Displaying publications 41 - 60 of 164 in total

Abstract:
Sort:
  1. Keong BP, Siraj SS, Daud SK, Panandam JM, Rahman AN
    Gene, 2014 Feb 15;536(1):114-7.
    PMID: 24333858 DOI: 10.1016/j.gene.2013.11.068
    A preliminary linkage map was constructed by applying backcross and testcross strategy using microsatellite (SSR) markers developed for Xiphophorus and Poecilia reticulata in ornamental fish, molly Poecilia sp. The linkage map having 18 SSR loci consisted of four linkage groups that spanned a map size of 516.1cM. Association between genotypes and phenotypes was tested in a random fashion and QTL for dorsal fin length was found to be linked to locus Msb069 on linkage group 2. Coincidentally, locus Msb069 was also reported as putative homologue primer pairs containing SSRs repeat motif which encoded hSMP-1, a sex determining locus. Dorsal fin length particularly in males of Poecilia latipinna is an important feature during courtship display. Therefore, we speculate that both dorsal fin length and putative hSMP-1 gene formed a close proximity to male sexual characteristics.
    Matched MeSH terms: Chromosome Mapping/methods; Chromosome Mapping/veterinary
  2. Yew SM, Chan CL, Soo-Hoo TS, Na SL, Ong SS, Hassan H, et al.
    Genome Announc, 2013;1(3).
    PMID: 23723391 DOI: 10.1128/genomeA.00158-13
    Pyrenochaeta, classified under the order Pleosporales, is known to cause diseases in plants and humans. Here, we report a draft genome sequence of a Pyrenochaeta sp. isolated from a skin scraping, with an estimated genome size of 39.4 Mb. Genes associated with the synthesis of proteases, toxins, plant cell wall degradation, and multidrug resistance were found.
    Matched MeSH terms: Chromosome Mapping
  3. Issa R, Seradja VH, Abdullah MK, Abdul H
    Genome Announc, 2016;4(3).
    PMID: 27340053 DOI: 10.1128/genomeA.00513-16
    This is a report of an annotated genome sequence of Mycobacterium tuberculosis MTBR1/09. The organism was isolated from a sputum sample from a male patient in Malaysia.
    Matched MeSH terms: Chromosome Mapping
  4. Poli A, Nicolaus B, Chan KG, Kahar UM, Chan CS, Goh KM
    Genome Announc, 2015;3(3).
    PMID: 25999577 DOI: 10.1128/genomeA.00490-15
    Anoxybacillus thermarum AF/04(T) was isolated from the Euganean hot springs in Abano Terme, Italy. The present work reports a high-quality draft genome sequence of strain AF/04(T). This work also provides useful insights into glycoside hydrolases, glycoside transferases, and sugar transporters that may be involved in cellular carbohydrate metabolism.
    Matched MeSH terms: Chromosome Mapping
  5. Tan KY, Dutta A, Tan TK, Hari R, Othman RY, Choo SW
    PeerJ, 2020;8:e9733.
    PMID: 32953261 DOI: 10.7717/peerj.9733
    Background: Paraburkholderia fungorum (P. fungorum) is a Gram-negative environmental species that has been commonly used as a beneficial microorganism in agriculture as an agent for biocontrol and bioremediation. Its use in agriculture is controversial as many people believe that it could harm human health; however, there is no clear evidence to support.

    Methodology: The pangolin P. fungorum (pangolin Pf) genome has a genomic size of approximately 7.7 Mbps with N50 of 69,666 bps. Our study showed that pangolin Pf is a Paraburkholderia fungorum supported by evidence from the core genome SNP-based phylogenetic analysis and the ANI analysis. Functional analysis has shown that the presence of a considerably large number of genes related to stress response, virulence, disease, and defence. Interestingly, we identified different types of secretion systems in the genome of pangolin Pf, which are highly specialized and responsible for a bacterium's response to its environment and in physiological processes such as survival, adhesion, and adaptation. The pangolin Pf also shared some common virulence genes with the known pathogenic member of the Burkholderiales. These genes play important roles in adhesion, motility, and invasion.

    Conclusion: This study may provide better insights into the functions, secretion systems and virulence of this pangolin-associated bacterial strain. The addition of this genome sequence is also important for future comparative analysis and functional work of P. fungorum.

    Matched MeSH terms: Chromosome Mapping
  6. Ngoot-Chin T, Zulkifli MA, van de Weg E, Zaki NM, Serdari NM, Mustaffa S, et al.
    Planta, 2021 Feb 05;253(2):63.
