
  10. Lani R, Hassandarvish P, Chiam CW, Moghaddam E, Chu JJ, Rausalu K, et al.
    Sci Rep, 2015;5:11421.
    PMID: 26078201 DOI: 10.1038/srep11421
    The mosquito-borne chikungunya virus (CHIKV) causes chikungunya fever, with clinical presentations such as severe back and small joint pain, and debilitating arthritis associated with crippling pains that persist for weeks and even years. Although there are several studies to evaluate the efficacy of drugs against CHIKV, the treatment for chikungunya fever is mainly symptom-based and no effective licensed vaccine or antiviral are available. Here, we investigated the antiviral activity of three types of flavonoids against CHIKV in vitro replication. Three compounds: silymarin, quercetin and kaempferol were evaluated for their in vitro antiviral activities against CHIKV using a CHIKV replicon cell line and clinical isolate of CHIKV of Central/East African genotype. A cytopathic effect inhibition assay was used to determine their activities on CHIKV viral replication and quantitative reverse transcription PCR was used to calculate virus yield. Antiviral activity of effective compound was further investigated by evaluation of CHIKV protein expression using western blotting for CHIKV nsP1, nsP3, and E2E1 proteins. Briefly, silymarin exhibited significant antiviral activity against CHIKV, reducing both CHIKV replication efficiency and down-regulating production of viral proteins involved in replication. This study may have important consequence for broaden the chance of getting the effective antiviral for CHIKV infection.
    Matched MeSH terms: Cercopithecus aethiops
  11. Mohd A, Zainal N, Tan KK, AbuBakar S
    Sci Rep, 2019 10 04;9(1):14336.
    PMID: 31586088 DOI: 10.1038/s41598-019-50674-3
    Zika virus (ZIKV) infection is a serious public health concern. ZIKV infection has been associated with increased occurrences of microcephaly among newborns and incidences of Guillain-Barré syndrome among adults. No specific therapeutics or vaccines are currently available to treat and protect against ZIKV infection. Here, a plant-secreted phytoalexin, resveratrol (RES), was investigated for its ability to inhibit ZIKV replication in vitro. Several RES treatment regimens were used. The ZIKV titers of mock- and RES-treated infected cell cultures were determined using the focus-forming assay and the Zika mRNA copy number as determined using qRT-PCR. Our results suggested that RES treatment reduced ZIKV titers in a dose-dependent manner. A reduction of >90% of virus titer and ZIKV mRNA copy number was achieved when infected cells were treated with 80 µM of RES post-infection. Pre-incubation of the virus with 80 µM RES showed >30% reduction in ZIKV titers and ZIKV mRNA copy number, implying potential direct virucidal effects of RES against the virus. The RES treatment reduced >70% virus titer in the anti-adsorption assay, suggesting the possibility that RES also interferes with ZIKV binding. However, there was no significant decrease in ZIKV titer when a short-period of RES treatment was applied to cells before ZIKV infection (pre-infection) and after the virus bound to the cells (virus internalization inhibition), implying that RES acts through its continuous presence in the cell cultures after virus infection. Overall, our results suggested that RES exhibited direct virucidal activity against ZIKV and possessed anti-ZIKV replication properties, highlighting the need for further exploration of RES as a potential antiviral molecule against ZIKV infection.
    Matched MeSH terms: Cercopithecus aethiops
  12. Mire CE, Satterfield BA, Geisbert JB, Agans KN, Borisevich V, Yan L, et al.
    Sci Rep, 2016 08 03;6:30916.
    PMID: 27484128 DOI: 10.1038/srep30916
    Nipah virus (NiV) is a paramyxovirus that causes severe disease in humans and animals. There are two distinct strains of NiV, Malaysia (NiVM) and Bangladesh (NiVB). Differences in transmission patterns and mortality rates suggest that NiVB may be more pathogenic than NiVM. To investigate pathogenic differences between strains, 4 African green monkeys (AGM) were exposed to NiVM and 4 AGMs were exposed to NiVB. While NiVB was uniformly lethal, only 50% of NiVM-infected animals succumbed to infection. Histopathology of lungs and spleens from NiVB-infected AGMs was significantly more severe than NiVM-infected animals. Importantly, a second study utilizing 11 AGMs showed that the therapeutic window for human monoclonal antibody m102.4, previously shown to rescue AGMs from NiVM infection, was much shorter in NiVB-infected AGMs. Together, these data show that NiVB is more pathogenic in AGMs under identical experimental conditions and suggests that postexposure treatments may need to be NiV strain specific for optimal efficacy.
