Displaying publications 41 - 60 of 88 in total

Abstract:
Sort:
  1. Albahri OS, Albahri AS, Mohammed KI, Zaidan AA, Zaidan BB, Hashim M, et al.
    J Med Syst, 2018 Mar 22;42(5):80.
    PMID: 29564649 DOI: 10.1007/s10916-018-0943-4
    The new and ground-breaking real-time remote monitoring in triage and priority-based sensor technology used in telemedicine have significantly bounded and dispersed communication components. To examine these technologies and provide researchers with a clear vision of this area, we must first be aware of the utilised approaches and existing limitations in this line of research. To this end, an extensive search was conducted to find articles dealing with (a) telemedicine, (b) triage, (c) priority and (d) sensor; (e) comprehensively review related applications and establish the coherent taxonomy of these articles. ScienceDirect, IEEE Xplore and Web of Science databases were checked for articles on triage and priority-based sensor technology in telemedicine. The retrieved articles were filtered according to the type of telemedicine technology explored. A total of 150 articles were selected and classified into two categories. The first category includes reviews and surveys of triage and priority-based sensor technology in telemedicine. The second category includes articles on the three-tiered architecture of telemedicine. Tier 1 represents the users. Sensors acquire the vital signs of the users and send them to Tier 2, which is the personal gateway that uses local area network protocols or wireless body area network. Medical data are sent from Tier 2 to Tier 3, which is the healthcare provider in medical institutes. Then, the motivation for using triage and priority-based sensor technology in telemedicine, the issues related to the obstruction of its application and the development and utilisation of telemedicine are examined on the basis of the findings presented in the literature.
    Matched MeSH terms: Computer Security
  2. Humaidi N, Balakrishnan V
    Health Inf Manag, 2018 Jan;47(1):17-27.
    PMID: 28537207 DOI: 10.1177/1833358317700255
    BACKGROUND: Health information systems are innovative products designed to improve the delivery of effective healthcare, but they are also vulnerable to breaches of information security, including unauthorised access, use, disclosure, disruption, modification or destruction, and duplication of passwords. Greater openness and multi-connectedness between heterogeneous stakeholders within health networks increase the security risk.

    OBJECTIVE: The focus of this research was on the indirect effects of management support (MS) on user compliance behaviour (UCB) towards information security policies (ISPs) among health professionals in selected Malaysian public hospitals. The aim was to identify significant factors and provide a clearer understanding of the nature of compliance behaviour in the health sector environment.

    METHOD: Using a survey design and stratified random sampling method, self-administered questionnaires were distributed to 454 healthcare professionals in three hospitals. Drawing on theories of planned behaviour, perceived behavioural control (self-efficacy (SE) and MS components) and the trust factor, an information system security policies compliance model was developed to test three related constructs (MS, SE and perceived trust (PT)) and their relationship to UCB towards ISPs.

    RESULTS: Results showed a 52.8% variation in UCB through significant factors. Partial least squares structural equation modelling demonstrated that all factors were significant and that MS had an indirect effect on UCB through both PT and SE among respondents to this study.

    CONCLUSION: The research model based on the theory of planned behaviour in combination with other human and organisational factors has made a useful contribution towards explaining compliance behaviour in relation to organisational ISPs, with trust being the most significant factor. In adopting a multidimensional approach to management-user interactions via multidisciplinary concepts and theories to evaluate the association between the integrated management-user values and the nature of compliance towards ISPs among selected health professionals, this study has made a unique contribution to the literature.

    Matched MeSH terms: Computer Security*
  3. Shahid Anwar, Mohamad Fadli Zolkipli, Julius Odili, Mushtaq Ali, Zakira Inayat, Jasni Mohamad Zain
    MyJurnal
    Android devices have gained a lot of attention in the last few decades due to several reasons including ease of use, effectiveness, availability and games, among others. To take advantage of Android devices, mobile users have begun installing an increasingly substantial number of Android applications on their devices. Rapid growth in many Android devices and applications has led to security and privacy issues. It has, for instance, opened the way for malicious applications to be installed on the Android devices while downloading different applications for different purposes. This has caused malicious applications to execute illegal operations on the devices that result in malfunction outputs. Android botnets are one of these malfunctions. This paper presents Android botnets in various aspects including their security, architecture, infection vectors and techniques. This paper also evaluates Android botnets by categorising them according to behaviour. Furthermore, it investigates the Android botnets with respect to Android device threats. Finally, we investigate different Android botnet detection techniques in depth with respect to the existing solutions deployed to mitigate Android botnets.
