Displaying publications 41 - 60 of 127 in total

Abstract:
Sort:
  1. Farah Diyana, A., Abdullah, A., Shahrul Hisham, Z.A., Chan, K. M.
    MyJurnal
    Antioxidants in seaweeds have attracted increasing interest for its role in protecting human health. Therefore, the aim of this study was to assess the Total phenolic content (TPC) values and antioxidant activities in red seaweeds Kappaphycus alvarezii and Kappaphycus striatum of different solvent extracts. Total phenolic content (TPC) and antioxidant activities (DPPH scavenging assay and Trolox equivalent antioxidant capacity assay, TEAC) for both K. alvarezii and K. striatum extracts were determined using different solvents at different concentrations (ethanol: 50%, 70%, 100%; acetone: 50%, 70%, 100%; methanol: 50%, 70%, 100%). The TPC value was measured using the Folin-Ciocalteu’s method. The antioxidant activities were measured by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and Trolox Equivalent Antioxidant Capacity (TEAC) assay. The highest TPC value of K. alvarezii antioxidant extract was obtained by 50% ethanol extracts while for K. striatum obtained by 50% methanol extract. The highest percentage of DPPH free radical inhibition for K. alvarezii was shown by 50% acetone extract while K. striatum was shown using 50% methanol extract. The highest TEAC value for K. alvarezii was shown by 50% acetone while K. striatum extract was shown by 50% ethanol extract. The TPC values and antioxidant activities of all solvent extracts of K. striatum were significantly higher (p< 0.05) than K. alvarezii antioxidant extracts. The TPC values showed strong correlation (r = 0.797) with TEAC values for K. alvarezii antioxidant extract (p< 0.01). The TEAC values also showed strong correlation (r = 0.735) with percentage of DPPH free radical inhibition for K. alvarezii (p< 0.01). The TPC value, DPPH free radical scavenging assay and TEAC assay for K. striatum extracts showed strong correlation (r> 0.8) with each other (p< 0.01). In summary, K. striatum showed better antioxidant activity and higher TPC value than K. alvarezii.
    Matched MeSH terms: Free Radicals
  2. Bimakr, M., Rahman, R.A., Saleena Taip, F., Adzahan, N.M., Islam Sarker, Z., Ganjloo, A
    MyJurnal
    Ultrasound-assisted extraction (UAE) was applied for the extraction of bioactive valuable compounds from winter melon (Benincasa hispida) seeds. Effects of amplitude (25-75%), temperature (40-60°C) and sonication time (20-60 min) on crude extraction yield (CEY) and radical scavenging activities (RSA, % inhibition of DPPH˙ and ABTS˙+ free radicals) of extracts were determined using complete randomised design (CRD). The results showed that the CEY and RSA of extracts significantly affected by independent variables. The maximum value of CEY (97.14±0.36 mgg-1), scavenging of DPPH˙ radicals (32.12 ± 0.38%) and scavenging of ABTS˙+ radicals (40.52±0.73%) were obtained at the combined treatment conditions of 75%, 55°C and 40 min. The UAE results obtained were compared with those achieved by using conventional Soxhlet extraction (CSE) method. It was found UAE allowed extraction at lower temperature and the extracts obtained posses higher quality compare with CSE. UAE is a promising environment friendly technique for the extraction of bioactive compounds from winter melon (Benincasa hispida) seeds.