    Matched MeSH terms: Cercopithecus aethiops
  13. Phyu WK, Ong KC, Kong CK, Alizan AK, Ramanujam TM, Wong KT
    Sci Rep, 2017 03 21;7:45069.
    PMID: 28322333 DOI: 10.1038/srep45069
    Hand-foot-and-mouth disease is a self-limiting paediatric infectious disease commonly caused by Enterovirus A71 (Genus: Enterovirus, Family: Picornaviridae). Typical lesions in and around the hands, feet, oral cavity and other places may rarely be complicated by acute flaccid paralysis and acute encephalomyelitis. Although virus is readily cultured from skin vesicles and oral secretions, the cellular target/s of Enterovirus A71 in human skin and oral mucosa are unknown. In Enterovirus A71-infected human skin and oral mucosa organotypic cultures derived from the prepuce and lip biopsies, focal viral antigens and viral RNA were localized to cytoplasm of epidermal and mucosal squamous cells as early as 2 days post-infection. Viral antigens/RNA were associated with cytoplasmic vacuolation and cellular necrosis. Infected primary prepuce epidermal keratinocyte cultures showed cytopathic effects with concomitant detection of viral antigens from 2 days post-infection. Supernatant and/or tissue homogenates from prepuce skin organotypic cultures and primary prepuce keratinocyte cultures showed viral titres consistent with active viral replication. Our data strongly support Enterovirus A71 squamous epitheliotropism in the human epidermis and oral mucosa, and suggest that these organs are important primary and/or secondary viral replication sites that contribute significantly to oral and cutaneous viral shedding resulting in person-to-person transmission, and viraemia, which could lead to neuroinvasion.
    Matched MeSH terms: Cercopithecus aethiops
  14. Tiong V, Hassandarvish P, Bakar SA, Mohamed NA, Wan Sulaiman WS, Baharom N, et al.
    Sci Rep, 2021 10 15;11(1):20502.
    PMID: 34654867 DOI: 10.1038/s41598-021-99866-w
    The COVID-19 is difficult to contain due to its high transmissibility rate and a long incubation period of 5 to 14 days. Moreover, more than half of the infected patients were young and asymptomatic. Virus transmission through asymptomatic patients is a major challenge to disease containment. Due to limited treatment options, preventive measures play major role in controlling the disease spread. Gargling with antiseptic formulation may have potential role in eliminating the virus in the throat. Four commercially available mouthwash/gargle formulations were tested for virucidal activity against SARS-CoV-2 in both clean (0.3 g/l BSA) and dirty (0.3 g/l BSA + 3 mL/L human erythrocytes) conditions at time points 30 and 60 s. The virus was isolated and propagated in Vero E6 cells. The cytotoxicity of the products to the Vero E6 was evaluated by kill time assay based on the European Standard EN14476:2013/FprA1:2015 protocol. Virus titres were calculated as 50% tissue culture infectious dose (TCID50/mL) using the Spearman-Karber method. A reduction in virus titer of 4 log10 corresponds to an inactivation of ≥ 99.99%. Formulations with cetylperidinium chloride, chlorhexidine and hexitidine achieved > 4 log10 reduction in viral titres when exposed within 30 s under both clean and dirty conditions. Thymol formulations achieved only 0.5 log10 reduction in viral titres. In addition, salt water was not proven effective. Gargle formulations with cetylperidinium chloride, chlorhexidine and hexetidine have great potential in reducing SAR-CoV-2 at the source of entry into the body, thus minimizing risk of transmission of COVID-19.
    Matched MeSH terms: Cercopithecus aethiops
  15. Low ZX, OuYong BM, Hassandarvish P, Poh CL, Ramanathan B
    Sci Rep, 2021 10 27;11(1):21221.
