Materials and Methods: This study was conducted between Oct 2010 to Dec 2015. One-hundred-fifty fracture shafts of the humerus were treated with the anteromedial plating through the anterolateral approach.
Results: One-hundred-fifty patients with a fracture shaft of the humerus were treated with anteromedial plating. Twenty were female (mean ±SD,28 years±4.5) and 130 were male (mean ± SD, 38 years±5.6). One hundred and forty-eight out of 150 (98.6%) patients achieved union at 12 months. Two of three patients developed a superficial infection, both of which were treated successfully by antibiotics and one developed a deep infection, which was treated by wound debridement, prolonged antibiotics with the removal of the plate and subsequently by delayed plating and bone grafting.
Conclusion: In the present study, we applied plate on the anteromedial flat surface of humerus using the anterolateral approach. It is an easier and quicker fixation as compared to anterolateral plating because later involved much more dissection than a medial application of the plate and this application of plate on a medial flat surface, does not required Radial nerve exposure and palsy post-operatively. The significant improvement in elbow flexion without brachialis dissection is also a potential benefit of this approach. Based on our results, we recommend the application of an anteromedial plate for treatment of midshaft fractures humerus.
CASE PRESENTATION: A 23-year-old trauma patient with closed fracture of left femoral shaft and left humerus presented to our emergency department (ED). 11 h after admission to ED, patient became confused, hypoxic and hypotensive. He was then intubated for respiratory failure and mechanically ventilated. Transesophageal ultrasound revealed hyperdynamic heart, dilated right ventricle with no regional wall abnormalities and no major aorta injuries. Whole-body computed tomography was normal. During central venous cannulation of right internal jugular vein (IJV), we found free floating mobile hyperechoic spots, located at the anterior part of the vein. A diagnosis of fat embolism syndrome later was made based on the clinical presentation of long bone fractures and fat globulin in the blood. Despite aggressive fluid resuscitation, patient was a non-responder and needed vasopressor infusion for persistent shock. Blood aspirated during cannulation from the IJV revealed a fat globule. Patient underwent uneventful orthopedic procedures and was discharged well on day 5 of admission.
CONCLUSIONS: Point-of-care ultrasound findings of fat embolism in central vein can facilitate and increase the suspicion of fat embolism syndrome.
METHODS: 12-year observational study of a UK Fracture Liaison Service (outpatient secondary care setting). Database analyses of the records of adult outpatients aged 50 years and older with fragility fractures. Weather data were obtained from the UK's national Meteorological Office. In the seasonality analyses, we tested for the association between months and seasons (determinants), respectively, and outpatient attendances, by analysis of variance (ANOVA) and Tukey's test. In the meteorological analyses, the determinants were mean temperature, mean daily maximum and minimum temperature, number of days of rain, total rainfall and number of days of frost, per month, respectively. We explored the association of each meteorological variable with outpatient attendances, by regression models.
RESULTS: The Fracture Liaison Service recorded 25,454 fragility fractures. We found significant monthly and seasonal variation in attendances for fractures of the: radius or ulna; humerus; ankle, foot, tibia or fibula (ANOVA, all p-values <0.05). Fractures of the radius or ulna and humerus peaked in December and winter. Fractures of the ankle, foot, tibia or fibula peaked in July, August and summer. U-shaped associations were showed between each temperature parameter and fractures. Days of frost were directly associated with fractures of the radius or ulna (p-value <0.001) and humerus (p-value 0.002).
CONCLUSION: Different types of fragility fractures present different seasonal patterns. Weather may modulate their seasonality and consequent healthcare utilisation.