The mechanistic modeling of the sulfation reaction between fly ash-based sorbent and SO2 is a challenging task due to a variety reasons including the complexity of the reaction itself and the inability to measure some of the key parameters of the reaction. In this work, the possibility of modeling the sulfation reaction kinetics using a purely data-driven neural network was investigated. Experiments on SO2 removal by a sorbent prepared from coal fly ash/CaO/CaSO4 were conducted using a fixed bed reactor to generate a database to train and validate the neural network model. Extensive SO2 removal data points were obtained by varying three process variables, namely, SO2 inlet concentration (500-2000 mg/L), reaction temperature (60-80 degreesC), and relative humidity (50-70%), as a function of reaction time (0-60 min). Modeling results show that the neural network can provide excellent fits to the SO2 removal data after considerable training and can be successfully used to predict the extent of SO2 removal as a function of time even when the process variables are outside the training domain. From a modeling standpoint, the suitably trained and validated neural network with excellent interpolation and extrapolation properties could have immediate practical benefits in the absence of a theoretical model.
The occurrence of n-alkanoic acids, amides, and nitriles in samples of aerosol particulate matter from Kuala Lumpur and Santiago suggests that emissions from cooking and biomass burning are the primary sources of these organic markers in the atmosphere. It is proposed that fatty acids react with ammonia during biomass burning or combustion to produce amides and nitriles, which can be applied as useful biomarker tracers. To test this hypothesis, nonadecanoic acid and hexadecanamide were used as reactants in hydrous pyrolysis experiments. These experiments produced amides and nitriles and indicated that ammonia is an essential agent in their formation. Thus amides and nitriles are of utility as indicators for input from combustion and biomass burning in the ambient atmosphere.
Sewage sludge from aerobic treatment plant was found to contain high amounts of heavy metals. Research was carried out to investigate the speciation and leaching behavior of heavy metals when using high temperature melting technology for treatment. This was achieved by conducting a sequential chemical extraction procedure and EP-TOX leaching test. The thermal treatment led to increased shift of metals from organic fraction to residual fraction, indicating that the thermal treatment caused metals in sewage sludge to become stable. Furthermore, results from leaching test revealed that metals were not leached from the final product after thermal treatment and this was verified using US EPA standard limits. Results from this study indicated that melting technology could convert the sludge to product that can be either reused or landfilled without an adverse environmental impact.
The remarkable journey of progression of mankind has created various impacts in the form of polluted environment, amassed heavy metals and depleting resources. This alarming situation demands sustainable energy resources and approaches to deal with these environmental hazards and power deficit. Pyrolysis and co-pyrolysis address both energy and environmental issues caused by civilization and industrialization. The processes use hazardous waste materials including waste tires, plastic and medical waste, and biomass waste such as livestock waste and agricultural waste as feedstock to produce gas, char and pyrolysis oil for energy production. Usage of hazardous materials as pyrolysis and co-pyrolysis feedstock reduces disposal of harmful substances into environment, reducing occurrence of soil and water pollution, and substituting the non-renewable feedstock, fossil fuels. As compared to combustion, pyrolysis and co-pyrolysis have less emission of air pollutants and act as alternative options to landfill disposal and incineration for hazardous materials and biomass waste. Hence, stabilizing heavy metals and solving the energy and waste management problems. This review discusses the pyrolysis and co-pyrolysis of biomass and harmful wastes to strive towards circular economy and eco-friendly, cleaner energy with minimum waste disposal, reducing negative impact on the planet and creating future possibilities.
Burning mosquito coils indoors generates smoke that can control mosquitoes effectively. This practice is currently used in numerous households in Asia, Africa, and South America. However, the smoke may contain pollutants of health concern. We conducted the present study to characterize the emissions from four common brands of mosquito coils from China and two common brands from Malaysia. We used mass balance equations to determine emission rates of fine particles (particulate matter < 2.5 microm in diameter; PM(2.5)), polycyclic aromatic hydrocarbons (PAHs), aldehydes, and ketones. Having applied these measured emission rates to predict indoor concentrations under realistic room conditions, we found that pollutant concentrations resulting from burning mosquito coils could substantially exceed health-based air quality standards or guidelines. Under the same combustion conditions, the tested Malaysian mosquito coils generated more measured pollutants than did the tested Chinese mosquito coils. We also identified a large suite of volatile organic compounds, including carcinogens and suspected carcinogens, in the coil smoke. In a set of experiments conducted in a room, we examined the size distribution of particulate matter contained in the coil smoke and found that the particles were ultrafine and fine. The findings from the present study suggest that exposure to the smoke of mosquito coils similar to the tested ones can pose significant acute and chronic health risks. For example, burning one mosquito coil would release the same amount of PM(2.5) mass as burning 75-137 cigarettes. The emission of formaldehyde from burning one coil can be as high as that released from burning 51 cigarettes.