    Matched MeSH terms: Free Radicals
  3. Lusia Barek, M., Hasmadi, M., Zaleha, A.Z., Mohd Fadzelly, A.B.
    MyJurnal
    Clinacanthus nutans (Burm. F.) Lindau or locally known in Sabah, Malaysia as ‘Sabah Snake Grass’ has been ethnobotanically used to treat various diseases in Asian countries. This study was conducted to determine the total phenolics content (TPC), flavonoids content (TFC) and antioxidant activity of herbal teas developed from C. nutans leaves with different drying techniques (microwave-oven dried and freeze dried) and infusion time (1, 2, 5, 10, 15 and 20 min). Ferric reducing/antioxidant power (FRAP) assay, 2,2’-azino-bis(3-ethylbenzothiazoline- 6-sulphonic acid (ABTS) and 2, 2-diphenyl-1-pycryl-hydrazyl (DPPH) free radical scavenging assays were used to investigate the antioxidant capacity. The highest TPC of herbal tea was observed in 20 min infusion of unfermented microwave-oven dried leaves (177.80 ± 19.10 mg TAE/L), while the highest TFC was observed in 10 min infusion of fermented microwave-oven dried leaves (22.13 ± 1.53 mg CE/L). Short infusion times from 5 min to 15 min were able to extract high amount of phenolics compounds. Unfermented tea contained higher TPC content (P < 0.05) as compared to fermented tea, while, TFC showed no significant difference between both types. Freeze dried infusion shows no significant difference (P > 0.05) as compared to microwave-oven dried for TPC, TFC and antioxidant capacity. Moderate and low correlation was observed between TPC and FRAP values (r = 0.507) and between TFC and ABTS values (r = 0.256). Preparation of C. nutans herbal tea as potential natural antioxidant source can be used as a basic reference for future research on the dietary intake of these herbal teas.
    Matched MeSH terms: Free Radicals
  4. Nurhuda, H.H., Maskat, M.Y., Mamot, S., Afiq, J., Aminah, A.
    MyJurnal
    Rambutan (Nephelium lappaceum) peel is a potential source of antioxidant. As rambutan is a seasonal fruit, a proper heat treatment prior to storage is necessary. Thus, this study was conducted to determine the effect of water and steam blanchings on browning enzymes and antioxidant activities of rambutan peel extracts. Rambutan from the variety of ‘Anak Sekolah’ were peeled and the peel was blanched in boiling water for 0, 2.5, 5 min and by autoclaving for 0, 5, 10 and 15 min. The residual peroxidase (POD) and polyphenoloxidase (PPO) activities, antioxidant activity (2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity), total polyphenol content (TPC) and peel extract colour were determined. The results showed that both water and steam blanchings significantly reduced (p < 0.05) POD and PPO activities. The results also indicated that the increase in the blanching period did not significantly reduce the enzyme activities further. In terms of antioxidant activity, the thermal pretreatment caused no significant difference in the contents of phenolic compounds, as well as the antioxidant capacity of the final product.
    Matched MeSH terms: Free Radicals
  5. Lim, S.M., Loh, S.P.
    MyJurnal
    This study aims to determine the antioxidant capacities (AC) and antidiabetic properties of
    phenolic extracts (free and bound) from white Tambun pomelo peels, kaffir lime peels, lime
    peels and calamansi peels. AC, total phenolic content (TPC) and antidiabetic properties of
    selected citrus peels extracts were determined spectrophotometrically using 2,2-Diphenyl-1-
    picrylhydrazyl free radical (DPPH) scavenging, ferric-reducing antioxidant power (FRAP),
    Folin-Ciocalteu (FC) and α-amylase and α-glucosidase inhibition assay, respectively. This
    study found that the methanolic extract of kaffir lime showed the best AC with the lowest
    IC50 value of DPPH radical (7.51 ± 0.50 mg/ml) and highest FRAP value [369.48 ± 20.15
    mM Fe (II) E/g DW]. TPC of free phenolic extracts of all citrus peels were significantly (p<
    0.05) higher compared to the bound phenolic extracts with extract of calamansi showed the
    highest TPC. Free- and bound phenolic extract of calamansi also had the highest α-amylase
    inhibition activity (61.79 ± 4.13%; 45.30 ± 5.35%) respectively. The highest inhibitory effect in
    α-glucosidase inhibition assay of free- and bound phenolic extracts were white Tambun pomelo
    (41.06 ± 10.94%) and calamansi (43.99 ± 22.03%) respectively. Hence, the citrus peels could
    be furthered study for their potential in management and/or prevention of diabetes.
    Matched MeSH terms: Free Radicals
  6. Aburigal, Y.A.A., Mirghani, M.E.S., Elmogtaba, E.Y., Sirible, A.A.M., Hamza, N.B., Hussein, I.H.
    MyJurnal
    The present study was carried out to determine the antioxidant activity and total phenolic content of Ocimum basilicum collected from different regions of the world. The accession V1 is from Sudan, V2 from Iraq, V3 from Germany, V4 from Thailand, V5 from Russia and V6 from Maldives. The extracts from six basil accessions were analysed for their DPPH free radical scavenging activity and their total phenolic content (TPC). The results suggest that the highest antioxidant activity was found in V6 (from Maldives) and the lowest antioxidant activity was found in V4 (from Thailand). The highest amount of phenolic content was found in V6 (from Maldives) and the lowest phenolic content was found inV4 (from Thailand). This study shows that basil is a good source of free-radical scavenging compounds that have their traditional medicinal applications.
