Displaying publications 41 - 60 of 581 in total

Abstract:
Sort:
  1. Ghasemzadeh A, Jaafar HZ, Ashkani S, Rahmat A, Juraimi AS, Puteh A, et al.
    BMC Complement Altern Med, 2016 Mar 22;16:104.
    PMID: 27004511 DOI: 10.1186/s12906-016-1072-6
    Zingiber zerumbet (L.) is a traditional Malaysian folk remedy that contains several interesting bioactive compounds of pharmaceutical quality.
    Matched MeSH terms: Flavonoids/isolation & purification; Flavonoids/pharmacology
  2. Nordin ML, Abdul Kadir A, Zakaria ZA, Abdullah R, Abdullah MNH
    BMC Complement Altern Med, 2018 Mar 12;18(1):87.
    PMID: 29530022 DOI: 10.1186/s12906-018-2153-5
    BACKGROUND: Ardisia crispa Thunb. D.C is used mostly in some parts of the Asian region by traditional practitioners to treat certain diseases associated with oxidative stress and inflammation including cancer and rheumatism. In Malaysia, it is popularly known as 'Mata Ayam' and local traditional practitioners believed that the root of the plant is therapeutically beneficial.

    METHODS: The cytotoxic effect of hydromethanolic extract of A. crispa and its solvents partitions (ethyl acetate and aqueous extracts) against breast cancer cells were evaluated by using MTT assay. The cells were treated with concentration of extracts ranging from 15.63 μg/mL- 1000 μg/mL for 72 h. The quantification of phenolic and flavonoid contents of the extracts were carried out to determine the relationship between of phytochemical compounds responsible for cytotoxic and antioxidative activities. The antioxidant capacity was measured by DPPH and ABTS free radical scavenging assay and expressed as milligram (mg) Trolox equivalent antioxidant capacity per 1 g (g) of tested extract.

    RESULTS: The hydromethanolic and ethyl acetate extracts showed moderate cytotoxic effect against MCF-7 with IC50 values of 57.35 ± 19.33 μg/mL, and 54.98 ± 14.10 μg/mL, respectively but aqueous extract was inactive against MCF-7. For MDA-MB-231, hydromethanolic, ethyl acetate and aqueous extracts exhibited weak cytotoxic effects against MDA-MB-231 with IC50 values more than 100 μg/mL. The plant revealed high total phenolic content, total flavonoid and antioxidant capacity.

    CONCLUSION: The response of different type of breast cancer cell lines towards A. crispa extract and its partitions varied. Accordingly, hydromethanolic and ethyl acetate extracts appear to be more cytotoxic to oestrogen receptor (ER) positive breast cancer than oestrogen receptor (ER) negative breast cancer. However, aqueous extract appears to have poor activity to both types of breast cancer. Besides that, hydromethanolic and ethyl acetate extracts exhibit higher TPC, TFC and antioxidant capacity compared to aqueous extract. Synergistic effect of anticancer and antioxidant bioactives compounds of A. crispa plausibly contributed to the cytotoxic effects of the extract.

    Matched MeSH terms: Flavonoids/pharmacology
  3. Citalingam K, Zareen S, Shaari K, Ahmad S
    BMC Complement Altern Med, 2013 Aug 23;13:213.
    PMID: 23971790 DOI: 10.1186/1472-6882-13-213
    BACKGROUND: Hyaluronidases have been found as the target enzymes in the development of osteoarthritis (OA) disease. While there is still no curative treatment for this disease, recent studies on the treatment of OA were focused on the effectiveness of natural products which are expected to improve the symptoms with minimal side effects. The aim of this study was to screen selected Malaysian plants on their anti-hyaluronidase activity as well as to evaluate the active plant and its derived fractions on its potential anti-arthritic and antioxidant activities.

    METHODS: A total of 20 methanolic crude extracts (bark and leaf) from ten different plants were screened using a colorimetric hyaluronidase enzymatic assay. The active plant extract (Payena dasyphylla) was then studied for its hyaluronidase inhibitory activity in the interleukin-1β (IL-1β) stimulated human chondrocytes cell line (NHAC-kn) using zymography method. The Payena dasyphylla methanolic bark extract was then fractionated into several fractions in where the ethyl acetate (EA) fraction was evaluated for its inhibitory effects on the HYAL1 and HYAL2 gene expressions using reverse transcription-polymerase chain reaction (RT-PCR) technique. While the MMP-3 and MMP-13 protein expressions were evaluated using western blot method. The phenolic and flavonoid contents of the three fractions as well as the antioxidant property of the EA fraction were also evaluated.