    PMID: 33544231 DOI: 10.1007/s00425-021-03567-7
    MAIN CONCLUSION: Karyotyping using high-density genome-wide SNP markers identified various chromosomal aberrations in oil palm (Elaeis guineensis Jacq.) with supporting evidence from the 2C DNA content measurements (determined using FCM) and chromosome counts. Oil palm produces a quarter of the world's total vegetable oil. In line with its global importance, an initiative to sequence the oil palm genome was carried out successfully, producing huge amounts of sequence information, allowing SNP discovery. High-capacity SNP genotyping platforms have been widely used for marker-trait association studies in oil palm. Besides genotyping, a SNP array is also an attractive tool for understanding aberrations in chromosome inheritance. Exploiting this, the present study utilized chromosome-wide SNP allelic distributions to determine the ploidy composition of over 1,000 oil palms from a commercial F1 family, including 197 derived from twin-embryo seeds. Our method consisted of an inspection of the allelic intensity ratio using SNP markers. For palms with a shifted or abnormal distribution ratio, the SNP allelic frequencies were plotted along the pseudo-chromosomes. This method proved to be efficient in identifying whole genome duplication (triploids) and aneuploidy. We also detected several loss of heterozygosity regions which may indicate small chromosomal deletions and/or inheritance of identical by descent regions from both parents. The SNP analysis was validated by flow cytometry and chromosome counts. The triploids were all derived from twin-embryo seeds. This is the first report on the efficiency and reliability of SNP array data for karyotyping oil palm chromosomes, as an alternative to the conventional cytogenetic technique. Information on the ploidy composition and chromosomal structural variation can help to better understand the genetic makeup of samples and lead to a more robust interpretation of the genomic data in marker-trait association analyses.
    Matched MeSH terms: Chromosome Mapping
  7. Bashir A, Zunita Z, Jesse FFA, Ramanoon SZ
    Microbiol Resour Announc, 2019 Feb;8(6).
    PMID: 30746526 DOI: 10.1128/MRA.01618-18
    Streptococcus agalactiae, commonly known as group B streptococcus (GBS), is among the most implicated pathogens in bovine mastitis worldwide. Proper control measures can curb both economic and public health effects it may cause. Here, we report the sequenced genome of S. agalactiae sequence type 167 (ST167) strain 3966RFQB obtained from a bovine mastitis case at a dairy herd in Banting, Selangor, Malaysia (longitude 2.8121°N, latitude 101.5026°E).
    Matched MeSH terms: Chromosome Mapping
  8. Goh JE, Rahman AY, Hari R, Lim MP, Najimudin N, Yap WS, et al.
    Microbiol Resour Announc, 2020 May 21;9(21).
    PMID: 32439681 DOI: 10.1128/MRA.01485-19
    A type strain of Lactarius deliciosus was obtained from the CBS-KNAW culture collection. The mycelium was cultured using potato dextrose agar, and the extracted genomic DNA was subjected to PacBio genome sequencing. Upon assembly and annotation, the genome size was estimated to be 54 Mbp, with 12,753 genes.
    Matched MeSH terms: Chromosome Mapping
  9. Ashkani S, Rafii MY, Shabanimofrad M, Miah G, Sahebi M, Azizi P, et al.
    Front Plant Sci, 2015;6:886.
    PMID: 26635817 DOI: 10.3389/fpls.2015.00886
    Rice is a staple and most important security food crop consumed by almost half of the world's population. More rice production is needed due to the rapid population growth in the world. Rice blast caused by the fungus, Magnaporthe oryzae is one of the most destructive diseases of this crop in different part of the world. Breakdown of blast resistance is the major cause of yield instability in several rice growing areas. There is a need to develop strategies providing long-lasting disease resistance against a broad spectrum of pathogens, giving protection for a long time over a broad geographic area, promising for sustainable rice production in the future. So far, molecular breeding approaches involving DNA markers, such as QTL mapping, marker-aided selection, gene pyramiding, allele mining and genetic transformation have been used to develop new resistant rice cultivars. Such techniques now are used as a low-cost, high-throughput alternative to conventional methods allowing rapid introgression of disease resistance genes into susceptible varieties as well as the incorporation of multiple genes into individual lines for more durable blast resistance. The paper briefly reviewed the progress of studies on this aspect to provide the interest information for rice disease resistance breeding. This review includes examples of how advanced molecular method have been used in breeding programs for improving blast resistance. New information and knowledge gained from previous research on the recent strategy and challenges towards improvement of blast disease such as pyramiding disease resistance gene for creating new rice varieties with high resistance against multiple diseases will undoubtedly provide new insights into the rice disease control.
