Displaying publications 41 - 45 of 45 in total

Abstract:
Sort:
  1. Taha MM, Salga MS, Ali HM, Abdulla MA, Abdelwahab SI, Hadi AH
    J Ethnopharmacol, 2012 May 7;141(1):273-81.
    PMID: 22374081 DOI: 10.1016/j.jep.2012.02.030
    Turnera diffusa Willd. ex Schult. has been used for the treatment of several human disorders including peptic ulcer.
    Matched MeSH terms: Interleukin-6/metabolism
  2. Mehrbod P, Hair-Bejo M, Tengku Ibrahim TA, Omar AR, El Zowalaty M, Ajdari Z, et al.
    Int J Mol Med, 2014 Jul;34(1):61-73.
    PMID: 24788303 DOI: 10.3892/ijmm.2014.1761
    Influenza A virus is one of the most important health risks that lead to significant respiratory infections. Continuous antigenic changes and lack of promising vaccines are the reasons for the unsuccessful treatment of influenza. Statins are pleiotropic drugs that have recently served as anti-influenza agents due to their anti-inflammatory activity. In this study, the effect of simvastatin on influenza A-infected cells was investigated. Based on the MTT cytotoxicity test, hemagglutination (HA) assay and qPCR it was found that simvastatin maintained cell viability and decreased the viral load significantly as compared to virus-inoculated cells. The expression of important pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6 and interferon-γ), which was quantified using ELISA showed that simvastatin decreased the expression of pro-inflammatory cytokines to an average of 2-fold. Furthermore, the modulation of actin filament polymerization was determined using rhodamine staining. Endocytosis and autophagy processes were examined by detecting Rab and RhoA GTPase protein prenylation and LC3 lipidation using western blotting. The results showed that inhibiting GTPase and LC3 membrane localization using simvastatin inhibits influenza replication. Findings of this study provide evidence that modulation of RhoA, Rabs and LC3 may be the underlying mechanisms for the inhibitory effects of simvastatin as an anti-influenza compound.
    Matched MeSH terms: Interleukin-6/metabolism
  3. Osman AY, Saharee AA, Jesse FF, Kadir AA
    Microb Pathog, 2017 Sep;110:365-374.
    PMID: 28710016 DOI: 10.1016/j.micpath.2017.07.014
    In this study, we developed a mouse model and characterized the effects of intranasal inoculation of virulent Brucella melitensis strain 16M and its lipopolysaccharide (LPS). The effects of the exposure were compared with respective control groups. Both Brucella melitensis-infected and LPS-infected groups showed no significant clinical presentation with minor relevance in the mortality associated with the infection. In Brucella melitensis-infected group, significant histopathological changes in comparison to the LPS infected group with increase bacterial burden in the lungs, reproductive and reticuloendothelial organs were observed. However, both infected groups showed elevated levels of pro-inflammatory cytokine expression (IL-1β and IL6) and antibody production (IgM an IgG) as early as 3 days post-infection with predominance in LPS infected group. In contrast, low levels of sex related hormonal changes was recorded in both infected groups throughout the experimental period. This is the first detailed investigation comparing the infection progression and host responses in relation to the immunopathophysiological aspects in mouse model after intranasal inoculation with B. melitensis and its lipopolysaccharide. The study revealed a significant difference between infected and control groups with overlap in clinical, pathological, and immunological responses as well as sex related hormonal changes resulting from the infections.
    Matched MeSH terms: Interleukin-6/metabolism
  4. Gupta M, Gulati M, Kapoor B, Kumar B, Kumar R, Kumar R, et al.
    J Ethnopharmacol, 2021 Jul 15;275:114115.
    PMID: 33852947 DOI: 10.1016/j.jep.2021.114115
    ETHNOPHARMACOLOGICAL RELEVANCE: Elaeagnus conferta Roxb. (Elaeagnaceae) is a subtropical shrub mainly native to India, Vietnam, Malaysia and South China, whose various parts are used for treatment of diabetes, gastric ulcers, pain, oxidative stress and pulmonary disorders. Though the other parts of the plant have been reported for their ethnic use i.e. fruits as astringent locally and for cancer systemically, leaves for body pain and flowers for pain in chest and the seeds are mentioned as edible, there is no report per se on the medicinal use of seeds. Based on the fact that seeds of closely resembling species i.e. Elaeagnus rhamnoides has demonstrated significant anti-gastroulcerative property, the probability of the seeds of E. conferta possessing similar activity seemed quite significant.

