Displaying publications 41 - 60 of 208 in total

Abstract:
Sort:
  1. Abidi SS, Goh A, Yusoff Z
    Stud Health Technol Inform, 1998;52 Pt 2:1282-6.
    PMID: 10384666
    The practice of medicine, with its wide range of environmental conditions and complex dependencies, has long been used as a test bed for various advanced technologies. Telemedicine, as conceptualised within the Multimedia Super Corridor (MSC) context, is seen as the application of several relatively mature technologiesartificial intelligence (AI), multimedia communication and information systems (IS) amongst othersso as to benefit a large cross-section of the Malaysian population. We will discuss in general terms the Malaysian vision on the comprehensive MSC telemedicine solution, its functionality and associated operational conditions. In particular, this paper focuses on the conceptualisation of one key telemedical component i.e. the Lifetime Health Plan (LHP) system, which is eventually intended to be a distributed multi-module application for the periodic monitoring and generation of health-care advisories for upwards of 20 million Malaysians.
    Matched MeSH terms: Management Information Systems
  2. Yusof MM
    Stud Health Technol Inform, 2019;257:508-512.
    PMID: 30741248
    The evaluation of Health Information Systems (HIS)-induced medication errors is crucial in efforts to understand its cause, impact and mitigation measures when trying to minimize errors and increase patient safety. A review of evaluation studies on HIS-induced medication errors was carried out, which indicated the need to further structure complex socio technical aspects of the subject. In order to satisfy this requirement, a new framework was introduced for the evaluation of HIS-induced error management in clinical settings. The proposed HO(P)T-fit framework (Human, Organization, Process and Technology-fit) was developed after critically appraising existing findings in HIS related evaluation studies. It also builds on previous models related to HIS evaluation, in particular, the HOT-fit (Human, Organization, Process and Technology-fit) framework, error model, business process management, Lean method, and medication workflow. HOPT-fit incorporates the concept of fit between the four factors. The framework has the potential to be used as a tool to conduct a structured, systematic, and comprehensive HIS evaluation.
    Matched MeSH terms: Health Information Systems*
  3. Mohd Yusof M, Takeda T, Mihara N, Matsumura Y
    Stud Health Technol Inform, 2020 Jun 16;270:1036-1040.
    PMID: 32570539 DOI: 10.3233/SHTI200319
    Health information systems (HIS) and clinical workflows generate medication errors that affect the quality of patient care. The rigorous evaluation of the medication process's error risk, control, and impact on clinical practice enable the understanding of latent and active factors that contribute to HIS-induced errors. This paper reports the preliminary findings of an evaluation case study of a 1000-bed Japanese secondary care teaching hospital using observation, interview, and document analysis methods. Findings were analysed from a process perspective by adopting a recently introduced framework known as Human, Organisation, Process, and Technology-fit. Process factors influencing risk in medication errors include template- and calendar-based systems, intuitive design, barcode check, ease of use, alert, policy, systematic task organisation, and safety culture Approaches for managing medication errors also exert an important role on error reduction and clinical workflow.
    Matched MeSH terms: Health Information Systems*
  4. Nagrath V, Morel O, Malik A, Saad N, Meriaudeau F
    Springerplus, 2015;4:103.
    PMID: 25763310 DOI: 10.1186/s40064-015-0810-4
    The dot-com bubble bursted in the year 2000 followed by a swift movement towards resource virtualization and cloud computing business model. Cloud computing emerged not as new form of computing or network technology but a mere remoulding of existing technologies to suit a new business model. Cloud robotics is understood as adaptation of cloud computing ideas for robotic applications. Current efforts in cloud robotics stress upon developing robots that utilize computing and service infrastructure of the cloud, without debating on the underlying business model. HTM5 is an OMG's MDA based Meta-model for agent oriented development of cloud robotic systems. The trade-view of HTM5 promotes peer-to-peer trade amongst software agents. HTM5 agents represent various cloud entities and implement their business logic on cloud interactions. Trade in a peer-to-peer cloud robotic system is based on relationships and contracts amongst several agent subsets. Electronic Institutions are associations of heterogeneous intelligent agents which interact with each other following predefined norms. In Dynamic Electronic Institutions, the process of formation, reformation and dissolution of institutions is automated leading to run time adaptations in groups of agents. DEIs in agent oriented cloud robotic ecosystems bring order and group intellect. This article presents DEI implementations through HTM5 methodology.