    RESULTS: Bark extract of Payena dasyphylla (100 μg/ml) showed the highest inhibitory activity against bovine testicular hyaluronidase with 91.63%. The plant extract also inhibited hyaluronidase expression in the cultured human chondrocyte cells in response to IL-1β (100 ng/ml). Similarly, treatment with Payena dasyphylla ethyl acetate (EA) fraction (100 μg/ml) inhibited the HYAL1 and HYAL2 mRNA gene expressions as well as MMP-3 and MMP-13 protein expression in a dose dependent manner. Payena dasyphylla EA fraction has demonstrated the highest amount of phenolic and flavonoid content with 168.62 ± 10.93 mg GAE/g and 95.96 ± 2.96 mg RE/g respectively as compared to water and hexane fractions. In addition, the Payena dasyphylla EA fraction showed strong antioxidant activity with IC₅₀ value of 11.64 ± 1.69 μg/mL.

    CONCLUSION: These findings have shown that Payena dasyphylla might contained potential phenolic compounds that inhibiting the key enzyme in osteoarthritis development, which is the hyaluronidase enzyme through interruption of HYAL1 and HYAL1 gene expressions. The degradation of cartilage could also be inhibited by the plant through suppression of MMP-3 and MMP-13 protein expressions. We also reported that the inhibitory effect of Payena dasyphylla on hyaluronidase activity and expression might be due to its anti-oxidant property.

    Matched MeSH terms: Flavonoids/analysis; Flavonoids/chemistry
  4. Ghasemzadeh A, Jaafar HZ, Karimi E, Ibrahim MH
    BMC Complement Altern Med, 2012 Nov 23;12:229.
    PMID: 23176249 DOI: 10.1186/1472-6882-12-229
    BACKGROUND: The increase in atmospheric CO(2) concentration caused by climate change and agricultural practices is likely to affect biota by producing changes in plant growth, allocation and chemical composition. This study was conducted to evaluate the combined effect of the application of salicylic acid (SA, at two levels: 0 and 10-3 M) and CO(2) enrichment (at two levels: 400 and 800 μmol·mol-1) on the production and antioxidant activities of anthocyanin, flavonoids and isoflavonoids from two Malaysian ginger varieties, namely Halia Bentong and Halia Bara.

    METHODS: High-performance liquid chromatography (HPLC) with photodiode array detection and mass spectrometry was employed to identify and quantify the flavonoids and anthocyanins in the ginger extracts. The antioxidant activity of the leaf extracts was determined by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and thiobarbituric acid (TBA) assays. The substrate specificity of chalcone synthase, the key enzyme for flavonoid biosynthesis, was investigated using the chalcone synthase (CHS) assay.

    RESULTS: CO(2) levels of 800 μmol·mol-1 significantly increased anthocyanin, rutin, naringenin, myricetin, apigenin, fisetin and morin contents in ginger leaves. Meanwhile, the combined effect of SA and CO(2) enrichment enhanced anthocyanin and flavonoid production compared with single treatment effects. High anthocyanin content was observed in H Bara leaves treated with elevated CO(2) and SA. The highest chalcone synthase (CHS) activity was observed in plants treated with SA and CO(2) enrichment. Plants not treated with SA and kept under ambient CO(2) conditions showed the lowest CHS activity. The highest free radical scavenging activity corresponded to H Bara treated with SA under high CO(2) conditions, while the lowest activity corresponded to H Bentong without SA treatment and under atmospheric CO(2) levels. As the level of CO(2) increased, the DPPH activity increased. Higher TBA activity was also recorded in the extracts of H Bara treated with SA and grown under high CO(2) conditions.

    CONCLUSIONS: The biological activities of both ginger varieties were enhanced when the plants were treated with SA and grown under elevated CO(2) concentration. The increase in the production of anthocyanin and flavonoids in plants treated with SA could be attributed to the increase in CHS activity under high CO(2) levels.