    Matched MeSH terms: Free Radicals
  7. Azizah, A.H., Wee, K.C., Azizah, O., Azizah, M.
    MyJurnal
    Effect of various cooking methods on antioxidant content and radical scavenging activity of pumpkin was evaluated. Pumpkin (Cucurbita moschata) was boiled and stir-fried for 2, 4 and 6 minutes respectively. Beta-carotene and lycopene were determined using HPLC and total phenolics measured using Folin-Ciocalteu method. The free radical scavenging activity of the samples was determined using 1, 1-diphenyl-2 picrylhydrazyl assay. Interestingly, result of the study showed an increase in both beta-carotene (2 to 4 times) and lycopene (17 to 40 times) content of pumpkin after cooking for 2, 4 and 6 minutes. However, the treatment resulted in 18 to 54% losses of total phenolics content of the pumpkin. Nevertheless, the free radical scavenging activity exhibited by cooked pumpkins was found to be high, in the range of 81.1% to 94.6% with IC50 of 1.41 to 1.62 mg ml-1
    .
    Matched MeSH terms: Free Radicals
  8. Muid, S., Ali, A.M., Yusoff, K., Nawawi, H.M.
    MyJurnal
    Vitamin E is known to have potent antioxidant activity and plays an important role in reducing oxidative stress, a pivotal step in atherogenesis. However, several randomised clinical trials using α-tocopherol have failed to demonstrate consistent beneficial effects of antioxidants against atherosclerosis and clinical endpoints. Tocotrienol, a vitamin E compound analogue is shown to have more potent antioxidant activity compared to tocopherol. Finding the optimal anti-oxidative dose is crucial and may effectively be applied for cardioprotection in human. The objective of this study was to determine the optimal dose of tocotrienol rich fraction (TRF) with highest antioxidant activity in vitro using the ferric thiocyanate (FTC), 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and 2’, 7’- dichlorofluorescein diacetate (DCFHDA) assays. It was found that TRF exhibited potent antioxidant and free radical scavenging activities with an IC50 of 22.10 + 0.01 µg/ml. In all assays, TRF had optimal antioxidant activity at moderate concentrations (10-100 µg/ml). In conclusion, TRF has potent antioxidant activity, which is optimal at moderate concentrations.
    Matched MeSH terms: Free Radicals
  9. Azlim Almey, A.A., Ahmed Jalal Khan, C., Syed Zahir, I., Mustapha Suleiman, K., 'Aisyah, M.R., Kamarul Rahim, K.
    MyJurnal
    The aim of this study is to determine the total phenolic content and primary antioxidant activity of methanolic and ethanolic extracts of four aromatic plants’ leaves namely knotweed (Polygonum minus), curry (Murraya koenigii), kaffir lime (Citrus hysrix) and fragrant screwpine (Pandanus odurus). Total phenolic content (TPC) assay using Folin-Ciocalteu method was used to assess the presence and level of phenolic compounds in each sample. The present study showed that both methanolic and ethanolic extracts of P. minus had the highest TPC and followed by M. koenigii, C. hystrix and P. odorus. Primary antioxidant activity in terms of free radical scavenging activities of both methanolic and ethanolic extracts was then measured by 2, 2, diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity assay. The lowest EC50 values based on the DPPH. radical scavenging activity were shown by P. minus extracts as compared to the other samples. For both ethanolic and methanolic extracts, the correlations between TPC and EC50 based on the DPPH. radical scavenging activity assay were negative and weak. Relatively, the present results suggest that of the four aromaticplants, P. minus and M. koenigii have shown potential as sources of natural antioxidants.