    Matched MeSH terms: Management Information Systems
  5. Mohamad N, Abdul Khanan MF, Ahmad A, Md Din AH, Shahabi H
    Sensors (Basel), 2019 Aug 31;19(17).
    PMID: 31480412 DOI: 10.3390/s19173778
    Evaluating water level changes at intertidal zones is complicated because of dynamic tidal inundation. However, water level changes during different tidal phases could be evaluated using a digital surface model (DSM) captured by unmanned aerial vehicle (UAV) with higher vertical accuracy provided by a Global Navigation Satellite System (GNSS). Image acquisition using a multirotor UAV and vertical data collection from GNSS survey were conducted at Kilim River, Langkawi Island, Kedah, Malaysia during two different tidal phases, at high and low tides. Using the Structure from Motion (SFM) algorithm, a DSM and orthomosaics were produced as the main sources of data analysis. GNSS provided horizontal and vertical geo-referencing for both the DSM and orthomosaics during post-processing after field observation at the study area. The DSM vertical accuracy against the tidal data from a tide gauge was about 12.6 cm (0.126 m) for high tide and 34.5 cm (0.345 m) for low tide. Hence, the vertical accuracy of the DSM height is still within a tolerance of ±0.5 m (with GNSS positioning data). These results open new opportunities to explore more validation methods for water level changes using various aerial platforms besides Light Detection and Ranging (LiDAR) and tidal data in the future.
    Matched MeSH terms: Geographic Information Systems
  6. Mohammadi A, Karimzadeh S, Jalal SJ, Kamran KV, Shahabi H, Homayouni S, et al.
    Sensors (Basel), 2020 Dec 16;20(24).
    PMID: 33339435 DOI: 10.3390/s20247214
    Digital elevation model (DEM) plays a vital role in hydrological modelling and environmental studies. Many essential layers can be extracted from this land surface information, including slope, aspect, rivers, and curvature. Therefore, DEM quality and accuracy will affect the extracted features and the whole process of modeling. Despite freely available DEMs from various sources, many researchers generate this information for their areas from various observations. Sentinal-1 synthetic aperture radar (SAR) images are among the best Earth observations for DEM generation thanks to their availabilities, high-resolution, and C-band sensitivity to surface structure. This paper presents a comparative study, from a hydrological point of view, on the quality and reliability of the DEMs generated from Sentinel-1 data and DEMs from other sources such as AIRSAR, ALOS-PALSAR, TanDEM-X, and SRTM. To this end, pair of Sentinel-1 data were acquired and processed using the SAR interferometry technique to produce a DEM for two different study areas of a part of the Cameron Highlands, Pahang, Malaysia, a part of Sanandaj, Iran. Based on the estimated linear regression and standard errors, generating DEM from Sentinel-1 did not yield promising results. The river streams for all DEMs were extracted using geospatial analysis tool in a geographic information system (GIS) environment. The results indicated that because of the higher spatial resolution (compared to SRTM and TanDEM-X), more stream orders were delineated from AIRSAR and Sentinel-1 DEMs. Due to the shorter perpendicular baseline, the phase decorrelation in the created DEM resulted in a lot of noise. At the same time, results from ground control points (GCPs) showed that the created DEM from Sentinel-1 is not promising. Therefore, other DEMs' performance, such as 90-meters' TanDEM-X and 30-meters' SRTM, are better than Sentinel-1 DEM (with a better spatial resolution).
    Matched MeSH terms: Geographic Information Systems
  7. Pius Owoh N, Mahinderjit Singh M
    Sensors (Basel), 2020 Jun 09;20(11).