    Matched MeSH terms: Chromosome Mapping
  10. Lau WC, Rafii MY, Ismail MR, Puteh A, Latif MA, Ramli A
    Front Plant Sci, 2015;6:832.
    PMID: 26528304 DOI: 10.3389/fpls.2015.00832
    After yield, quality is one of the most important aspects of rice breeding. Preference for rice quality varies among cultures and regions; therefore, rice breeders have to tailor the quality according to the preferences of local consumers. Rice quality assessment requires routine chemical analysis procedures. The advancement of molecular marker technology has revolutionized the strategy in breeding programs. The availability of rice genome sequences and the use of forward and reverse genetics approaches facilitate gene discovery and the deciphering of gene functions. A well-characterized gene is the basis for the development of functional markers, which play an important role in plant genotyping and, in particular, marker-assisted breeding. In addition, functional markers offer advantages that counteract the limitations of random DNA markers. Some functional markers have been applied in marker-assisted breeding programs and have successfully improved rice quality to meet local consumers' preferences. Although functional markers offer a plethora of advantages over random genetic markers, the development and application of functional markers should be conducted with care. The decreasing cost of sequencing will enable more functional markers for rice quality improvement to be developed, and application of these markers in rice quality breeding programs is highly anticipated.
    Matched MeSH terms: Chromosome Mapping
  11. Jiang DL, Gu XH, Li BJ, Zhu ZX, Qin H, Meng ZN, et al.
    Mar Biotechnol (NY), 2019 Apr;21(2):250-261.
    PMID: 30737627 DOI: 10.1007/s10126-019-09877-y
    Understanding the genetic mechanism of osmoregulation is important for the improvement of salt tolerance in tilapia. In our previous study, we have identified a major quantitative trait locus (QTL) region located at 23.0 Mb of chrLG18 in a Nile tilapia line by QTL-seq. However, the conservation of these QTLs in other tilapia populations or species is not clear. In this study, we successfully investigated the QTLs associated with salt tolerance in a mass cross population from the GIFT line of Nile tilapia (Oreochromis niloticus) using a ddRAD-seq-based genome-wide association study (GWAS) and in a full-sib family from the Malaysia red tilapia strain (Oreochromis spp) using QTL-seq. Our study confirmed the major QTL interval that is located at nearly 23.0 Mb of chrLG18 in Nile tilapia and revealed a long QTL cluster across chrLG18 controlling for the salt-tolerant trait in both red tilapia and Nile tilapia. This is the first GWAS analysis on salt tolerance in tilapia. Our finding provides important insights into the genetic architecture of salinity tolerance in tilapia and supplies a basis for fine mapping QTLs, marker-assisted selection, and further detailed functional analysis of the underlying genes for salt tolerance in tilapia.
    Matched MeSH terms: Chromosome Mapping
  12. Chua, B. H., Rajinder, S., Tan, S. G., Faridah, Q. Z., Cheah, S. C.
    MyJurnal
    Microsatellites or simple sequence repeats (SSRs) are tandem repeats of DNA of 1-6 bp long. They ubiquitously occur in both eukaryotic and prokaryotic genomes. Because of their abundance,
    they have widespread applications in both animal and plant sciences; such as varietal identification, genetic mapping, QTL mapping, phylogenetic and diversity studies. Thus, SSRs have become valuable DNA markers for molecular biologists and geneticists. Microsatellites are markers
    of choice for many molecular geneticists because of their hypervariability, codominant
    inheritance, multi-allelism and PCR-based assaying of variations that are amenable to automation and high throughput assay. However, the utilization of microsatellite markers in the past was
    hampered by its laborious de novo isolations and species-specific nature.
    Matched MeSH terms: Chromosome Mapping
  13. Mohd Tap R, Kamarudin NA, Ginsapu SJ, Ahmed Bakri AR, Ahmad N, Amran F, et al.
    Genome Announc, 2018 Apr 05;6(14).
    PMID: 29622608 DOI: 10.1128/genomeA.00166-18
    Candida pseudohaemulonii is phylogenetically close to the C. haemulonii complex and exhibits resistance to amphotericin B and azole agents. We report here the draft genome sequence of C. pseudohaemulonii UZ153_17 isolated from the blood culture of a neutropenic patient. The draft genome is 3,532,003,666 bp in length, with 579,838 reads, 130 contigs, and a G+C content of 47.15%.