    Matched MeSH terms: Free Radicals
  10. Hanapi Mat Jusoh, Normah Haron, Sarah Haryati Binti Mohd Zohari
    MyJurnal
    Introduction: Piper sarmentosum is one of the herbaceous plants that has been used as natural antioxidant to source to treat diseases. This study was conducted to determine the total phenolic contents (TPC) and free radical scavenging capacity in free and bound (soluble and insoluble) of P. sarmentosum. Methods: Free phenolic extract was acquired through direct methanol extraction while acidic and alkaline hydrolyses were adopted to release the bound phenolic acids. The TPC was determined by using Folin-Ciocalteu assay and is expressed as Gallic Acid equivalent (GAE) in miligrams per gram of extracts. The antioxidant scavenging capacity was determined by using DPPH (2, 2-diphenyl-1-picrylhydrazyl) assay. Results: Insoluble bound phenolic extract of P. sarmentosum showed the highest TPC value (1.54 ± 0.04 mg GAE/g DW) followed by soluble phenolic extract and free extract (1.13 ± 0.10 and 0.57 ± 0.06 mg GAE/g DW, respectively). The soluble phenolic fraction has expressed the highest free radical scavenging capacity (76.57± 4.12%) followed by insoluble (69.79± 2.33 %) and free extracts (58.15± 4.44 %). The IC50 values for free, soluble and insoluble bound phenolic were 24.05 ± 3.81, 16.17 ± 1.84 and 18.49 ± 1.92 mg/ml, respectively. Conclusions: The significant differences between all the extracts and antioxidant inhibition in this present study suggested that different forms (free and bound) of extracts did influence the radical scavenging capacity as a whole.
    Matched MeSH terms: Free Radicals
  11. Anil Kumar, S., Saif, S.A., Oothuman, P., Mustafa, M.I.A.
    MyJurnal
    Introduction: Reduced cerebral blood fl ow is associated with neurodegenerative disorders and dementia, in particular. Experimental evidence has demonstrated the initiating role of chronic cerebral hypoperfusion in neuronal damage to the hippocampus, the cerebral cortex, the white matter areas and the visual system. Permanent, bilateral occlusion of the common carotid arteries of rats (two vessel occlusion - 2VO) has been introduced for the reproduction of chronic cerebral hypoperfusion as it occurs in Alzheimer’s disease and human aging. Increased generation of free radicals through lipid peroxidation can damage neuronal cell membrane. Markers of lipid peroxidation have been found to be elevated in brain tissues and body fl uids in neurodegenerative diseases, including Alzheimer’s disease, Parkinson disease and amyotrophic lateral sclerosis. Materials and Methods: Malondialdehyde (MDA), fi nal product of lipid peroxidation, was estimated by thiobarbituric acid-reactive substances (TBARS) assay kit at eight weeks after induction of 2VO in the rats and control group. Results: Our study revealed a highly signifi cant (p
    Matched MeSH terms: Free Radicals
  12. Rati Selvaraju T, Khaza'ai H, Vidyadaran S, Sokhini Abd Mutalib M, Ramachandran V, Hamdan Y
    Int J Vitam Nutr Res, 2014;84(3-4):140-51.
    PMID: 26098478 DOI: 10.1024/0300-9831/a000201
    Glutamate is the major mediator of excitatory signals in the mammalian central nervous system. Extreme amounts of glutamate in the extracellular spaces can lead to numerous neurodegenerative diseases. We aimed to clarify the potential of the following vitamin E isomers, tocotrienol-rich fraction (TRF) and α-tocopherol (α-TCP), as potent neuroprotective agents against glutamate-induced injury in neuronal SK-N-SH cells. Cells were treated before and after glutamate injury (pre- and post-treatment, respectively) with 100-300 ng/ml TRF/α-TCP. Exposure to 120 mM glutamate significantly reduced cell viability to 76% and 79% in the pre- and post-treatment studies, respectively; however, pre- and post-treatment with TRF/α-TCP attenuated the cytotoxic effect of glutamate. Compared to the positive control (glutamate-injured cells not treated with TRF/α-TCP), pre-treatment with 100, 200, and 300 ng/ml TRF significantly improved cell viability following glutamate injury to 95.2%, 95.0%, and 95.6%, respectively (p<0.05).The isomers not only conferred neuroprotection by enhancing mitochondrial activity and depleting free radical production, but also increased cell viability and recovery upon glutamate insult. Our results suggest that vitamin E has potent antioxidant potential for protecting against glutamate injury and recovering glutamate-injured neuronal cells. Our findings also indicate that both TRF and α-TCP could play key roles as anti-apoptotic agents with neuroprotective properties.
    Matched MeSH terms: Free Radicals/antagonists & inhibitors
  13. Sutirman ZA, Rahim EA, Sanagi MM, Abd Karim KJ, Wan Ibrahim WA
    Int J Biol Macromol, 2020 Jun 15;153:513-522.
