Displaying publications 41 - 49 of 49 in total

Abstract:
Sort:
  1. Saim L, Aminuddin BS, Munirah S, Chua KH, Izuddin Fahmy A, Fuzina NH, et al.
    Med J Malaysia, 2004 May;59 Suppl B:192-3.
    PMID: 15468883
    To date there is no optimal approach to reconstruct an external ear. However, advances in tissue engineering technologies have indicated that in vitro autologous elastic cartilage might be of great importance in the future treatment of these patients. The aim of this study was to observe monolayer expansion of auricular cartilage and to evaluate engineered cartilage using standard histochemical study.
    Matched MeSH terms: Chondrocytes/cytology*
  2. Samsudin OC, Aminuddin BS, Munirah S, Chua KH, Fuzina NH, Isa MR, et al.
    Med J Malaysia, 2004 May;59 Suppl B:15-6.
    PMID: 15468796
    Treatment of articular cartilage lesions remains a clinical challenge. The uses of prosthetic joint replace allograft and/or autograft transplant carry a risk of complications due to infection, loosening of its component, immunological rejection and morbidity at the donor site. There has been an increasing interest in the management of cartilage damages, owing to the introduction of new therapeutic options. Tissue engineering as a method for tissue restoration begins to provide a potential alternative therapy for autologous grafts transplantations. We aimed to evaluate how well a tissue engineered neocartilage implant, consist of human articular chondrocytes cultured with the presence of autologous serum and mixed in a fresh fibrin derived from patient, would perform in subcutaneous implantation in athymic mice.
    Matched MeSH terms: Chondrocytes/cytology*
  3. Selvaratnam L, Abd Rahim S, Kamarul T, Chan KY, Sureshan S, Penafort R, et al.
    Med J Malaysia, 2005 Jul;60 Suppl C:49-52.
    PMID: 16381284
    In view of poor regeneration potential of the articular cartilage, in-vitro engineering of cartilage tissue offers a promising option for progressive joint disease. This study aims to develop a biologically engineered articular cartilage for autologous transplantation. The initial work involved determination of chondrocyte yield and viability, and morphological analysis. Cartilage was harvested from the knee, hip and shoulder joints of adult New Zealand white rabbits and chondrocytes were isolated by enzymatic digestion of the extra-cellular matrix before serial cultivation in DMEM/Ham's F12 media as monolayer cultures. No differences were noted in cell yield. Although chondrocytes viability was optimal (>93%) following harvest from native cartilage, their viability tended to be lowered on passaging. Chondrocytes aggregated in isogenous colonies comprising ovoid cells with intimate intracellular contacts and readily exhibited Safranin-O positive matrix; features typically associated with articular cartilage in-vivo. However, chondrocytes also existed concurrently in scattered bipolar/multipolar forms lacking Safranin-O expression. Therefore, early data demonstrated successful serial culture of adult chondrocytes with differentiated morphology seen in established chondrocyte colonies synthesizing matrix proteoglycans.
    Matched MeSH terms: Chondrocytes/cytology*
  4. Tan KL, Chia WC, How CW, Tor YS, Show PL, Looi QHD, et al.
    Mol Biotechnol, 2021 Sep;63(9):780-791.
    PMID: 34061307 DOI: 10.1007/s12033-021-00339-2
    The objective of this study is to develop a simple protocol to isolate and characterise small extracellular vesicles (sEVs) from human umbilical cord-derived MSCs (hUC-MSCs). hUC-MSCs were characterised through analysis of morphology, immunophenotyping and multidifferentiation ability. SEVs were successfully isolated by ultrafiltration from the conditioned medium of hUC-MSCs. The sEVs' size distribution, intensity within a specific surface marker population were measured with zetasizer or nanoparticle tracking analysis. The expression of surface and internal markers of sEVs was also assessed by western blotting. Morphology of hUC-MSCs displayed as spindle-shaped, fibroblast-like adherent cells. Phenotypic analysis by flow cytometry revealed that hUC-MSCs expressed MSC surface marker, including CD90, CD73, CD105, CD44 and exhibited the capacity for osteogenic, adipogenic and chondrogenic differentiation. Populations of sEVs with CD9, CD63 and CD81 positive were detected with size distribution in the diameter of 63.2 to 162.5 nm. Typical sEVs biomarkers such as CD9, CD63, CD81, HSP70 and TSG101 were also detected with western blotting. Our study showed that sEVs from hUC-MSCs conditioned medium were successfully isolated and characterised. Downstream application of hUC-MSCs-sEVs will be further explored.
    Matched MeSH terms: Chondrocytes/cytology*
  5. Tay LX, Lim CK, Mansor A, Kamarul T
    Int J Med Sci, 2014;11(1):24-33.