    PMID: 32526843 DOI: 10.3390/s20113280
    The proliferation of mobile devices such as smartphones and tablets with embedded sensors and communication features has led to the introduction of a novel sensing paradigm called mobile crowd sensing. Despite its opportunities and advantages over traditional wireless sensor networks, mobile crowd sensing still faces security and privacy issues, among other challenges. Specifically, the security and privacy of sensitive location information of users remain lingering issues, considering the "on" and "off" state of global positioning system sensor in smartphones. To address this problem, this paper proposes "SenseCrypt", a framework that automatically annotates and signcrypts sensitive location information of mobile crowd sensing users. The framework relies on K-means algorithm and a certificateless aggregate signcryption scheme (CLASC). It incorporates spatial coding as the data compression technique and message query telemetry transport as the messaging protocol. Results presented in this paper show that the proposed framework incurs low computational cost and communication overhead. Also, the framework is robust against privileged insider attack, replay and forgery attacks. Confidentiality, integrity and non-repudiation are security services offered by the proposed framework.
    Matched MeSH terms: Geographic Information Systems
  8. Hassan SI, Alam MM, Zia MYI, Rashid M, Illahi U, Su'ud MM
    Sensors (Basel), 2022 Nov 07;22(21).
    PMID: 36366269 DOI: 10.3390/s22218567
    Rice is one of the vital foods consumed in most countries throughout the world. To estimate the yield, crop counting is used to indicate improper growth, identification of loam land, and control of weeds. It is becoming necessary to grow crops healthy, precisely, and proficiently as the demand increases for food supplies. Traditional counting methods have numerous disadvantages, such as long delay times and high sensitivity, and they are easily disturbed by noise. In this research, the detection and counting of rice plants using an unmanned aerial vehicle (UAV) and aerial images with a geographic information system (GIS) are used. The technique is implemented in the area of forty acres of rice crop in Tando Adam, Sindh, Pakistan. To validate the performance of the proposed system, the obtained results are compared with the standard plant count techniques as well as approved by the agronomist after testing soil and monitoring the rice crop count in each acre of land of rice crops. From the results, it is found that the proposed system is precise and detects rice crops accurately, differentiates from other objects, and estimates the soil health based on plant counting data; however, in the case of clusters, the counting is performed in semi-automated mode.
    Matched MeSH terms: Geographic Information Systems
  9. Yong CZ, Odolinski R, Zaminpardaz S, Moore M, Rubinov E, Er J, et al.
    Sensors (Basel), 2021 Dec 13;21(24).
    PMID: 34960412 DOI: 10.3390/s21248318
    The recent development of the smartphone Global Navigation Satellite System (GNSS) chipsets, such as Broadcom BCM47755 and Qualcomm Snapdragon 855 embedded, makes instantaneous and cm level real-time kinematic (RTK) positioning possible with Android-based smartphones. In this contribution we investigate the instantaneous single-baseline RTK performance of Samsung Galaxy S20 and Google Pixel 4 (GP4) smartphones with such chipsets, while making use of dual-frequency L1 + L5 Global Positioning System (GPS), E1 + E5a Galileo, L1 + L5 Quasi-Zenith Satellite System (QZSS) and B1 BeiDou Navigation Satellite System (BDS) code and phase observations in Dunedin, New Zealand. The effects of locating the smartphones in an upright and lying down position were evaluated, and we show that the choice of smartphone configuration can affect the positioning performance even in a zero-baseline setup. In particular, we found non-zero mean and linear trends in the double-differenced carrier-phase residuals for one of the smartphone models when lying down, which become absent when in an upright position. This implies that the two assessed smartphones have different antenna gain pattern and antenna sensitivity to interferences. Finally, we demonstrate, for the first time, a near hundred percent (98.7% to 99.9%) instantaneous RTK integer least-squares success rate for one of the smartphone models and cm level positioning precision while using short-baseline experiments with internal and external antennas, respectively.
    Matched MeSH terms: Geographic Information Systems
  10. Alshami IH, Ahmad NA, Sahibuddin S, Firdaus F
    Sensors (Basel), 2017 Aug 05;17(8).