    Matched MeSH terms: Computer Security
  4. Kamaludin H, Mahdin H, Abawajy JH
    PLoS One, 2018;13(3):e0193951.
    PMID: 29565982 DOI: 10.1371/journal.pone.0193951
    Although Radio Frequency Identification (RFID) is poised to displace barcodes, security vulnerabilities pose serious challenges for global adoption of the RFID technology. Specifically, RFID tags are prone to basic cloning and counterfeiting security attacks. A successful cloning of the RFID tags in many commercial applications can lead to many serious problems such as financial losses, brand damage, safety and health of the public. With many industries such as pharmaceutical and businesses deploying RFID technology with a variety of products, it is important to tackle RFID tag cloning problem and improve the resistance of the RFID systems. To this end, we propose an approach for detecting cloned RFID tags in RFID systems with high detection accuracy and minimal overhead thus overcoming practical challenges in existing approaches. The proposed approach is based on consistency of dual hash collisions and modified count-min sketch vector. We evaluated the proposed approach through extensive experiments and compared it with existing baseline approaches in terms of execution time and detection accuracy under varying RFID tag cloning ratio. The results of the experiments show that the proposed approach outperforms the baseline approaches in cloned RFID tag detection accuracy.
    Matched MeSH terms: Computer Security
  5. Khor HL, Liew SC, Zain JM
    J Digit Imaging, 2017 Jun;30(3):328-349.
    PMID: 28050716 DOI: 10.1007/s10278-016-9930-9
    Tampering on medical image will lead to wrong diagnosis and treatment, which is life-threatening; therefore, digital watermarking on medical image was introduced to protect medical image from tampering. Medical images are divided into region of interest (ROI) and region of non-interest (RONI). ROI is an area that has a significant impact on diagnosis, whereas RONI has less or no significance in diagnosis. This paper has proposed ROI-based tamper detection and recovery watermarking scheme (ROI-DR) that embeds ROI bit information into RONI least significant bits, which will be extracted later for authentication and recovery process. The experiment result has shown that the ROI-DR has achieved a good result in imperceptibility with peak signal-to-noise ratio (PSNR) values approximately 48 dB, it is robust against various kinds of tampering, and the tampered ROI was able to recover to its original form. Lastly, a comparative table with the previous research (TALLOR and TALLOR-RS watermarking schemes) has been derived, where these three watermarking schemes were tested under the same testing conditions and environment. The experiment result has shown that ROI-DR has achieved speed-up factors of 22.55 and 26.65 in relative to TALLOR and TALLOR-RS watermarking schemes, respectively.
    Matched MeSH terms: Computer Security*
  6. Muhammad Adil Khattak, Muhammad Khairy Harmaini Shaharuddin, Muhammad Saiful Islam Haris, Muhammad Zuhaili Mohammad Aminuddin, Nik Mohamad Amirul Nik Azhar, Nik Muhammad Hakimi Nik Ahmad
    MyJurnal
    It is essential to ensure the nuclear power plant system are not compromise and avoid
    failure that can result in significant economic loss and physical damage to the public.
    However, a very little attention was given to software and cybersecurity hazard. This
    review paper discusses about the cybersecurity in nuclear power plant, history of
    accident, implementation and future plan on cybersecurity deeply. About 51 published
    studies (2006-2017) are reviewed in this paper. It is marked from the literature survey
    articles that it is important for the cybersecurity of a nuclear power plant to be at par
    with the evolution of hardware and software and to counter the increasing risk on
    cyber vulnerabilities. Moreover, it should be addressed as a concern and major priority
    for researches and policy-makers.
    Matched MeSH terms: Computer Security
  7. Hussein AA, Leow CY, Rahman TA
    PLoS One, 2017;12(5):e0177326.