    Matched MeSH terms: Flavonoids/analysis*; Flavonoids/metabolism
  5. Hasan MM, Ahmed QU, Soad SZM, Latip J, Taher M, Syafiq TMF, et al.
    BMC Complement Altern Med, 2017 Aug 30;17(1):431.
    PMID: 28854906 DOI: 10.1186/s12906-017-1929-3
    BACKGROUND: Tetracera indica Merr. (Family: Dilleniaceae), known to the Malay as 'Mempelas paya', is one of the medicinal plants used in the treatment of diabetes in Malaysia. However, no proper scientific study has been carried out to verify the traditional claim of T. indica as an antidiabetic agent. Hence, the aims of the present study were to determine the in vitro antidiabetic potential of the T. indica stems ethanol extract, subfractions and isolated compounds.

    METHODS: The ethanol extract and its subfractions, and isolated compounds from T. indica stems were subjected to cytotoxicity test using MTT viability assay on 3T3-L1 pre-adipocytes. Then, the test groups were subjected to the in vitro antidiabetic investigation using 3T3-L1 pre-adipocytes and differentiated adipocytes to determine the insulin-like and insulin sensitizing activities. Rosiglitazone was used as a standard antidiabetic agent. All compounds were also subjected to fluorescence glucose (2-NBDG) uptake test on differentiated adipocytes. Test solutions were introduced to the cells in different safe concentrations as well as in different adipogenic cocktails, which were modified by the addition of compounds to be investigated and in the presence or absence of insulin. Isolation of bioactive compounds from the most effective subfraction (ethyl acetate) was performed through repeated silica gel and sephadex LH-20 column chromatographies and their structures were elucidated through (1)H-and (13)C-NMR spectroscopy.

    RESULTS: Four monoflavonoids, namely, wogonin, norwogonin, quercetin and techtochrysin were isolated from the T. indica stems ethanol extract. Wogonin, norwogonin and techtochrysin induced significant (P 

    Matched MeSH terms: Flavonoids/pharmacology*
  6. Ghasemzadeh A, Jaafar HZ, Rahmat A, Ashkani S
    BMC Complement Altern Med, 2015 Sep 23;15:335.
    PMID: 26399961 DOI: 10.1186/s12906-015-0838-6
    BACKGROUND: Etlingera elatior is a well-known herb in Malaysia with various pharmaceutical properties.

    METHODS: E. elatior flowers grown in three different locations of Malaysia (Kelantan, Pahang and Johor), were investigated for differences in their content of secondary metabolites (total phenolics [TPC], total flavonoids [TFC], and total tannin content [TTC]) as well as for their antioxidant, anticancer, and antibacterial properties. Phenolic acids and flavonoids were isolated and identified using ultra-high performance liquid chromatography (UHPLC). Ferric reducing antioxidant potential (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays were used to evaluate the antioxidant activities. The anticancer activity of extracts was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay.

    RESULTS: When extracted with various solvents (aqueous and ethanolic), samples from the different locations yielded significantly different results for TPC, TFC, and TTC as well as antioxidant activity. Aqueous extracts of E. elatior flowers collected from Kelantan exhibited the highest values: TPC (618.9 mg/100 g DM), TFC (354.2 mg/100 g DM), TTC (129.5 mg/100 g DM), DPPH (76.4 %), and FRAP (6.88 mM of Fe (II)/g) activity with a half-maximal inhibitory concentration (IC50) of 34.5 μg/mL compared with extracts of flowers collected from the other two locations. The most important phenolic compounds isolated in this study, based on concentration, were: gallic acid > caffeic acid > tannic acid > chlorogenic acid; and the most important flavonoids were: quercetin > apigenin > kaempferol > luteolin > myricetin. Extracts of flowers from Kelantan exhibited potent anticancer activity with a IC50of 173.1 and 196.2 μg/mL against the tumor cell lines MCF-7 and MDA-MB-231 respectively, compared with extracts from Pahang (IC50 = 204.5 and 246.2 μg/mL) and Johor samples (IC50 = 277.1 and 296.7 μg/mL). Extracts of E. elatior flowers also showed antibacterial activities against Staphylococcus aureus, Bacillus subtilis, Listeria monocytogenes, Escherichia coli, Salmonella typhimurium, and Pseudomonas aeruginosa with minimal inhibitory concentrations (MIC) ranging from 30 to >100 μg/mL.

    CONCLUSIONS: In general, therefore, based on the potent antioxidant and anticancer activity of flower extracts, it appears that E. elatior grown in the North-east of Malaysia (Kelantan) is a potential source of therapeutic compounds with anti-cancer activity.