Incense sticks ash is one of the most unexplored by-products generated at religious places and houses obtained after the combustion of incense sticks. Every year, tonnes of incense sticks ash is produced at religious places in India which are disposed of into the rivers and water bodies. The presence of heavy metals and high content of alkali metals challenges a potential threat to the living organism after the disposal in the river. The leaching of heavy metals and alkali metals may lead to water pollution. Besides this, incense sticks also have a high amount of calcium, silica, alumina, and ferrous along with traces of rutile and other oxides either in crystalline or amorphous phases. The incense sticks ash, heavy metals, and alkali metals can be extracted by water, mineral acids, and alkali. Ferrous can be extracted by magnetic separation, while calcium by HCl, alumina by sulfuric acid treatment, and silica by strong hydroxides like NaOH. The recovery of such elements by using acids and bases will eliminate their toxic heavy metals at the same time recovering major value-added minerals from it. Here, in the present research work, the effect on the elemental composition, morphology, crystallinity, and size of incense sticks ash particles was observed by extracting ferrous, followed by extraction of calcium by HCl and alumina by H2SO4 at 90-95 °C for 90 min. The final residue was treated with 4 M NaOH, in order to extract leachable silica at 90 °C for 90 min along with continuous stirring. The transformation of various minerals phases and microstructures of incense sticks ash (ISA) and other residues during ferrous, extraction, calcium, and alumina and silica extraction was studied using Fourier transform infrared (FTIR), dynamic light scattering (DLS), X-ray fluorescence (XRF), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and inductively coupled plasma-optical emission spectroscopy (ICP-OES). DLS was used for analyzing the size during the experiments while FTIR helped in the confirmation of the formation of new products during the treatments. From the various instrumental analyses, it was found that the toxic metals present in the initial incense sticks ash got eliminated. Besides this, the major alkali metals, i.e., Ca and Mg, got reduced during these successive treatments. Initially, there were mainly irregular shaped, micron-sized particles that were dominant in the incense sticks ash particles. Besides this, there were plenty of carbon particles left unburned during combustion. In the final residue, nanosized flowers shaped along with cuboidal micron-sized particles were dominant. present in If, such sequential techniques will be applied by the industries based on recycling of incense sticks ash, then not only the solid waste pollution will be reduced but also numerous value-added minerals like ferrous, silica, alumina calcium oxides and carbonates can be recovered from such waste. The value-added minerals could act as an economical and sustainable source of adsorbent for wastewater treatment in future.
An incredible amount of joss fly ash is produced from the burning of Chinese holy joss paper; thus, an excellent method of recycling joss fly ash waste to extract aluminosilicate nanocomposites is explored. The present research aims to introduce a novel method to recycle joss fly ash through a simple and straightforward experimental procedure involving acidic and alkaline treatments. The synthesized aluminosilicate nanocomposite was characterized to justify its structural and physiochemical characteristics. A morphological analysis was performed with field-emission transmission electron microscopy, and scanning electron microscopy revealed the size of the aluminosilicate nanocomposite to be ~25 nm, while also confirming a uniformly spherical-shaped nanostructure. The elemental composition was measured by energy dispersive spectroscopy and revealed the Si to Al ratio to be 13.24 to 7.96, showing the high purity of the extracted nanocomposite. The roughness and particle distribution were analyzed using atomic force microscopy and a zeta analysis. X-ray diffraction patterns showed a synthesis of faceted and cubic aluminosilicate crystals in the nanocomposites. The presence of silica and aluminum was further proven by X-ray photoelectron spectroscopy, and the functional groups were recognized through Fourier transform infrared spectroscopy. The thermal capacity of the nanocomposite was examined by a thermogravimetric analysis. In addition, the research suggested the promising application of aluminosilicate nanocomposites as drug carriers. The above was justified by an enzyme-linked apta-sorbent assay, which claimed that the limit of the aptasensing aluminosilicate-conjugated ampicillin was two-fold higher than that in the absence of the nanocomposite. The drug delivery property was further justified through an antibacterial analysis against Escherichia coli (gram-negative) and Bacillus subtilis (gram-positive).