    PMID: 28493977 DOI: 10.1371/journal.pone.0177326
    Localization of the wireless sensor network is a vital area acquiring an impressive research concern and called upon to expand more with the rising of its applications. As localization is gaining prominence in wireless sensor network, it is vulnerable to jamming attacks. Jamming attacks disrupt communication opportunity among the sender and receiver and deeply impact the localization process, leading to a huge error of the estimated sensor node position. Therefore, detection and elimination of jamming influence are absolutely indispensable. Range-based techniques especially Received Signal Strength (RSS) is facing severe impact of these attacks. This paper proposes algorithms based on Combination Multiple Frequency Multiple Power Localization (C-MFMPL) and Step Function Multiple Frequency Multiple Power Localization (SF-MFMPL). The algorithms have been tested in the presence of multiple types of jamming attacks including capture and replay, random and constant jammers over a log normal shadow fading propagation model. In order to overcome the impact of random and constant jammers, the proposed method uses two sets of frequencies shared by the implemented anchor nodes to obtain the averaged RSS readings all over the transmitted frequencies successfully. In addition, three stages of filters have been used to cope with the replayed beacons caused by the capture and replay jammers. In this paper the localization performance of the proposed algorithms for the ideal case which is defined by without the existence of the jamming attack are compared with the case of jamming attacks. The main contribution of this paper is to achieve robust localization performance in the presence of multiple jamming attacks under log normal shadow fading environment with a different simulation conditions and scenarios.
    Matched MeSH terms: Computer Security*
  8. Usama M, Zakaria N
    PLoS One, 2017;12(1):e0168207.
    PMID: 28072850 DOI: 10.1371/journal.pone.0168207
    Data compression and encryption are key components of commonly deployed platforms such as Hadoop. Numerous data compression and encryption tools are presently available on such platforms and the tools are characteristically applied in sequence, i.e., compression followed by encryption or encryption followed by compression. This paper focuses on the open-source Hadoop framework and proposes a data storage method that efficiently couples data compression with encryption. A simultaneous compression and encryption scheme is introduced that addresses an important implementation issue of source coding based on Tent Map and Piece-wise Linear Chaotic Map (PWLM), which is the infinite precision of real numbers that result from their long products. The approach proposed here solves the implementation issue by removing fractional components that are generated by the long products of real numbers. Moreover, it incorporates a stealth key that performs a cyclic shift in PWLM without compromising compression capabilities. In addition, the proposed approach implements a masking pseudorandom keystream that enhances encryption quality. The proposed algorithm demonstrated a congruent fit within the Hadoop framework, providing robust encryption security and compression.
    Matched MeSH terms: Computer Security*
  9. Ranak MSAN, Azad S, Nor NNHBM, Zamli KZ
    PLoS One, 2017;12(10):e0186940.
    PMID: 29084262 DOI: 10.1371/journal.pone.0186940
    Due to recent advancements and appealing applications, the purchase rate of smart devices is increasing at a higher rate. Parallely, the security related threats and attacks are also increasing at a greater ratio on these devices. As a result, a considerable number of attacks have been noted in the recent past. To resist these attacks, many password-based authentication schemes are proposed. However, most of these schemes are not screen size independent; whereas, smart devices come in different sizes. Specifically, they are not suitable for miniature smart devices due to the small screen size and/or lack of full sized keyboards. In this paper, we propose a new screen size independent password-based authentication scheme, which also offers an affordable defense against shoulder surfing, brute force, and smudge attacks. In the proposed scheme, the Press Touch (PT)-a.k.a., Force Touch in Apple's MacBook, Apple Watch, ZTE's Axon 7 phone; 3D Touch in iPhone 6 and 7; and so on-is transformed into a new type of code, named Press Touch Code (PTC). We design and implement three variants of it, namely mono-PTC, multi-PTC, and multi-PTC with Grid, on the Android Operating System. An in-lab experiment and a comprehensive survey have been conducted on 105 participants to demonstrate the effectiveness of the proposed scheme.
    Matched MeSH terms: Computer Security/utilization*
  10. Jayabalan M, O'Daniel T
    J Med Syst, 2016 Dec;40(12):261.