    Matched MeSH terms: Chromosome Mapping
  14. Yeo FKS, Bouchon R, Kuijken R, Loriaux A, Boyd C, Niks RE, et al.
    PMID: 28356783 DOI: 10.1007/s11032-017-0624-x
    Partial resistance quantitative trait loci (QTLs) Rphq11 and rphq16 against Puccinia hordei isolate 1.2.1 were previously mapped in seedlings of the mapping populations Steptoe/Morex and Oregon Wolfe Barleys, respectively. In this study, QTL mapping was performed at adult plant stage for the two mapping populations challenged with the same rust isolate. The results suggest that Rphq11 and rphq16 are effective only at seedling stage, and not at adult plant stage. The cloning of several genes responsible for partial resistance of barley to P. hordei will allow elucidation of the molecular basis of this type of plant defence. A map-based cloning approach requires to fine-map the QTL in a narrow genetic window. In this study, Rphq11 and rphq16 were fine-mapped using an approach aiming at speeding up the development of plant material and simplifying its evaluation. The plant materials for fine-mapping were identified from early plant materials developed to produce QTL-NILs. The material was first selected to carry the targeted QTL in heterozygous condition and susceptibility alleles at other resistance QTLs in homozygous condition. This strategy took four to five generations to obtain fixed QTL recombinants (i.e., homozygous resistant at the Rphq11 or rphq16 QTL alleles, homozygous susceptible at the non-targeted QTL alleles). In less than 2 years, Rphq11 was fine-mapped into a 0.2-cM genetic interval and a 1.4-cM genetic interval for rphq16. The strongest candidate gene for Rphq11 is a phospholipid hydroperoxide glutathione peroxidase. Thus far, no candidate gene was identified for rphq16.
    Matched MeSH terms: Chromosome Mapping
  15. Azwani F, Suzuki K, Honjyo M, Tashiro Y, Futamata H
    Genome Announc, 2017 Sep 07;5(36).
    PMID: 28883136 DOI: 10.1128/genomeA.00875-17
    Comamonas testosteroni strain R2 was isolated from a continuous culture enriched by a low concentration of phenol-oxygenating activities with low Ks values (below 1 μM). The draft genome sequence of C. testosteroni strain R2 reported here may contribute to determining the phenol degradation gene cluster.
    Matched MeSH terms: Chromosome Mapping
  16. Mohd Sanusi NSN, Rosli R, Chan KL, Halim MAA, Ting NC, Singh R, et al.
    Comput Biol Chem, 2023 Feb;102:107801.
    PMID: 36528019 DOI: 10.1016/j.compbiolchem.2022.107801
    A high-quality reference genome is an important resource that can help decipher the genetic basis of traits in combination with linkage or association analyses. The publicly available oil palm draft genome sequence of AVROS pisifera (EG5) accounts for 1.535 Gb of the 1.8 Gb oil palm genome. However, the assemblies are fragmented, and the earlier assembly only had 43% of the sequences placed on pseudo-chromosomes. By integrating a number of SNP and SSR-based genetic maps, a consensus map (AM_EG5.1), comprising of 828.243 Mb genomic scaffolds anchored to 16 pseudo-chromosomes, was generated. This accounted for 54% of the genome assembly, which is a significant improvement to the original assembly. The total length of N50 scaffolds anchored to the pseudo-chromosomes increased by ∼18% compared to the previous assembly. A total of 139 quantitative trait loci for agronomically important quantitative traits, sourced from literature, were successfully mapped on the new pseudo-chromosomes. The improved assembly could also be used as a reference to identify potential errors in placement of specific markers in the linkage groups of the genetic maps used to assemble the consensus map. The 3422 unique markers from five genetic maps, anchored to the pseudo-chromosomes of AM_EG5.1, are an important resource that can be used preferentially to either construct new maps or fill gaps in existing genetic maps. Synteny analysis further revealed that the AM_EG5.1 had high collinearity with the date palm genome cultivar 'Barhee BC4' and shared most of its segmental duplications. This improved chromosomal-level genome is a valuable resource for genetic research in oil palm.
    Matched MeSH terms: Chromosome Mapping
  17. Ngu MS, Thomson MJ, Bhuiyan MA, Ho C, Wickneswari R
    Genet. Mol. Res., 2014;13(4):9477-88.