    PMID: 28783047 DOI: 10.3390/s17081789
    The Global Positioning System demonstrates the significance of Location Based Services but it cannot be used indoors due to the lack of line of sight between satellites and receivers. Indoor Positioning Systems are needed to provide indoor Location Based Services. Wireless LAN fingerprints are one of the best choices for Indoor Positioning Systems because of their low cost, and high accuracy, however they have many drawbacks: creating radio maps is time consuming, the radio maps will become outdated with any environmental change, different mobile devices read the received signal strength (RSS) differently, and peoples' presence in LOS between access points and mobile device affects the RSS. This research proposes a new Adaptive Indoor Positioning System model (called DIPS) based on: a dynamic radio map generator, RSS certainty technique and peoples' presence effect integration for dynamic and multi-floor environments. Dynamic in our context refers to the effects of people and device heterogeneity. DIPS can achieve 98% and 92% positioning accuracy for floor and room positioning, and it achieves 1.2 m for point positioning error. RSS certainty enhanced the positioning accuracy for floor and room for different mobile devices by 11% and 9%. Then by considering the peoples' presence effect, the error is reduced by 0.2 m. In comparison with other works, DIPS achieves better positioning without extra devices.
    Matched MeSH terms: Geographic Information Systems
  11. Okyere I, Chuku EO, Ekumah B, Angnuureng DB, Boakye-Appiah JK, Mills DJ, et al.
    Sci Rep, 2020 12 29;10(1):22407.
    PMID: 33376254 DOI: 10.1038/s41598-020-79898-4
    The novel coronavirus is predicted to have dire implications on global food systems including fisheries value chains due to restrictions imposed on human movements in many countries. In Ghana, food production, both agriculture and fisheries, is exempted from restrictions as an essential service. The enforcement of COVID-19 prevention protocols, particularly social distancing, has been widely reported in Ghana's agricultural markets whereas casual observations and media reports on fish landing sites suggest no such enforcements are in place. This study aimed to provide sound scientific evidence as a basis for informed policy direction and intervention for the artisanal fishing sector in these challenging times. We employed an unmanned aerial vehicle in assessing the risk of artisanal fishers to the pandemic using physical distancing as a proxy. From analysis of cumulative distribution function (G-function) of the nearest-neighbour distances, this study underscored crowding at all surveyed fish landing beaches, and identified potential "hotspots" for disease transmission. Aerial measurements taken at times of peak landing beach activity indicated that the highest proportion of people, representing 56%, 48%, 39% and 78% in Elmina, Winneba, Apam and Mumford respectively, were located at distances of less than one metre from their nearest neighbour. Risk of crowding was independent of the population at the landing beaches, suggesting that all categories of fish landing sites along the coast would require equal urgency and measured attention towards preventing and mitigating the spread of the disease.
    Matched MeSH terms: Geographic Information Systems
  12. Fang K, Azizan SA, Huang H
    Sci Rep, 2024 Apr 07;14(1):8139.
    PMID: 38584168 DOI: 10.1038/s41598-024-58712-5
    Pedestrian safety, particularly for children, relies on well-designed pathways. Child-friendly pathways play a crucial role in safeguarding young pedestrians. Shared spaces accommodating both vehicles and walkers can bring benefits to pedestrians. However, active children playing near these pathways are prone to accidents. This research aims to develop an efficient method for planning child-friendly pedestrian pathways, taking into account community development and the specific needs of children. A mixed-methods approach was employed, utilizing the Datang community in Guangzhou, China, as a case study. This approach combined drawing techniques with GIS data analysis. Drawing methods were utilized to identify points of interest for children aged 2-6. The qualitative and quantitative fuzzy analytic hierarchy process assessed factors influencing pathway planning, assigning appropriate weights. The weighted superposition analysis method constructed a comprehensive cost grid, considering various community elements. To streamline the planning process, a GIS tool was developed based on the identified factors, resulting in a practical, child-friendly pedestrian pathway network. Results indicate that this method efficiently creates child-friendly pathways, ensuring optimal connectivity within the planned road network.