    AIM OF THE STUDY: Phytochemical investigation and assessment of pharmacological mechanism(s) involved in anti-ulcer effect of methanolic extract of the seeds of E. conferta.

    MATERIALS AND METHODS: Bioactive phytoconstituents were isolated by column chromatography. These were identified by spectroscopic techniques including infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) and mass spectrometry. Methanolic extract (MEC) of the seeds was prepared by cold maceration and its anti-ulcerogenic potential was evaluated using indomethacin (50 mg/kg) and water immersion stress models in male rats. The animals were pre-treated with different doses of MEC (400 and 800 mg/kg) and the therapeutic effect was compared with standard drug i.e. ranitidine (RANT; 50 mg/kg). The ameliorative effects of MEC were investigated on gastric juice pH, total acidity, free acidity and ulcer index. The assays of malionaldehyde (MDA), catalase (CAT), superoxide dismutase (SOD), glutathione (GSH) and pro-inflammatory cytokines i.e. interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were carried out to find out the possible mechanism(s) of protection. Further, histopathological changes were also studied.

    RESULTS: Chromatography studies and further confirmation by spectroscopic techniques revealed the presence of four different compounds in MEC i.e oleic acid (1), stearic acid (2), ascorbic acid (3) and quercetin (4). MEC exhibited anti-ulcerogenic effect in dose dependent manner which may be attributed to suppression of pro-inflammatory cytokines (IL-6, TNF-α) and MDA (112.7%), and up-regulation of protective factors such as CAT (90.48%), SOD (92.77%) and GSH (90.01%). Ulcer inhibition, reduction in total and free acidity and increase in gastric juice pH were observed in MEC treated rats as compared to disease control animals. Histopathological findings confirmed decreased cell infiltration, less epithelial cell damage and regeneration of gastric mucosa in dose dependent manner.

    CONCLUSIONS: The anti-ulcer effect of MEC may be attributed to its ability to scavenge free radicals and anti-inflammatory property via suppression of TNF-α and IL-6, thus offers a complete and holistic approach for management of peptic ulcer.

    Matched MeSH terms: Interleukin-6/metabolism
  5. Shawish HB, Wong WY, Wong YL, Loh SW, Looi CY, Hassandarvish P, et al.
    PLoS One, 2014;9(6):e100933.
    PMID: 24977407 DOI: 10.1371/journal.pone.0100933
    BACKGROUND: The biological properties of thiosemicarbazone have been widely reported. The incorporation of some transition metals such as Fe, Ni and Cu to thiosemicarbazone complexes is known to enhance its biological effects. In this study, we incorporated nickel(II) ions into thiosemicarbazone with N4-substitution groups H3L (H; H3L1, CH3; H3L2, C6H5; H3L3 and C2H5; H3L4) and examined its potential anti-inflammatory activity.

    METHODOLOGY/PRINCIPAL FINDINGS: Four ligands (1-4) and their respective nickel-containing complexes (5-8) were synthesized and characterized. The compounds synthesized were tested for their effects on NF-κB nuclear translocation, pro-inflammatory cytokines secretion and NF-κB transactivation activity. The active compound was further evaluated on its ability to suppress carrageenan-induced acute inflammation in vivo. A potential binding target of the active compound was also predicted by molecular docking analysis.

    CONCLUSIONS/SIGNIFICANCE: Among all synthesized compounds tested, we found that complex [Ni(H2L1)(PPh3)]Cl (5) (complex 5), potently inhibited IκBα degradation and NF-κB p65 nuclear translocation in LPS-stimulated RAW264.7 cells as well as TNFα-stimulated HeLa S3 cells. In addition, complex 5 significantly down-regulated LPS- or TNFα-induced transcription of NF-κB target genes, including genes that encode the pro-inflammatory cytokines TNFα, IFNβ and IL6. Luciferase reporter assays confirmed that complex 5 inhibited the transactivation activity of NF-κB. Furthermore, the anti-inflammatory effect of complex 5 was also supported by its suppressive effect on carrageenan-induced paw edema formation in wild type C57BL/6 mice. Interestingly, molecular docking study showed that complex 5 potentially interact with the active site of IKKβ. Taken together, we suggest complex 5 as a novel NF-κB inhibitor with potent anti-inflammatory effects.

    Matched MeSH terms: Interleukin-6/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links