    PMID: 27722981
    This study presents a systematic literature review of access control for electronic health record systems to protect patient's privacy. Articles from 2006 to 2016 were extracted from the ACM Digital Library, IEEE Xplore Digital Library, Science Direct, MEDLINE, and MetaPress using broad eligibility criteria, and chosen for inclusion based on analysis of ISO22600. Cryptographic standards and methods were left outside the scope of this review. Three broad classes of models are being actively investigated and developed: access control for electronic health records, access control for interoperability, and access control for risk analysis. Traditional role-based access control models are extended with spatial, temporal, probabilistic, dynamic, and semantic aspects to capture contextual information and provide granular access control. Maintenance of audit trails and facilities for overriding normal roles to allow full access in emergency cases are common features. Access privilege frameworks utilizing ontology-based knowledge representation for defining the rules have attracted considerable interest, due to the higher level of abstraction that makes it possible to model domain knowledge and validate access requests efficiently.
    Matched MeSH terms: Computer Security*
  11. Shahri AB, Ismail Z, Mohanna S
    J Med Syst, 2016 Nov;40(11):241.
    PMID: 27681101
    The security effectiveness based on users' behaviors is becoming a top priority of Health Information System (HIS). In the first step of this study, through the review of previous studies 'Self-efficacy in Information Security' (SEIS) and 'Security Competency' (SCMP) were identified as the important factors to transforming HIS users to the first line of defense in the security. Subsequently, a conceptual model was proposed taking into mentioned factors for HIS security effectiveness. Then, this quantitative study used the structural equation modeling to examine the proposed model based on survey data collected from a sample of 263 HIS users from eight hospitals in Iran. The result shows that SEIS is one of the important factors to cultivate of good end users' behaviors toward HIS security effectiveness. However SCMP appears a feasible alternative to providing SEIS. This study also confirms the mediation effects of SEIS on the relationship between SCMP and HIS security effectiveness. The results of this research paper can be used by HIS and IT managers to implement their information security process more effectively.
    Matched MeSH terms: Computer Security*
  12. Aldeen YA, Salleh M, Aljeroudi Y
    J Biomed Inform, 2016 08;62:107-16.
    PMID: 27369566 DOI: 10.1016/j.jbi.2016.06.011
    Cloud computing (CC) is a magnificent service-based delivery with gigantic computer processing power and data storage across connected communications channels. It imparted overwhelming technological impetus in the internet (web) mediated IT industry, where users can easily share private data for further analysis and mining. Furthermore, user affable CC services enable to deploy sundry applications economically. Meanwhile, simple data sharing impelled various phishing attacks and malware assisted security threats. Some privacy sensitive applications like health services on cloud that are built with several economic and operational benefits necessitate enhanced security. Thus, absolute cyberspace security and mitigation against phishing blitz became mandatory to protect overall data privacy. Typically, diverse applications datasets are anonymized with better privacy to owners without providing all secrecy requirements to the newly added records. Some proposed techniques emphasized this issue by re-anonymizing the datasets from the scratch. The utmost privacy protection over incremental datasets on CC is far from being achieved. Certainly, the distribution of huge datasets volume across multiple storage nodes limits the privacy preservation. In this view, we propose a new anonymization technique to attain better privacy protection with high data utility over distributed and incremental datasets on CC. The proficiency of data privacy preservation and improved confidentiality requirements is demonstrated through performance evaluation.
    Matched MeSH terms: Computer Security*
  13. Badshah G, Liew SC, Zain JM, Ali M
    J Digit Imaging, 2016 Apr;29(2):216-25.
    PMID: 26429361 DOI: 10.1007/s10278-015-9822-4
    In teleradiology, image contents may be altered due to noisy communication channels and hacker manipulation. Medical image data is very sensitive and can not tolerate any illegal change. Illegally changed image-based analysis could result in wrong medical decision. Digital watermarking technique can be used to authenticate images and detect as well as recover illegal changes made to teleradiology images. Watermarking of medical images with heavy payload watermarks causes image perceptual degradation. The image perceptual degradation directly affects medical diagnosis. To maintain the image perceptual and diagnostic qualities standard during watermarking, the watermark should be lossless compressed. This paper focuses on watermarking of ultrasound medical images with Lempel-Ziv-Welch (LZW) lossless-compressed watermarks. The watermark lossless compression reduces watermark payload without data loss. In this research work, watermark is the combination of defined region of interest (ROI) and image watermarking secret key. The performance of the LZW compression technique was compared with other conventional compression methods based on compression ratio. LZW was found better and used for watermark lossless compression in ultrasound medical images watermarking. Tabulated results show the watermark bits reduction, image watermarking with effective tamper detection and lossless recovery.