    PMID: 32142849 DOI: 10.1016/j.ijbiomac.2020.03.015
    A new crosslinked chitosan grafted with methyl methacrylate (M-CTS) adsorbent was synthesized via free radical polymerization for effective removal of Cu(II) ions from aqueous solution. Crosslinked chitosan (1 g) was grafted with 29.96 × 10-1 M methyl methacrylate in the presence of 2.63 × 10-1 M ammonium persulfate as initiator at 60 °C for 2 h to give grafting and yield percentages of 201% and 67%, respectively. Batch adsorption experiment was performed as a function of solution pH, initial metal ion concentration and contact time. The isotherm data were adequately described by Langmuir model, while kinetic study revealed that the pseudo-second order rate model best fitted for the experimental data. The maximum adsorption capacity for M-CTS at pH 4 was 192.31 mg g-1. Furthermore, the reusability of over six adsorption-desorption cycles suggested that M-CTS is a durable adsorbent and good candidate for metal ions treatment.
    Matched MeSH terms: Free Radicals
  14. Ashri A, Amalina N, Kamil A, Fazry S, Sairi MF, Nazar MF, et al.
    Int J Biol Macromol, 2018 Feb;107(Pt B):2412-2421.
    PMID: 29056465 DOI: 10.1016/j.ijbiomac.2017.10.125
    Starch-based hydrogels are promising smart materials for biomedical and pharmaceutical applications, which offer exciting perspectives in biophysical research at molecular level. This work was intended to develop, characterize and explore the properties of hydrogel from starch extracted from new source, Dioscorea hispida Dennst. Starch-mediated hydrogels were successfully synthesized via free radical polymerization method with varying concentrations of acrylic acid (AA),N,N'-methylenebisacrylamide (MBA) and sodium hydroxide (NaOH) in aqueous system. The grafting reaction between starch and AA was examined by observing the decline in intensity peak of hydrogel FTIR spectrum at 3291cm-1 and peak around 1600-1680cm-1, indicating the stretching of hydroxyl group (OH) and stretching of carbon-carbon double bond (CC) respectively. The effects of cross-linker, monomer and NaOH concentration on swelling ratio and gel content in different medium and conditions were also evaluated. The thermal stability and structural morphology of as-synthesized hydrogels were studied by thermogravimetry analysis (TGA) and scanning electron microscopy (SEM). In-vitro cytotoxicity study using small intestine cell line (FHS-74 Int) revealed that the as-formulated eco-friendly-hydrogel was free from any harmful material and safe to use for future product development.
    Matched MeSH terms: Free Radicals/chemistry
  15. Rahman MA, Abdullah N, Aminudin N
    Int J Med Mushrooms, 2018;20(10):961-969.
    PMID: 30806268 DOI: 10.1615/IntJMedMushrooms.2018028370
    Oxidative stress (OS) and hypercholesterolemia have been linked with a heightened risk of cardiovascular disease (CVD). Because of the numerous drawbacks of synthetic antioxidants and cholesterol-lowering drugs, natural antioxidative and hypocholesterolemic agents are of immense importance. This study was designed to determine both the OS-attenuating and cholesterol-lowering capacities of the hot water extract (HWE) and of five solvent-solvent-partitioned fractions of Ganoderma lucidum. In vitro antioxidative performance of G. lucidum HWE and fractions was measured through DPPH free radical scavenging, Folin-Ciocalteu assay, lipid peroxidation inhibition, and human low-density lipoprotein (LDL) oxidation inhibition. In vivo antioxidative performance of G. lucidum was assessed by measuring the plasma and liver antioxidative enzymatic activities (catalase, glutathione peroxidase, and superoxide dismutase) in G. lucidum HWE-fed rats. In the CVD tests, the HWE at 200 mg/kg b.w. lowered plasma levels of total cholesterol, triacylglycerol, and LDL cholesterol and increased high-density lipoprotein cholesterol. The current findings indicate the therapeutic potentiality of G. lucidum as an OS-attenuating and hypocholesterolemic agent en route to withstanding CVD complications.
    Matched MeSH terms: Free Radicals
  16. Teoh HL, Ahmad IS, Johari NMK, Aminudin N, Abdullah N
    Int J Med Mushrooms, 2018;20(4):369-380.