    PMID: 25501158 DOI: 10.4238/2014.November.11.13
    Grain weight is a major component of rice grain yield and is controlled by quantitative trait loci. Previously, a rice grain weight quantitative trait locus (qGW6) was detected near marker RM587 on chromosome 6 in a backcross population (BC2F2) derived from a cross between Oryza rufipogon IRGC105491 and O. sativa cv. MR219. Using a BC2F5 population, qGW6 was validated and mapped to a region of 4.8 cM (1.2 Mb) in the interval between RM508 and RM588. Fine mapping using a series of BC4F3 near isogenic lines further narrowed the interval containing qGW6 to 88 kb between markers RM19268 and RM19271.1. According to the Duncan multiple range test, 8 BC4F4 near isogenic lines had significantly higher 100-grain weight (4.8 to 7.5% over MR219) than their recurrent parent, MR219 (P < 0.05). According to the rice genome automated annotation database, there are 20 predicted genes in the 88-kb target region, and 9 of them have known functions. Among the genes with known functions in the target region, in silico gene expression analysis showed that 9 were differentially expressed during the seed development stage(s) from gene expression series GSE6893; however, only 3 of them have known functions. These candidates provide targets for further characterization of qGW6, which will assist in understanding the genetic control of grain weight in rice.
    Matched MeSH terms: Physical Chromosome Mapping*
  18. Lau YY, Yin WF, Chan KG
    Sensors (Basel), 2014;14(8):13913-24.
    PMID: 25196111 DOI: 10.3390/s140813913
    Enterobacter asburiae L1 is a quorum sensing bacterium isolated from lettuce leaves. In this study, for the first time, the complete genome of E. asburiae L1 was sequenced using the single molecule real time sequencer (PacBio RSII) and the whole genome sequence was verified by using optical genome mapping (OpGen) technology. In our previous study, E. asburiae L1 has been reported to produce AHLs, suggesting the possibility of virulence factor regulation which is quorum sensing dependent. This evoked our interest to study the genome of this bacterium and here we present the complete genome of E. asburiae L1, which carries the virulence factor gene virK, the N-acyl homoserine lactone-based QS transcriptional regulator gene luxR and the N-acyl homoserine lactone synthase gene which we firstly named easI. The availability of the whole genome sequence of E. asburiae L1 will pave the way for the study of the QS-mediated gene expression in this bacterium. Hence, the importance and functions of these signaling molecules can be further studied in the hope of elucidating the mechanisms of QS-regulation in E. asburiae. To the best of our knowledge, this is the first documentation of both a complete genome sequence and the establishment of the molecular basis of QS properties of E. asburiae.
    Matched MeSH terms: Chromosome Mapping/methods
  19. Ting NC, Jansen J, Mayes S, Massawe F, Sambanthamurthi R, Ooi LC, et al.
    BMC Genomics, 2014;15:309.
    PMID: 24767304 DOI: 10.1186/1471-2164-15-309
    Oil palm is an important perennial oil crop with an extremely long selection cycle of 10 to 12 years. As such, any tool that speeds up its genetic improvement process, such as marker-assisted breeding is invaluable. Previously, genetic linkage maps based on AFLP, RFLP and SSR markers were developed and QTLs for fatty acid composition and yield components identified. High density genetic maps of crosses of different genetic backgrounds are indispensable tools for investigating oil palm genetics. They are also useful for comparative mapping analyses to identify markers closely linked to traits of interest.
    Matched MeSH terms: Chromosome Mapping*
  20. Seng TY, Mohamed Saad SH, Chin CW, Ting NC, Harminder Singh RS, Qamaruz Zaman F, et al.
    PLoS One, 2011;6(11):e26593.
    PMID: 22069457 DOI: 10.1371/journal.pone.0026593
    Enroute to mapping QTLs for yield components in oil palm, we constructed the linkage map of a FELDA high yielding oil palm (Elaeis guineensis), hybrid cross. The parents of the mapping population are a Deli dura and a pisifera of Yangambi origin. The cross out-yielded the average by 8-21% in four trials all of which yielded comparably to the best current commercial planting materials. The higher yield derived from a higher fruit oil content. SSR markers in the public domain - from CIRAD and MPOB, as well as some developed in FELDA - were used for the mapping, augmented by locally-designed AFLP markers. The female parent linkage map comprised 317 marker loci and the male parent map 331 loci, both in 16 linkage groups each. The number of markers per group ranged from 8-47 in the former and 12-40 in the latter. The integrated map was 2,247.5 cM long and included 479 markers and 168 anchor points. The number of markers per linkage group was 15-57, the average being 29, and the average map density 4.7 cM. The linkage groups ranged in length from 77.5 cM to 223.7 cM, with an average of 137 cM. The map is currently being validated against a closely related population and also being expanded to include yield related QTLs.
    Matched MeSH terms: Chromosome Mapping*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links