    PMID: 34707245 DOI: 10.1038/s41598-021-98949-y
    Dengue is an arthropod-borne viral disease that has become endemic and a global threat in many countries with no effective antiviral drug available currently. This study showed that flavonoids: silymarin and baicalein could inhibit the dengue virus in vitro and were well tolerated in Vero cells with a half-maximum cytotoxic concentration (CC50) of 749.70 µg/mL and 271.03 µg/mL, respectively. Silymarin and baicalein exerted virucidal effects against DENV-3, with a selective index (SI) of 10.87 and 21.34, respectively. Baicalein showed a better inhibition of intracellular DENV-3 progeny with a SI of 7.82 compared to silymarin. Baicalein effectively blocked DENV-3 attachment (95.59%) to the Vero cells, while silymarin prevented the viral entry (72.46%) into the cells, thus reducing viral infectivity. Both flavonoids showed promising antiviral activity against all four dengue serotypes. The in silico molecular docking showed that silymarin could bind to the viral envelope (E) protein with a binding affinity of - 8.5 kcal/mol and form hydrogen bonds with the amino acids GLN120, TRP229, ASN89, and THR223 of the E protein. Overall, this study showed that silymarin and baicalein exhibited potential anti-DENV activity and could serve as promising antiviral agents for further development against dengue infection.
    Matched MeSH terms: Cercopithecus aethiops
  16. Moghaddam E, Teoh BT, Sam SS, Lani R, Hassandarvish P, Chik Z, et al.
    Sci Rep, 2014 Jun 26;4:5452.
    PMID: 24965553 DOI: 10.1038/srep05452
    Baicalin, a flavonoid derived from Scutellaria baicalensis, is the main metabolite of baicalein released following administration in different animal models and human. We previously reported the antiviral activity of baicalein against dengue virus (DENV). Here, we examined the anti-DENV properties of baicalin in vitro, and described the inhibitory potentials of baicalin at different steps of DENV-2 (NGC strain) replication. Our in vitro antiviral experiments showed that baicalin inhibited virus replication at IC50 = 13.5 ± 0.08 μg/ml with SI = 21.5 following virus internalization by Vero cells. Baicalin exhibited virucidal activity against DENV-2 extracellular particles at IC50 = 8.74 ± 0.08 μg/ml and showed anti-adsorption effect with IC50 = 18.07 ± 0.2 μg/ml. Our findings showed that baicalin as the main metabolite of baicalein exerting in vitro anti-DENV activity. Further investigations on baicalein and baicalin to deduce its antiviral therapeutic effects are warranted.
    Matched MeSH terms: Cercopithecus aethiops
  17. Mohd Yusof H, Abdul Rahman N, Mohamad R, Zaidan UH, Samsudin AA
    Sci Rep, 2020 Nov 17;10(1):19996.
    PMID: 33204003 DOI: 10.1038/s41598-020-76402-w
    This study aims to utilize the cell-biomass (CB) and supernatant (CFS) of zinc-tolerant Lactobacillus plantarum TA4 as a prospective nanofactory to synthesize ZnO NPs. The surface plasmon resonance for the biosynthesized ZnO NPs-CFS and ZnO NPs-CB was 349 nm and 351 nm, respectively, thereby confirming the formation of ZnO NPs. The FTIR analysis revealed the presence of proteins, carboxyl, and hydroxyl groups on the surfaces of both the biosynthesized ZnO NPs that act as reducing and stabilizing agents. The DLS analysis revealed that the poly-dispersity indexes was less than 0.4 for both ZnO NPs. In addition, the HR-TEM micrographs of the biosynthesized ZnO NPs revealed a flower-like pattern for ZnO NPs-CFS and an irregular shape for ZnO NPs-CB with particles size of 291.1 and 191.8 nm, respectively. In this study, the biosynthesized ZnO NPs exhibited antibacterial activity against pathogenic bacteria in a concentration-dependent manner and showed biocompatibility with the Vero cell line at specific concentrations. Overall, CFS and CB of L. plantarum TA4 can potentially be used as a nanofactory for the biological synthesis of ZnO NPs.
    Matched MeSH terms: Cercopithecus aethiops
  18. Bossart KN, Rockx B, Feldmann F, Brining D, Scott D, LaCasse R, et al.
    Sci Transl Med, 2012 Aug 08;4(146):146ra107.