    Matched MeSH terms: Geographic Information Systems*
  13. Abousaeidi M, Fauzi R, Muhamad R
    Saudi J Biol Sci, 2016 Sep;23(5):555-64.
    PMID: 27579003 DOI: 10.1016/j.sjbs.2015.06.004
    This study involves the adoption of the Geographic Information System (GIS) modeling approach to determine the quickest routes for fresh vegetable delivery. During transport, fresh vegetables mainly deteriorate on account of temperature and delivery time. Nonetheless, little attention has been directed to transportation issues in most areas within Kuala Lumpur. In addition, perishable food normally has a short shelf life, thus timely delivery significantly affects delivery costs. Therefore, selecting efficient routes would consequently reduce the total transportation costs. The regression model is applied in this study to determine the parameters that affect route selection with respect to the fastest delivery of fresh vegetables. For the purpose of this research, ArcGIS software with network analyst extension is adopted to solve the problem of complex networks. The final output of this research is a map of quickest routes with the best delivery times based on all variables. The variables tested from regression analysis are the most effective parameters to make the flow of road networks slower. The objective is to improve the delivery services by achieving the least drive time. The main findings of this research are that Land use such as residential area and population as variables are the effective parameters on drive time.
    Matched MeSH terms: Geographic Information Systems
  14. Fazly Amri Mohd, Khairul Nizam Abdul Maulud, Othman A. Karim, Rawshan Ara Begum, Siti Norsakinah Selamat
    Sains Malaysiana, 2018;47:991-997.
    Malaysia has a long coastline stretching over 4,809 km where more than 1,300 km of beaches are experiencing erosion.
    Coastal erosion is recognised as the permanent loss of land and habitats along the shoreline resulting in the changes
    of the coast. Thus, it is important to detect and monitor shoreline changes especially in Pahang coast by identifying the
    rate of shoreline erosion and accretion. This study used temporal data and high spatial resolution imagery (SPOT 5) using
    remote sensing and GIS techniques to monitor shoreline changes along 10 study locations, which is from Cherating to
    Pekan of the Pahang coast. The total length of shoreline changes is about 14 km (14035.10 m) where all these areas are
    very likely to experience erosion ranging from 0.1 to 94.7 ha. On the other hand, these coastal areas found a minimal
    accretion with increased sediment from 0.1 to 2.8 ha. Overall, the coastal areas are exposed to higher erosion process
    than accretion with a very high vulnerability of erosion rate from 1.8 to 20.9 meter per year. The findings on monitoring
    shoreline changes and identifying vulnerable erosion areas might be useful in the policy and decision making for
    sustainable coastal management.
    Matched MeSH terms: Geographic Information Systems
  15. M. Hamid Ch, M. Ashraf, Qudsia Hamid, Syed Mansoor Sarwar, Zulfiqar Ahmad Saqib
    Sains Malaysiana, 2017;46:413-420.
    Remote Sensing (RS) and Geographical Information Systems (GIS) are widely used for change detection in rivers caused
    by erosion and accretion. Digital image processing techniques and GIS analysis capabilities are used for detecting
    temporal variations of erosion and accretion characteristics between the years 1999 and 2011 in a 40 km long Marala
    Alexandria reach of River Chenab. Landsat satellite images for the years 1999, 2007 and 2011 were processed to analyze
    the river channel migration, changes in the river width and the rate of erosion and accretion. Analyses showed that the
    right bank was under erosion in both time spans, however high rate of deposition is exhibited in middle reaches. The
    maximum erosion was 1569843 m2
    and 1486160 m2
    along the right bank at a distance of 24-28 km downstream of the
    Marala barrage in the time span of 1999-2007 and 2007-2011, respectively. Along right bank mainly there is trend of
    accretion but erosion is much greater between 20 and 28 km reach. Maximum accretion was 5144584 m2
    from 1999-2007
    and 2950110 m2
    from 2007-2011 on the right bank downstream of the Marala Barrage. The derived results of channel
    migration were validated by comparing with SRTM data to assess the accuracy of image classification. Integration of remote
    sensing data with GIS is efficient and economical technique to assess land losses and channel changes in large rivers.