    Matched MeSH terms: Flavonoids
  7. Lalani SS, Anasir MI, Poh CL
    BMC Complement Med Ther, 2020 Mar 23;20(1):97.
    PMID: 32293397 DOI: 10.1186/s12906-020-2880-2
    BACKGROUND: The hand, foot and mouth disease (HFMD) is a febrile and exanthematous childhood disease mainly caused by Enterovirus 71 (EV-A71). In severe HFMD, virulent EV-A71 strains can cause acute flaccid paralysis and cardiopulmonary edema leading to death. Currently, no FDA approved antiviral treatment or vaccine is available for EV-A71. Flavonoids such as silymarin and baicalein are known to possess in vitro antiviral properties against viruses. In this study, the cytotoxicity and antiviral activity of silymarin, baicalein and baicalin were investigated.

    METHODS: The cytotoxic effects of three flavonoids towards rhabdomyosarcoma (RD) cells were first examined using cell proliferation MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay. Compounds found to be non-cytotoxic in RD cells were evaluated for their in vitro antiviral properties against the EV-A71 subgenotype B4 strain 41 (5865/SIN/000009) using antiviral assays. Viral infectivity was determined by reduction of the formation of plaques in RD cells. For the measurement of RNA copy number, the real time quantitative reverse transcription PCR (qRT-PCR) was used. The most potent compound was further evaluated to determine the mode of action of inhibition by time course, virus attachment and entry assays in Vero cells.

    RESULTS: Silymarin was shown to exert direct extracellular virucidal effects against EV-A71 at 50% inhibitory concentration (IC50) of 15.2 ± 3.53 μg/mL with SI of 10.53. Similarly, baicalein exhibited direct extracellular virucidal effects against EV-A71 at a higher IC50 value of 30.88 ± 5.50 μg/mL with SI of 13.64. Besides virucidal activity, silymarin was shown to block both viral attachment and entry of EV-A71 to inhibit infection in Vero cells.

    CONCLUSIONS: Silymarin has a stronger inhibition activity against EV-A71 in comparison to baicalein. It could serve as a promising antiviral drug to treat EV-A71 infections.

    Matched MeSH terms: Flavonoids/pharmacology*
  8. Yap VL, Tan LF, Rajagopal M, Wiart C, Selvaraja M, Leong MY, et al.
    BMC Complement Med Ther, 2023 Mar 28;23(1):93.
    PMID: 36978110 DOI: 10.1186/s12906-023-03921-0
    BACKGROUND: Scientific literature has demonstrated the association of free radicals in the aetiology of various chronic diseases. Hence, the identification of potent antioxidants remains a useful task. The combination of multiple herbs in polyherbal formulations (PHF) is often associated with greater therapeutic efficacy due to synergistic interactions. However, antagonism can occur in natural product mixtures and the resultant antioxidant potential might not always be the additive value of the antioxidant properties of each component. In this study, we aimed to evaluate the phytochemicals, antioxidative potential and interaction among the herbs in TC-16, a new PHF comprising Curcuma longa L., Zingiber officinale var. Bentong, Piper nigrum L., Citrofortunella microcarpa (Bunge) Wijnands and Apis dorsata honey.

    METHODS: TC-16 was screened for phytochemicals. Phenolic and flavonoid contents of TC-16 and its individual ingredients were determined, followed by assessment of antioxidant properties using in vitro assays including 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC) and β-carotene bleaching (BCB) assays. Interactions among the herbs were also investigated by calculating the difference in antioxidant activity and combination index.

    RESULTS: Alkaloids, flavonoids, terpenoids, saponins and glycosides were present in TC-16. TC-16 possessed the highest phenolic (46.14 ± 1.40 mg GAE/g) and flavonoid (132.69 ± 1.43 mg CE/g) contents following C. longa. Synergistic antioxidant activity among the herbs was evident in ORAC and BCB assays which uses mainly hydrogen atom transfer-based antioxidant mechanisms.

    CONCLUSIONS: TC-16 demonstrated roles in combating free radicals. In a PHF, synergistic interaction among the herbs is observed in some but not all mechanisms. Mechanisms showing synergistic interactions should be highlighted to maximise the beneficial property of the PHF.