    PMID: 24396283 DOI: 10.7150/ijms.7244
    This preliminary study aims to determine the differentially expressed proteins from chondrogenic differentiated multipotent stromal cells (cMSCs) in comparison to undifferentiated multipotent stromal cells (MSCs) and adult chondrocytes (ACs).
    Matched MeSH terms: Chondrocytes/cytology
  6. Ude CC, Sulaiman SB, Min-Hwei N, Hui-Cheng C, Ahmad J, Yahaya NM, et al.
    PLoS One, 2014;9(6):e98770.
    PMID: 24911365 DOI: 10.1371/journal.pone.0098770
    In this study, Adipose stem cells (ADSC) and bone marrow stem cells (BMSC), multipotent adult cells with the potentials for cartilage regenerations were induced to chondrogenic lineage and used for cartilage regenerations in surgically induced osteoarthritis in sheep model.
    Matched MeSH terms: Chondrocytes/cytology
  7. Wee AS, Lim CK, Merican AM, Ahmad TS, Kamarul T
    In Vitro Cell Dev Biol Anim, 2013 Jun;49(6):424-32.
    PMID: 23708918 DOI: 10.1007/s11626-013-9626-0
    In vitro cellular proliferation and the ability to undergo multilineage differentiation make bone marrow-derived multipotent stromal cells (MSCs) potentially useful for clinical applications. Several methods have been described to isolate a homogenous bone marrow-derived MSCs population; however, none has been proven most effective, mainly due to their effects on proliferation and differentiation capability of the isolated cells. It is hypothesized that our newly established total cell pooling method may provide a better alternative as compared to the standard isolation method (density gradient centrifugation method). For the total cell pooling method, MSCs were isolated from rabbit bone marrow and were subsequently cultured in the growth medium without further separation as in the standard isolation method. The total cell pooling method was 65 min faster than the standard isolation method in completing cell isolation. Nevertheless, both methods did not differ significantly in the number of primary viable cells and population doubling time in the cultures (p > 0.05). The isolated cells from both methods expressed CD29 and CD44 markers, but not CD45 markers. Furthermore, they displayed multilineage differentiation characteristics of chondroblasts, osteoblasts, and adipocytes. In conclusion, both methods provide similar efficiency in the isolation of rabbit bone marrow-derived MSCs; however, the total cell pooling method is technically simpler and more cost effective than the standard isolation method.
    Matched MeSH terms: Chondrocytes/cytology
  8. Yong KW, Wan Safwani WK, Xu F, Wan Abas WA, Choi JR, Pingguan-Murphy B
    Biopreserv Biobank, 2015 Aug;13(4):231-9.
    PMID: 26280501 DOI: 10.1089/bio.2014.0104
    Mesenchymal stem cells (MSCs) hold many advantages over embryonic stem cells (ESCs) and other somatic cells in clinical applications. MSCs are multipotent cells with strong immunosuppressive properties. They can be harvested from various locations in the human body (e.g., bone marrow and adipose tissues). Cryopreservation represents an efficient method for the preservation and pooling of MSCs, to obtain the cell counts required for clinical applications, such as cell-based therapies and regenerative medicine. Upon cryopreservation, it is important to preserve MSCs functional properties including immunomodulatory properties and multilineage differentiation ability. Further, a biosafety evaluation of cryopreserved MSCs is essential prior to their clinical applications. However, the existing cryopreservation methods for MSCs are associated with notable limitations, leading to a need for new or improved methods to be established for a more efficient application of cryopreserved MSCs in stem cell-based therapies. We review the important parameters for cryopreservation of MSCs and the existing cryopreservation methods for MSCs. Further, we also discuss the challenges to be addressed in order to preserve MSCs effectively for clinical applications.
    Matched MeSH terms: Chondrocytes/cytology
  9. Yusoff N, Abu Osman NA, Pingguan-Murphy B
    Med Eng Phys, 2011 Jul;33(6):782-8.
    PMID: 21356602 DOI: 10.1016/j.medengphy.2011.01.013
    A mechanical-conditioning bioreactor has been developed to provide bi-axial loading to three-dimensional (3D) tissue constructs within a highly controlled environment. The computer-controlled bioreactor is capable of applying axial compressive and shear deformations, individually or simultaneously at various regimes of strain and frequency. The reliability and reproducibility of the system were verified through validation of the spatial and temporal accuracy of platen movement, which was maintained over the operating length of the system. In the presence of actual specimens, the system was verified to be able to deliver precise bi-axial load to the specimens, in which the deformation of every specimen was observed to be relatively homogeneous. The primary use of the bioreactor is in the culture of chondrocytes seeded within an agarose hydrogel while subjected to physiological compressive and shear deformation. The system has been designed specifically to permit the repeatable quantification and characterisation of the biosynthetic activity of cells in response to a wide range of short and long term multi-dimensional loading regimes.
    Matched MeSH terms: Chondrocytes/cytology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links