    Matched MeSH terms: Geographic Information Systems
  16. Suhartono Nurdin, Muzzneena Ahmad Mustapha, Tukimat Lihan, Mazlan Abd Ghaffar
    Sains Malaysiana, 2015;44:225-232.
    Analysis of relationship between sea surface temperature (SST) and Chlorophyll-a (chl-a) improves our understanding on the variability and productivity of the marine environment, which is important for exploring fishery resources. Monthly level 3 and daily level 1 images of Moderate Resolution Imaging Spectroradiometer Satellite (MODIS) derived SST and chl-a from July 2002 to June 2011 around the archipelagic waters of Spermonde Indonesia were used to investigate the relationship between SST and chl-a and to forecast the potential fishing ground of Rastrelliger kanagurta. The results indicated that there was positive correlation between SST and chl-a (R=0.3, p<0.05). Positive correlation was also found between SST and chl-a with the catch of R. kanagurta (R=0.7, p<0.05). The potential fishing grounds of R. kanagurta were found located along the coast (at accuracy of 76.9%). This study indicated that, with the integration of remote sensing technology, statistical modeling and geographic information systems (GIS) technique were able to determine the relationship between SST and chl-a and also able to forecast aggregation of R. kanagurta. This may contribute in decision making and reducing search hunting time and cost in fishing activities.
    Matched MeSH terms: Geographic Information Systems
  17. Nur Hakimah Asnawi, Lam KC
    Sains Malaysiana, 2016;45:1869-1877.
    Penyelidikan ini dijalankan untuk mengesan perubahan guna tanah dan litupan bumi (LULC) di daerah Gombak, Selangor melalui pendekatan penderiaan jauh. Perbandingan data siri masa antara tahun 1989-1999, 1999-2014 dan 1989-2014 telah dilakukan bagi melihat perubahan LULC. Data yang digunakan ialah imej satelit Landsat (TM dan OLI-TIRS) dan Peta Guna Tanah Selangor 1990 terbitan Jabatan Pertanian Malaysia. Guna tanah dibahagikan kepada lima kategori utama, iaitu badan air, hutan, getah, kelapa sawit dan tepu bina. Penilaian ketepatan antara LULC hasil daripada pengelasan imej penderiaan jauh dengan peta guna tanah 1990 dikira berdasarkan Koeffisien Kappa menerusi teknik ralat matrik dan nilai ketepatan adalah 74.5%. Analisis GIS ke atas imej pasca klasifikasi menunjukkan perubahan sebenar LULC bagi tahun perbandingan 1989-1999 ialah 13.69%, seterusnya meningkat kepada 18.65% bagi tahun 1999-2014 dan terus meningkat bagi tahun bandingan 1989-2014, iaitu 24.25%. Guna tanah getah mengalami perubahan sebenar paling tinggi berbanding guna tanah lain dengan -47.73% bagi tahun bandingan 1989-1999, manakala tahun bandingan 1999-2014 menunjukkan guna tanah tepu bina mengalami perubahan paling tinggi dengan +44.53% dan pada tahun 1989-2014 pula guna tanah getah mengalami perubahan sebenar paling tinggi sebanyak -34.6%. Kemerosotan guna tanah getah sangat ketara di daerah Gombak dan mempunyai kaitan dengan peningkatan kawasan guna tanah tepu bina. Secara umumnya, pola perubahan guna tanah dan litupan bumi di daerah Gombak selari dengan perkembangan dan pelaksanaan pembangunan semasa oleh pihak berkuasa.
    Matched MeSH terms: Geographic Information Systems
  18. Sumiani Y, Onn C, Mohd Din M, Wan Jaafar W
    The use of environmental planning tools for optimum solid waste landfill siting taking into account all environmental implications was carried out by applying Life Cycle Analysis (LCA) to enhance the research information obtained from initial analysis using Geographical Information Systems (GIS). The objective of this study is to identify the most eco-friendly landfill site by conducting a LCA analysis upon 5 potential GIS generated sites which incorporated eleven important criteria related to the social, environmental, and economical factors. The LCA analysis utilized the daily distance covered by collection trucks among the 5 selected landfill sites to generate inventory data on total energy usage for each landfill sites. The planning and selection of the potential sites were facilitated after conducting environmental impact analysis upon the inventory data which showed the least environmental impact.