    Matched MeSH terms: Flavonoids/chemistry
  9. Md-Mustafa ND, Khalid N, Gao H, Peng Z, Alimin MF, Bujang N, et al.
    BMC Genomics, 2014;15:984.
    PMID: 25407215 DOI: 10.1186/1471-2164-15-984
    Panduratin A extracted from Boesenbergia rotunda is a flavonoid reported to possess a range of medicinal indications which include anti-dengue, anti-HIV, anti-cancer, antioxidant and anti-inflammatory properties. Boesenbergia rotunda is a plant from the Zingiberaceae family commonly used as a food ingredient and traditional medicine in Southeast Asia and China. Reports on the health benefits of secondary metabolites extracted from Boesenbergia rotunda over the last few years has resulted in rising demands for panduratin A. However large scale extraction has been hindered by the naturally low abundance of the compound and limited knowledge of its biosynthetic pathway.
    Matched MeSH terms: Flavonoids/biosynthesis; Flavonoids/genetics*
  10. Wang Y, Chung FF, Lee SM, Dykes GA
    BMC Res Notes, 2013;6:143.
    PMID: 23578062 DOI: 10.1186/1756-0500-6-143
    Tea has been suggested to promote oral health by inhibiting bacterial attachment to the oral cavity. Most studies have focused on prevention of bacterial attachment to hard surfaces such as enamel.
    Matched MeSH terms: Flavonoids/chemistry
  11. Mohamad AS, Akhtar MN, Khalivulla SI, Perimal EK, Khalid MH, Ong HM, et al.
    Basic Clin Pharmacol Toxicol, 2011 Jun;108(6):400-5.
    PMID: 21214864 DOI: 10.1111/j.1742-7843.2010.00670.x
    The possible mechanisms of action in the antinociceptive activity induced by systemic administration (intraperitoneal, i.p.) of flavokawin B (FKB) were analysed using chemical models of nociception in mice. It was demonstrated that i.p. administration of FKB to the mice at 0.3, 1.0, 3.0 and 10 mg/kg produced significant dose-related reduction in the number of abdominal constrictions. The antinociception induced by FKB in the acetic acid test was significantly attenuated by i.p. pre-treatment of mice with L-arginine, the substrate for nitric oxide synthase or glibenclamide, the ATP-sensitive K(+) channel inhibitor, but was enhanced by methylene blue, the non-specific guanylyl cyclase inhibitor. FKB also produced dose-dependent inhibition of licking response caused by intraplantar injection of phorbol 12-myristate 13-acetate, a protein kinase C activator (PKC). Together, these data indicate that the NO/cyclic guanosine monophosphate/PKC/ATP-sensitive K(+) channel pathway possibly participated in the antinociceptive action induced by FKB.
    Matched MeSH terms: Flavonoids/chemical synthesis; Flavonoids/pharmacology*
  12. Moniruzzaman M, Yung An C, Rao PV, Hawlader MN, Azlan SA, Sulaiman SA, et al.
    Biomed Res Int, 2014;2014:737490.
    PMID: 25045696 DOI: 10.1155/2014/737490
    The aim of the present study was to characterize the phenolic acids, flavonoids, and antioxidant properties of monofloral honey collected from five different districts in Bangladesh. A new high performance liquid chromatography (HPLC) equipped with a UV detector method was developed for the identification of the phenolic acids and flavonoids. A total of five different phenolic acids were identified, with the most abundant being caffeic acid, benzoic acid, gallic acid, followed by chlorogenic acid and trans-cinnamic acid. The flavonoids, kaempferol, and catechin were most abundant, followed by myricetin and naringenin. The mean moisture content, total sugar content, and color characteristics of the honey samples were 18.36 ± 0.95%, 67.40 ± 5.63 g/100 g, and 129.27 ± 34.66 mm Pfund, respectively. The mean total phenolic acids, total flavonoid content, and proline content were 199.20 ± 135.23, 46.73 ± 34.16, and 556.40 ± 376.86 mg/kg, respectively, while the mean FRAP values and DPPH radical scavenging activity were 327.30 ± 231.87 μM Fe (II)/100 g and 36.95 ± 20.53%, respectively. Among the different types of honey, kalijira exhibited the highest phenolics and antioxidant properties. Overall, our study confirms that all the investigated honey samples are good sources of phenolic acids and flavonoids with good antioxidant properties.
    Matched MeSH terms: Flavonoids/isolation & purification*; Flavonoids/chemistry