    PMID: 22875827 DOI: 10.1126/scitranslmed.3004241
    In the 1990s, Hendra virus and Nipah virus (NiV), two closely related and previously unrecognized paramyxoviruses that cause severe disease and death in humans and a variety of animals, were discovered in Australia and Malaysia, respectively. Outbreaks of disease have occurred nearly every year since NiV was first discovered, with case fatality ranging from 10 to 100%. In the African green monkey (AGM), NiV causes a severe lethal respiratory and/or neurological disease that essentially mirrors fatal human disease. Thus, the AGM represents a reliable disease model for vaccine and therapeutic efficacy testing. We show that vaccination of AGMs with a recombinant subunit vaccine based on the henipavirus attachment G glycoprotein affords complete protection against subsequent NiV infection with no evidence of clinical disease, virus replication, or pathology observed in any challenged subjects. Success of the recombinant subunit vaccine in nonhuman primates provides crucial data in supporting its further preclinical development for potential human use.
    Matched MeSH terms: Cercopithecus aethiops/immunology*; Cercopithecus aethiops/virology*
  19. Tan TS, Sharifah Syed Hassan, Yap WB
    Sains Malaysiana, 2016;45:787-793.
    The use of cell lines such as Madin-Darby Canine Kidney (MDCK) and African Green Monkey Kidney (Vero) cells in
    influenza vaccine production is much advocated presently as a safer alternative to chicken embryonated eggs. It is
    thus essential to understand the influenza virus replication patterns in these cell lines prior to utilizing them in vaccine
    production. The infectivity of avian influenza A virus (A/Chicken/Malaysia/5858/2004) H5N1 in MDCK and Vero cell
    lines was first assessed by comparing the cytopathic effect (CPE) caused by the virus infection. The viral loads in both
    of the infected media and cells were also compared. The results showed that both of the MDCK and Vero cells began to
    exhibit significant CPE (p<0.05) after 48 h post-infection (h p.i). The MDCK cell line was more susceptible to the virus
    infection compared to Vero cell line throughout the incubation period. A higher viral load was also detected in the host
    cells compared to their respective culturing media. Interestingly, after reaching its maximum titer at 48 h p.i, the viral
    load in MDCK cells declined meanwhile the viral load in Vero cells increased gradually and peaked at 120 h p.i. Overall,
    both cell lines support efficient H5N1 virus replication. While the peak viral loads measured in the two cell lines did
    not differ much, a more rapid replication was observed in the infected MDCK samples. The finding showed that MDCK
    cell line might serve as a more time-saving and cost-effective cell culture-based system compared to Vero cell line for
    influenza vaccine production.
    Matched MeSH terms: Cercopithecus aethiops
  20. Salmijah S., Anita Mohd. Zubir, Maimon A.
    Metaldehyde is used widely in Malaysia for the control of molluscs. This communication reports the cytotoxic effects of this chemical on cultured cells as assessed by cell morphology and the DNA synthesising capability as well as its transport into cells. After 15 days of exposure with 20.0 ppm of the compound, the DNA synthesising capability was shown to be unaffected. The IC50 for Vero cells was 276.0 ppm. Transport of thymidine across cells was found to be not significantly affected even at high metaldehyde concentrations (up to 320.0 ppm) suggesting integrity of cells were not significantly affected. The present cellular studies have therefore shown that the cytotoxic effects of this chemical is rather low.
    Metaldehida digunakan dengan meluas di Malaysia untuk mengawal perosak moluska. Kesan sitotoksik bahan kimia ini di peringkat sel dari segi ciri-ciri perubahan moifologi dan keupayaan mensintesis DNA serta kajian awal kesannya terhadap proses kemasukan ke dalam sel dilaporkan di sini. Keupayaan mensintesis DNA didapati tidak terjejas secara signifikan selepas diberikan 20.0 ppm metaldehida secara berterusan selama 15 hari. Nilai IC50 bagi sel Vero adalah 276.0 ppm. Kemasukan timidina ke dalam sel tidak terjejas secara signifikan apabila sel diperlakukan dengan metaldehida, walaupun pada kepekatan yang agak tinggi iaitu sehingga 320.0 ppm. Kajian telah menunjukkan bahawa kesan sitotoksik oleh metaldehida adalah rendah.
    Matched MeSH terms: Cercopithecus aethiops
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links