    PMID: 29953397 DOI: 10.1615/IntJMedMushrooms.2018025986
    Mushroom cultivation has become an important component of agriculture, providing food and contributing to the global economy. It uses vertical space and addresses issues of food quality, health improvement, and environmental sustainability. Auricularia mushrooms are popular ingredients in traditional Chinese cuisine. The objective of this study was to determine yield and evaluate radical scavenging capacity of A. polytricha cultivated on rubberwood sawdust on a large scale; we measured total phenolic content; DPPH, hydroxyl, superoxide anion, and peroxyl radical scavenging; and reducing power. Cultivation on rubberwood sawdust produces an average of 4 harvests per bag and a biological efficiency of 80-82%. The antioxidant capacity investigations revealed that the ethyl acetate fraction was the most potent radical scavenger in all assays except that for superoxide anions, whereas the aqueous fraction exhibited mild to moderate antioxidant capacity in scavenging the various radicals. Artificial cultivation of A. polytricha on rubberwood sawdust yields many sporophores with potent antioxidant capacity.
    Matched MeSH terms: Free Radicals
  17. Zarei M, Ebrahimpour A, Abdul-Hamid A, Anwar F, Saari N
    Int J Mol Sci, 2012;13(7):8097-111.
    PMID: 22942692 DOI: 10.3390/ijms13078097
    The aim of this study was to produce a valuable protein hydrolysate from palm kernel cake (PKC) for the development of natural antioxidants. Extracted PKC protein was hydrolyzed using different proteases (alcalase, chymotrypsin, papain, pepsin, trypsin, flavourzyme, and bromelain). Subsequently, antioxidant activity and degree of hydrolysis (DH) of each hydrolysate were evaluated using DPPH• radical scavenging activity and O-phthaldialdehyde spectrophotometric assay, respectively. The results revealed a strong correlation between DH and radical scavenging activity of the hydrolysates, where among these, protein hydrolysates produced by papain after 38 h hydrolysis exhibited the highest DH (91 ± 0.1%) and DPPH• radical scavenging activity (73.5 ± 0.25%) compared to the other hydrolysates. In addition, fractionation of the most effective (potent) hydrolysate by reverse phase high performance liquid chromatography indicated a direct association between hydrophobicity and radical scavenging activity of the hydrolysates. Isoelectric focusing tests also revealed that protein hydrolysates with basic and neutral isoelectric point (pI) have the highest radical scavenging activity, although few fractions in the acidic range also exhibited good antioxidant potential.
    Matched MeSH terms: Free Radicals/chemistry
  18. Kadhum AA, Al-Amiery AA, Musa AY, Mohamad AB
    Int J Mol Sci, 2011;12(9):5747-61.
    PMID: 22016624 DOI: 10.3390/ijms12095747
    The antioxidant activity of two synthesized coumarins namely, N-(4,7-dioxo-2- phenyl-1,3-oxazepin-3(2H,4H,7H)-yl)-2-(2-oxo-2H-chromen-4-yloxy)acetamide 5 and N-(4-oxo-2-phenylthiazolidin-3-yl)-2-(2-oxo-2H-chromen-4-yloxy)acetamide 6 were studied with the DPPH, hydrogen peroxide and nitric oxide radical methods and compared with the known antioxidant ascorbic acid. Compounds 5 and 6 were synthesized in a good yield from the addition reaction of maleic anhydride or mercaptoacetic acid to compound 4, namely N'-benzylidene-2-(2-oxo-2H-chromen-4-yloxy)acetohydrazide. Compound 4 was synthesized by the condensation of compound 3, namely 2-(2-oxo-2H-chromen-4-yloxy) acetohydrazide, with benzaldehyde. Compound 3, however, was synthesized from the addition of hydrazine to compound 2, namely ethyl 2-(2-oxo-2H-chromen-4-yloxy)acetate, which was synthesized from the reaction of ethyl bromoacetate with 4-hydroxycoumarin 1. Structures for the synthesized coumarins 2-6 are proposed on the basis of spectroscopic evidence.
    Matched MeSH terms: Free Radicals/antagonists & inhibitors; Free Radicals/metabolism; Free Radicals/chemistry
  19. Kavi Rajan R, Hussein MZ, Fakurazi S, Yusoff K, Masarudin MJ
    Int J Mol Sci, 2019 Sep 20;20(19).