  13. Salvamani S, Gunasekaran B, Shaharuddin NA, Ahmad SA, Shukor MY
    Biomed Res Int, 2014;2014:480258.
    PMID: 24971331 DOI: 10.1155/2014/480258
    Atherosclerosis is the process of hardening and narrowing the arteries. Atherosclerosis is generally associated with cardiovascular diseases such as strokes, heart attacks, and peripheral vascular diseases. Since the usage of the synthetic drug, statins, leads to various side effects, the plants flavonoids with antiartherosclerotic activity gained much attention and were proven to reduce the risk of atherosclerosis in vitro and in vivo based on different animal models. The flavonoids compounds also exhibit lipid lowering effects and anti-inflammatory and antiatherogenic properties. The future development of flavonoids-based drugs is believed to provide significant effects on atherosclerosis and its related diseases. This paper discusses the antiatherosclerotic effects of selected plant flavonoids such as quercetin, kaempferol, myricetin, rutin, naringenin, catechin, fisetin, and gossypetin.
    Matched MeSH terms: Flavonoids/therapeutic use*
  14. Lay MM, Karsani SA, Banisalam B, Mohajer S, Abd Malek SN
    Biomed Res Int, 2014;2014:410184.
    PMID: 24818141 DOI: 10.1155/2014/410184
    In recent years, the utilization of certain medicinal plants as therapeutic agents has drastically increased. Phaleria macrocarpa (Scheff.) Boerl is frequently used in traditional medicine. The present investigation was undertaken with the purpose of developing pharmacopoeial standards for this species. Nutritional values such as ash, fiber, protein, fat, and carbohydrate contents were investigated, and phytochemical screenings with different reagents showed the presence of flavonoids, glycosides, saponin glycosides, phenolic compounds, steroids, tannins, and terpenoids. Our results also revealed that the water fraction had the highest antioxidant activity compared to the methanol extract and other fractions. The methanol and the fractionated extracts (hexane, chloroform, ethyl acetate, and water) of P. macrocarpa seeds were also investigated for their cytotoxic effects on selected human cancer cells lines (MCF-7, HT-29, MDA-MB231, Ca Ski, and SKOV-3) and a normal human fibroblast lung cell line (MRC-5). Information from this study can be applied for future pharmacological and therapeutic evaluations of the species, and may assist in the standardization for quality, purity, and sample identification. To the best of our knowledge, this is the first report on the phytochemical screening and cytotoxic effect of the crude and fractionated extracts of P. macrocarpa seeds on selected cells lines.
    Matched MeSH terms: Flavonoids/analysis
  15. Oskoueian E, Abdullah N, Oskoueian A
    Biomed Res Int, 2013;2013:349129.
    PMID: 24175289 DOI: 10.1155/2013/349129
    This research was carried out to evaluate the effects of flavone, myricetin, naringin, catechin, rutin, quercetin, and kaempferol at the concentration of 4.5% of the substrate (dry matter basis) on the rumen microbial activity in vitro. Mixture of guinea grass and concentrate (60 : 40) was used as the substrate. The results showed that all the flavonoids except naringin and quercetin significantly (P < 0.05) decreased the dry matter degradability. The gas production significantly (P < 0.05) decreased by flavone, myricetin, and kaempferol, whereas naringin, rutin, and quercetin significantly (P < 0.05) increased the gas production. The flavonoids suppressed methane production significantly (P < 0.05). The total VFA concentration significantly (P < 0.05) decreased in the presence of flavone, myricetin, and kaempferol. All flavonoids except naringin and quercetin significantly (P < 0.05) reduced the carboxymethyl cellulase, filter paperase, xylanase, and β -glucosidase activities, purine content, and the efficiency of microbial protein synthesis. Flavone, myricetin, catechin, rutin, and kaempferol significantly (P < 0.05) reduced the population of rumen microbes. Total populations of protozoa and methanogens were significantly (P < 0.05) suppressed by naringin and quercetin. The results of this research demonstrated that naringin and quercetin at the concentration of 4.5% of the substrate (dry matter basis) were potential metabolites to suppress methane production without any negative effects on rumen microbial fermentation.