    Matched MeSH terms: Computer Security*
  14. Alhaj TA, Siraj MM, Zainal A, Elshoush HT, Elhaj F
    PLoS One, 2016;11(11):e0166017.
    PMID: 27893821 DOI: 10.1371/journal.pone.0166017
    Grouping and clustering alerts for intrusion detection based on the similarity of features is referred to as structurally base alert correlation and can discover a list of attack steps. Previous researchers selected different features and data sources manually based on their knowledge and experience, which lead to the less accurate identification of attack steps and inconsistent performance of clustering accuracy. Furthermore, the existing alert correlation systems deal with a huge amount of data that contains null values, incomplete information, and irrelevant features causing the analysis of the alerts to be tedious, time-consuming and error-prone. Therefore, this paper focuses on selecting accurate and significant features of alerts that are appropriate to represent the attack steps, thus, enhancing the structural-based alert correlation model. A two-tier feature selection method is proposed to obtain the significant features. The first tier aims at ranking the subset of features based on high information gain entropy in decreasing order. The‏ second tier extends additional features with a better discriminative ability than the initially ranked features. Performance analysis results show the significance of the selected features in terms of the clustering accuracy using 2000 DARPA intrusion detection scenario-specific dataset.
    Matched MeSH terms: Computer Security*
  15. Aalsalem MY, Khan WZ, Saad NM, Hossain MS, Atiquzzaman M, Khan MK
    PLoS One, 2016;11(7):e0158072.
    PMID: 27409082 DOI: 10.1371/journal.pone.0158072
    Wireless Sensor Networks (WSNs) are vulnerable to Node Replication attacks or Clone attacks. Among all the existing clone detection protocols in WSNs, RAWL shows the most promising results by employing Simple Random Walk (SRW). More recently, RAND outperforms RAWL by incorporating Network Division with SRW. Both RAND and RAWL have used SRW for random selection of witness nodes which is problematic because of frequently revisiting the previously passed nodes that leads to longer delays, high expenditures of energy with lower probability that witness nodes intersect. To circumvent this problem, we propose to employ a new kind of constrained random walk, namely Single Stage Memory Random Walk and present a distributed technique called SSRWND (Single Stage Memory Random Walk with Network Division). In SSRWND, single stage memory random walk is combined with network division aiming to decrease the communication and memory costs while keeping the detection probability higher. Through intensive simulations it is verified that SSRWND guarantees higher witness node security with moderate communication and memory overheads. SSRWND is expedient for security oriented application fields of WSNs like military and medical.
    Matched MeSH terms: Computer Security*
  16. Mousavi SM, Naghsh A, Abu-Bakar SA
    J Digit Imaging, 2015 Aug;28(4):417-27.
    PMID: 25736857 DOI: 10.1007/s10278-015-9770-z
    This paper presents an automatic region of interest (ROI) segmentation method for application of watermarking in medical images. The advantage of using this scheme is that the proposed method is robust against different attacks such as median, Wiener, Gaussian, and sharpening filters. In other words, this technique can produce the same result for the ROI before and after these attacks. The proposed algorithm consists of three main parts; suggesting an automatic ROI detection system, evaluating the robustness of the proposed system against numerous attacks, and finally recommending an enhancement part to increase the strength of the composed system against different attacks. Results obtained from the proposed method demonstrated the promising performance of the method.
    Matched MeSH terms: Computer Security*
  17. Zaidan BB, Haiqi A, Zaidan AA, Abdulnabi M, Kiah ML, Muzamel H
    J Med Syst, 2015 May;39(5):51.
    PMID: 25732083 DOI: 10.1007/s10916-015-0235-1
    This study focuses on the situation of health information exchange (HIE) in the context of a nationwide network. It aims to create a security framework that can be implemented to ensure the safe transmission of health information across the boundaries of care providers in Malaysia and other countries. First, a critique of the major elements of nationwide health information networks is presented from the perspective of security, along with such topics as the importance of HIE, issues, and main approaches. Second, a systematic evaluation is conducted on the security solutions that can be utilized in the proposed nationwide network. Finally, a secure framework for health information transmission is proposed within a central cloud-based model, which is compatible with the Malaysian telehealth strategy. The outcome of this analysis indicates that a complete security framework for a global structure of HIE is yet to be defined and implemented. Our proposed framework represents such an endeavor and suggests specific techniques to achieve this goal.