    Matched MeSH terms: Geographic Information Systems
  19. Mohamad Naim Mohamad Rasidi, Mazrura Sahani, Hidayatulfathi Othman, Rozita Hod, Shaharudin Idrus, Zainudin Mohd Ali, et al.
    Sains Malaysiana, 2013;42:1073-1080.
    Penyakit denggi merupakan penyakit bawaan vektor yang menjadi salah satu ancaman utama kesihatan awam di Malaysia. Pemetaan taburan kes denggi daripada aspek reruang-masa boleh menjadi kaedah yang berguna dalam menilai risiko denggi kepada masyarakat. Kajian ini bertujuan untuk memetakan taburan reruang dan reruang-masa kes-kes denggi di dalam daerah Seremban, dijalankan dengan Sistem Maklumat Geografi (GIS) khususnya analisis reruang dan reruang-masa. Analisis taburan reruang menggunakan Indeks Moran, purata kejiranan terdekat (ANN) dan anggaran kepadatan Kernel. Analisis reruang-masa ditentukan dengan indeks kekerapan, jangka masa dan intensiti untuk mengenal pasti kawasan berisiko denggi mengikut masa. Sejumlah 6076 kes denggi dicatatkan di Pejabat Kesihatan Daerah Seremban dari tahun 2003 hingga 2009. Kadar insiden denggi adalah tinggi pada tahun 2003, 2008 dan 2009 dengan nisbah denggi : denggi berdarah adalah 21.6:1. Indeks Moran menunjukkan kes denggi berlaku dalam pengelompokan dengan skor Z adalah 16.384 (p=0.000). Analisis ANN dengan 0.264 (p= 0.000) dengan purata jarak insiden antara kes denggi di dalam kawasan kejiranan adalah 55 m. Anggaran kepadatan Kernel menunjukkan lokasi kawasan panas kes denggi tertumpu di Nilai dan Ampangan. Analisis reruang masa dengan purata nilai tertinggi indeks kekerapan, jangka masa dan intensiti masing-masing melebihi 0.023, 0.614 dan 0.657 di kawasan berisiko tinggi denggi di Nilai, Seremban dan Ampangan. Pengawalan denggi perlu diberi tumpuan kepada kawasan berisiko tinggi ini.
    Matched MeSH terms: Geographic Information Systems
  20. Mohamed M. GahGah, Juhari Mat Akhir, Abdul Ghani M. Rafek, Ibrahim Abdullah
    Sains Malaysiana, 2009;38(6):827-833.
    The aim of this study is to investigate the factors that cause landslides in the area along the new road between Cameron Highlands and Gua Musang. Landslide factors such as lineaments have been extracted from remote sensing data (Landsat TM image) using ERDAS software. A soil map has been produced using field work and laboratory analysis, and the lithology, roads, drainage pattern and rainfall have been digitized using ILWIS software together with the slope angle and elevation from the Digital Elevation Model (DEM). All these parameters, which are vital for landslide hazard assessment, have been integrated into the geographical information system (GIS) for further data processing. Weightage for these landslide relevant factors related to their influence in landslide occurrence using the heuristic method has been carried out. The results from this combination through a modified ‘index overlay with multi class maps’ model was used to produce a landslide hazard zonation map. Five classes of potential landslide hazard have been derived as the following: very low hazard zone 17.27%, low hazard zone 39.35%, medium hazard zone 25.1%, high hazard zone 15.35% and very high hazard zone 2.93%. The results from this work have been checked through the landslide inventory using available aerial photos interpretation and field work, and show that the slope and elevation have the most direct affect on landslide occurrence.
    Matched MeSH terms: Geographic Information Systems
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links