    Matched MeSH terms: Flavonoids/administration & dosage*
  16. Khorasani Esmaeili A, Mat Taha R, Mohajer S, Banisalam B
    Biomed Res Int, 2015;2015:643285.
    PMID: 26064936 DOI: 10.1155/2015/643285
    In the present study the extracts of in vivo and in vitro grown plants as well as callus tissue of red clover were tested for their antioxidant activities, using different extraction solvent and different antioxidant assays. The total flavonoid and phenolic contents as well as extraction yield of the extracts were also investigated to determine their correlation with the antioxidant activity of the extracts. Among all the tested extracts the highest amounts of total phenolic and total flavonoids content were found in methanol extract of in vivo grown plants. The antioxidant activity of tested samples followed the order in vivo plant extract > callus extract > in vitro extract. The highest reducing power, 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging, and chelating power were found in methanol extracts of in vivo grown red clover, while the chloroform fraction of in vivo grown plants showed the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, superoxide anion radical scavenging and hydrogen peroxide scavenging compared to the other tested extracts. A significant correlation was found between the antioxidant activity of extracts and their total phenolic and total flavonoid content. According to the findings, the extract of in vitro culture of red clover especially the callus tissue possesses a comparable antioxidant activity to the in vivo cultured plants' extract.
    Matched MeSH terms: Flavonoids/isolation & purification; Flavonoids/chemistry
  17. Monowar T, Rahman MS, Bhore SJ, Raju G, Sathasivam KV
    Biomed Res Int, 2019;2019:6951927.
    PMID: 30868071 DOI: 10.1155/2019/6951927
    Secondary bioactive compounds of endophytes are inevitable biomolecules of therapeutical importance. In the present study, secondary metabolites profiling of an endophytic bacterial strain, Acinetobacter baumannii, were explored using GC-MS study. Presence of antioxidant substances and antioxidant properties in chloroform (CHL), diethyl ether (DEE), and ethyl acetate (EA) crude extracts of the endophytic bacteria were studied. Total phenolic content (TPC), total flavonoid content (TFC), total antioxidant capacity (TAC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, and ferrous ion chelating assay were evaluated. A total of 74 compounds were identified from the GC-MS analysis of the EA extract representing mostly alkane compounds followed by phenols, carboxylic acids, aromatic heterocyclic compounds, ketones, aromatic esters, aromatic benzenes, and alkenes. Among the two phenolic compounds, namely, phenol, 2,4-bis(1,1-dimethylethyl)- and phenol, 3,5-bis(1,1-dimethylethyl)-, the former was found in abundance (11.56%) while the latter was found in smaller quantity (0.14%). Moreover, the endophytic bacteria was found to possess a number of metal ions including Fe(II) and Cu(II) as 1307.13 ± 2.35 ppb and 42.38 ± 0.352 ppb, respectively. The extracts exhibited concentration dependent antioxidant and prooxidant properties at high and low concentrations, respectively. The presence of phenolic compounds and metal ions was believed to play an important role in the antioxidant and prooxidant potentials of the extracts. Further studies are suggested for exploring the untapped resource of endophytic bacteria for the development of novel therapeutic agents.
    Matched MeSH terms: Flavonoids/metabolism; Flavonoids/chemistry
  18. Salhi N, Mohammed Saghir SA, Terzi V, Brahmi I, Ghedairi N, Bissati S
    Biomed Res Int, 2017;2017:7526291.
    PMID: 29226147 DOI: 10.1155/2017/7526291
    Aim: This study investigated the antifungal properties of aqueous extracts obtained from indigenous plants that grow spontaneously in the Northern Sahara of Algeria. The activities of these plants in controlling two fungal species that belong to Fusarium genus were evaluated in an in vitro assay.