    Matched MeSH terms: Computer Security
  18. Zailani S, Iranmanesh M, Nikbin D, Beng JK
    J Med Syst, 2015 Jan;39(1):172.
    PMID: 25503418 DOI: 10.1007/s10916-014-0172-4
    With today's highly competitive market in the healthcare industry, Radio Frequency Identification (RFID) is a technology that can be applied by hospitals to improve operational efficiency and to gain a competitive advantage over their competitors. The purpose of this study is to investigate the factors that may effect RFID adoption in Malaysia's healthcare industry. In addition, the moderating role of occupational level was tested. Data was collected from 223 managers as well as healthcare and supporting staffs. This data was analyzed using the partial least squares technique. The results show that perceived ease of use and usefulness, government policy, top management support, and security and privacy concerns have an effect on the intent to adopt RFID in hospitals. There is a wide gap between managers and healthcare staff in terms of the factors that influence RFID adoption. The results of this study will help decision makers as well as managers in the healthcare industry to better understand the determinants of RFID adoption. Additionally, it will assist in the process of RFID adoption, and therefore, spread the usage of RFID technology in more hospitals.
    Matched MeSH terms: Computer Security
  19. Alanazi HO, Zaidan AA, Zaidan BB, Kiah ML, Al-Bakri SH
    J Med Syst, 2015 Jan;39(1):165.
    PMID: 25481568 DOI: 10.1007/s10916-014-0165-3
    This study has two objectives. First, it aims to develop a system with a highly secured approach to transmitting electronic medical records (EMRs), and second, it aims to identify entities that transmit private patient information without permission. The NTRU and the Advanced Encryption Standard (AES) cryptosystems are secured encryption methods. The AES is a tested technology that has already been utilized in several systems to secure sensitive data. The United States government has been using AES since June 2003 to protect sensitive and essential information. Meanwhile, NTRU protects sensitive data against attacks through the use of quantum computers, which can break the RSA cryptosystem and elliptic curve cryptography algorithms. A hybrid of AES and NTRU is developed in this work to improve EMR security. The proposed hybrid cryptography technique is implemented to secure the data transmission process of EMRs. The proposed security solution can provide protection for over 40 years and is resistant to quantum computers. Moreover, the technique provides the necessary evidence required by law to identify disclosure or misuse of patient records. The proposed solution can effectively secure EMR transmission and protect patient rights. It also identifies the source responsible for disclosing confidential patient records. The proposed hybrid technique for securing data managed by institutional websites must be improved in the future.
    Matched MeSH terms: Computer Security/instrumentation*
  20. Sookhak M, Akhundzada A, Sookhak A, Eslaminejad M, Gani A, Khurram Khan M, et al.
    PLoS One, 2015;10(1):e0115324.
    PMID: 25602616 DOI: 10.1371/journal.pone.0115324
    Wireless sensor networks (WSNs) are ubiquitous and pervasive, and therefore; highly susceptible to a number of security attacks. Denial of Service (DoS) attack is considered the most dominant and a major threat to WSNs. Moreover, the wormhole attack represents one of the potential forms of the Denial of Service (DoS) attack. Besides, crafting the wormhole attack is comparatively simple; though, its detection is nontrivial. On the contrary, the extant wormhole defense methods need both specialized hardware and strong assumptions to defend against static and dynamic wormhole attack. The ensuing paper introduces a novel scheme to detect wormhole attacks in a geographic routing protocol (DWGRP). The main contribution of this paper is to detect malicious nodes and select the best and the most reliable neighbors based on pairwise key pre-distribution technique and the beacon packet. Moreover, this novel technique is not subject to any specific assumption, requirement, or specialized hardware, such as a precise synchronized clock. The proposed detection method is validated by comparisons with several related techniques in the literature, such as Received Signal Strength (RSS), Authentication of Nodes Scheme (ANS), Wormhole Detection uses Hound Packet (WHOP), and Wormhole Detection with Neighborhood Information (WDI) using the NS-2 simulator. The analysis of the simulations shows promising results with low False Detection Rate (FDR) in the geographic routing protocols.
    Matched MeSH terms: Computer Security*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links