    PMID: 31547100 DOI: 10.3390/ijms20194667
    Naturally existing Chlorogenic acid (CGA) is an antioxidant-rich compound reported to act a chemopreventive agent by scavenging free radicals and suppressing cancer-causing mechanisms. Conversely, the compound's poor thermal and pH (neutral and basic) stability, poor solubility, and low cellular permeability have been a huge hindrance for it to exhibit its efficacy as a nutraceutical compound. Supposedly, encapsulation of CGA in chitosan nanoparticles (CNP), nano-sized colloidal delivery vector, could possibly assist in enhancing its antioxidant properties, in vitro cellular accumulation, and increase chemopreventive efficacy at a lower concentration. Hence, in this study, a stable, monodispersed, non-toxic CNP synthesized via ionic gelation method at an optimum parameter (600 µL of 0.5 mg/mL of chitosan and 200 µL of 0.7 mg/mL of tripolyphosphate), denoted as CNP°, was used to encapsulate CGA. Sequence of physicochemical analyses and morphological studies were performed to discern the successful formation of the CNP°-CGA hybrid. Antioxidant property (studied via DPPH (1,1-diphenyl-2-picrylhydrazyl) assay), in vitro antiproliferative activity of CNP°-CGA, and in vitro accumulation of fluorescently labeled (FITC) CNP°-CGA in cancer cells were evaluated. Findings revealed that successful formation of CNP°-CGA hybrid was reveled through an increase in particle size 134.44 ± 18.29 nm (polydispersity index (PDI) 0.29 ± 0.03) as compared to empty CNP°, 80.89 ± 5.16 nm (PDI 0.26 ± 0.01) with a maximal of 12.04 μM CGA loaded per unit weight of CNP° using 20 µM of CGA. This result correlated with Fourier-Transform Infrared (FTIR) spectroscopic analysis, transmission Electron Microscopy (TEM) and field emission scanning (FESEM) electron microscopy, and ImageJ evaluation. The scavenging activity of CNP°-CGA (IC50 5.2 ± 0.10 µM) were conserved and slightly higher than CNP° (IC50 6.4±0.78 µM). An enhanced cellular accumulation of fluorescently labeled CNP°-CGA in the human renal cancer cells (786-O) as early as 30 min and increased time-dependently were observed through fluorescent microscopic visualization and flow cytometric assessment. A significant concentration-dependent antiproliferation activity of encapsulated CGA was achieved at IC50 of 16.20 µM as compared to CGA itself (unable to determine from the cell proliferative assay), implying that the competent delivery vector, chitosan nanoparticle, is able to enhance the intracellular accumulation, antiproliferative activity, and antioxidant properties of CGA at lower concentration as compared to CGA alone.
    Matched MeSH terms: Free Radicals
  20. Ng CY, Kamisah Y, Faizah O, Jubri Z, Qodriyah HM, Jaarin K
    Int J Vasc Med, 2012;2012:404025.
    PMID: 22778962 DOI: 10.1155/2012/404025
    Oil thermoxidation during deep frying generates harmful oxidative free radicals that induce inflammation and increase the risk of hypertension. This study aimed to investigate the effect of repeatedly heated palm oil on blood pressure, aortic morphometry, and vascular cell adhesion molecule-1 (VCAM-1) expression in rats. Male Sprague-Dawley rats were divided into five groups: control, fresh palm oil (FPO), one-time-heated palm oil (1HPO), five-time-heated palm oil (5HPO), or ten-time-heated palm oil (10HPO). Feeding duration was six months. Blood pressure was measured at baseline and monthly using tail-cuff method. After six months, the rats were sacrificed and the aortic arches were dissected for morphometric and immunohistochemical analyses. FPO group showed significantly lower blood pressure than all other groups. Blood pressure was increased significantly in 5HPO and 10HPO groups. The aortae of 5HPO and 10HPO groups showed significantly increased thickness and area of intima-media, circumferential wall tension, and VCAM-1 than other groups. Elastic lamellae were disorganised and fragmented in 5HPO- and 10HPO-treated rats. VCAM-1 expression showed a significant positive correlation with blood pressure. In conclusion, prolonged consumption of repeatedly heated palm oil causes blood pressure elevation, adverse remodelling, and increased VCAM-1, which suggests a possible involvement of inflammation.
    Matched MeSH terms: Free Radicals
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links