    Materials and Methods: Fresh aerial parts of four plant species (Artemisia herba alba, Cotula cinerea, Asphodelus tenuifolius, and Euphorbia guyoniana) were collected for the preparation of aqueous extracts. Two levels of dilution (10% and 20%) of the pure extracts were evaluated against Fusarium graminearum and Fusarium sporotrichioides.

    Results: The results of this study revealed that the A. herba alba, C. cinerea, A. tenuifolius, and E. guyoniana aqueous extracts are effective at both concentrations of 10% and 20% for the Fusarium mycelia growth inhibition. In particular, A. tenuifolius extract is effective against F. graminearum, whereas F. sporotrichioides mycelium growth is strongly affected by the E. guyoniana 20% extract. The phytochemical characterization of the compositions of the aqueous extracts has revealed that the presence of some chemical compounds (tannins, flavonoids, saponins, steroids, and alkaloids) is likely to be responsible for the antifungal activities sought.

    Conclusion: The antifungal properties of A. herba alba, C. cinerea, A. tenuifolius, and E. guyoniana make these plants of potential interest for the control of fungi affecting both wheat yield and safety.

    Matched MeSH terms: Flavonoids/pharmacology; Flavonoids/chemistry
  19. Sarian MN, Ahmed QU, Mat So'ad SZ, Alhassan AM, Murugesu S, Perumal V, et al.
    Biomed Res Int, 2017;2017:8386065.
    PMID: 29318154 DOI: 10.1155/2017/8386065
    The best described pharmacological property of flavonoids is their capacity to act as potent antioxidant that has been reported to play an important role in the alleviation of diabetes mellitus. Flavonoids biochemical properties are structure dependent; however, they are yet to be thoroughly understood. Hence, the main aim of this work was to investigate the antioxidant and antidiabetic properties of some structurally related flavonoids to identify key positions responsible, their correlation, and the effect of methylation and acetylation on the same properties. Antioxidant potential was evaluated through dot blot, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ABTS+ radical scavenging, ferric reducing antioxidant power (FRAP), and xanthine oxidase inhibitory (XOI) assays. Antidiabetic effect was investigated through α-glucosidase and dipeptidyl peptidase-4 (DPP-4) assays. Results showed that the total number and the configuration of hydroxyl groups played an important role in regulating antioxidant and antidiabetic properties in scavenging DPPH radical, ABTS+ radical, and FRAP assays and improved both α-glucosidase and DPP-4 activities. Presence of C-2-C-3 double bond and C-4 ketonic group are two essential structural features in the bioactivity of flavonoids especially for antidiabetic property. Methylation and acetylation of hydroxyl groups were found to diminish the in vitro antioxidant and antidiabetic properties of the flavonoids.
    Matched MeSH terms: Flavonoids/chemistry*
  20. Ceesay A, Nor Shamsudin M, Aliyu-Paiko M, Ismail IS, Nazarudin MF, Mohamed Alipiah N
    Biomed Res Int, 2019;2019:2640684.
    PMID: 31119160 DOI: 10.1155/2019/2640684
    The aim of the present study was to extract and characterize bioactive components from separate body organs of Holothuria leucospilota. Preliminary qualitative assessment of the crude extracts was positive for phenols, terpenoids, carbohydrates, flavonoids, saponins, glycosides, cardiac glycosides, steroids, phlobatannins, and tannins in all body organs evaluated. Phenolics were the most abundant group of bioactives accounting for approximately 80%. The extraction solvent mixtures that yielded most compounds evaluated were methanol/acetone (3:1, v:v) and methanol/distilled water (3:1, v:v). In other analyses, GC-MS data revealed diverse metabolic and biologically active compounds, where those in high concentrations included 2-Pentanone, 4-hydroxy-4-methyl- among the ketones; phenol- 2,4-bis(1,1-dimethylethyl)-, a phenol group; and 2-Chlorooctane, a hydrocarbon. Among FA and their methyl/ethyl esters, n-hexadecanoic acid, 5,8,11,14-eicosatetraenoic acid ethyl ester (arachidonic acid), and 5,8,11,14,17-eicosapentaenoic acid methyl ester (EPA) were among the most abundant FAMEs accounting for approximately 50% of the subgroups measured. Data from GC-FID analysis revealed methyl laurate (C12:0), methyl myristate (C14:0), methyl palmitate (C16:0), and methyl stearate (18:0) methyl esters as the most abundant saturated FA, whereas cis-9-oleic methyl ester (C18:1) and methyl linoleate (C18:2) were found as the major monounsaturated FA and PUFA FAMEs, respectively, in the body wall of the species. Taken together, the extraction and characterization of different categories of metabolically and biologically active compounds in various organ extracts of H. leucospilota suggest that the species is potentially a rich source of cholesterol-lowering, antioxidant, antimicrobial, and anticancer agents. These substances are known to benefit human health and assist in disease prevention. These findings justify the use of sea cucumbers in traditional folklore medication and the current interest and attention focused on the species to mine for bioactives in new drugs research.
    Matched MeSH terms: Flavonoids/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links