Displaying publications 41 - 60 of 97 in total

Abstract:
Sort:
  1. Lye TP
    Hum Biol, 2013 Feb-Jun;85(1-3):417-44.
    PMID: 24297236 DOI: 10.3378/027.085.0320
    The so-called negritos adapt not just to a tropical forest environment but also to an environment characterized by perturbations and fluctuations. As with other hunter-gatherers in the region and, indeed, throughout the world, they use both social and ecological methods to enhance their chances of survival in this changing environment: socially, they have developed networks of trading and marriage partners; ecologically, they maintain patches of key resources that are available for future harvesting. As evidenced in the case of the Batek (Orang Asli), patterns of forest structure and composition are sometimes direct outcomes of intentional resource concentration and enrichment strategies. While little of the above is controversial anthropologically, what has drawn some debate is the nature of the relationship with partner societies. Conventional wisdom posits relations of inequality between foragers and "others": foragers and farmers are often construed as hierarchical dyads where foragers supply products or labor to farmers in exchange for agricultural harvests and other trade goods. This kind of adaptation appears to be one of divergent specialization. However, there are cases, such as in the relationship between Batek and Semaq Beri, where both societies follow a roughly similar mode of adaptation, and specialization has not materialized. In sum, while not denying that hierarchy and inequality exist, I suggest that they have to be contextualized within a larger strand of relationships that includes both hierarchy and egality. Further, such relationships are part of the general portfolio of risk reduction strategies, following which access to widely scattered environmental resources, and passage from one location to another, is enhanced not by competing with and displacing neighbors but by maintaining a flexible regime of friendly exchange partners.
    Matched MeSH terms: Rainforest*
  2. Brodie JF, Strimas-Mackey M, Mohd-Azlan J, Granados A, Bernard H, Giordano AJ, et al.
    Proc Biol Sci, 2017 01 25;284(1847).
    PMID: 28100818 DOI: 10.1098/rspb.2016.2335
    The responses of lowland tropical communities to climate change will critically influence global biodiversity but remain poorly understood. If species in these systems are unable to tolerate warming, the communities-currently the most diverse on Earth-may become depauperate ('biotic attrition'). In response to temperature changes, animals can adjust their distribution in space or their activity in time, but these two components of the niche are seldom considered together. We assessed the spatio-temporal niches of rainforest mammal species in Borneo across gradients in elevation and temperature. Most species are not predicted to experience changes in spatio-temporal niche availability, even under pessimistic warming scenarios. Responses to temperature are not predictable by phylogeny but do appear to be trait-based, being much more variable in smaller-bodied taxa. General circulation models and weather station data suggest unprecedentedly high midday temperatures later in the century; predicted responses to this warming among small-bodied species range from 9% losses to 6% gains in spatio-temporal niche availability, while larger species have close to 0% predicted change. Body mass may therefore be a key ecological trait influencing the identity of climate change winners and losers. Mammal species composition will probably change in some areas as temperatures rise, but full-scale biotic attrition this century appears unlikely.
    Matched MeSH terms: Rainforest
  3. Ewers RM, Boyle MJ, Gleave RA, Plowman NS, Benedick S, Bernard H, et al.
    Nat Commun, 2015 Apr 13;6:6836.
    PMID: 25865801 DOI: 10.1038/ncomms7836
    Invertebrates are dominant species in primary tropical rainforests, where their abundance and diversity contributes to the functioning and resilience of these globally important ecosystems. However, more than one-third of tropical forests have been logged, with dramatic impacts on rainforest biodiversity that may disrupt key ecosystem processes. We find that the contribution of invertebrates to three ecosystem processes operating at three trophic levels (litter decomposition, seed predation and removal, and invertebrate predation) is reduced by up to one-half following logging. These changes are associated with decreased abundance of key functional groups of termites, ants, beetles and earthworms, and an increase in the abundance of small mammals, amphibians and insectivorous birds in logged relative to primary forest. Our results suggest that ecosystem processes themselves have considerable resilience to logging, but the consistent decline of invertebrate functional importance is indicative of a human-induced shift in how these ecological processes operate in tropical rainforests.
    Matched MeSH terms: Rainforest*
  4. Venkataraman VV, Yegian AK, Wallace IJ, Holowka NB, Tacey I, Gurven M, et al.
    Proc Biol Sci, 2018 11 07;285(1890).
    PMID: 30404871 DOI: 10.1098/rspb.2018.1492
    The convergent evolution of the human pygmy phenotype in tropical rainforests is widely assumed to reflect adaptation in response to the distinct ecological challenges of this habitat (e.g. high levels of heat and humidity, high pathogen load, low food availability, and dense forest structure), yet few precise adaptive benefits of this phenotype have been proposed. Here, we describe and test a biomechanical model of how the rainforest environment can alter gait kinematics such that short stature is advantageous in dense habitats. We hypothesized that environmental constraints on step length in rainforests alter walking mechanics such that taller individuals are expected to walk more slowly due to their inability to achieve preferred step lengths in the rainforest. We tested predictions from this model with experimental field data from two short-statured populations that regularly forage in the rainforest: the Batek of Peninsular Malaysia and the Tsimane of the Bolivian Amazon. In accordance with model expectations, we found stature-dependent constraints on step length in the rainforest and concomitant reductions in walking speed that are expected to compromise foraging efficiency. These results provide the first evidence that the human pygmy phenotype is beneficial in terms of locomotor performance and highlight the value of applying laboratory-derived biomechanical models to field settings for testing evolutionary hypotheses.
    Matched MeSH terms: Rainforest*
  5. Weemstra M, Peay KG, Davies SJ, Mohamad M, Itoh A, Tan S, et al.
    New Phytol, 2020 10;228(1):253-268.
    PMID: 32436227 DOI: 10.1111/nph.16672
    Arbuscular mycorrhizal fungi (AMF) and ectomycorrhizal fungi (EMF) produce contrasting plant-soil feedbacks, but how these feedbacks are constrained by lithology is poorly understood. We investigated the hypothesis that lithological drivers of soil fertility filter plant resource economic strategies in ways that influence the relative fitness of trees with AMF or EMF symbioses in a Bornean rain forest containing species with both mycorrhizal strategies. Using forest inventory data on 1245 tree species, we found that although AMF-hosting trees had greater relative dominance on all soil types, with declining lithological soil fertility EMF-hosting trees became more dominant. Data on 13 leaf traits and wood density for a total of 150 species showed that variation was almost always associated with soil type, whereas for six leaf traits (structural properties; carbon, nitrogen, phosphorus ratios, nitrogen isotopes), variation was also associated with mycorrhizal strategy. EMF-hosting species had slower leaf economics than AMF-hosts, demonstrating the central role of mycorrhizal symbiosis in plant resource economies. At the global scale, climate has been shown to shape forest mycorrhizal composition, but here we show that in communities it depends on soil lithology, suggesting scale-dependent abiotic factors influence feedbacks underlying the relative fitness of different mycorrhizal strategies.
    Matched MeSH terms: Rainforest
  6. Nakabayashi M, Inoue Y, Ahmad AH, Izawa M
    PLoS One, 2019;14(6):e0217590.
    PMID: 31194749 DOI: 10.1371/journal.pone.0217590
    Ficus species are keystone plants in tropical rainforests, and hemi-epiphytic figs play a notably important role in forest ecosystems. Because hemi-epiphytic figs have strict germination requirements, germination and establishment stages regulate their populations. Despite the ecological importance of hemi-epiphytic figs in the rainforests, seed dispersal systems by fig-eating animals under natural conditions remain unknown because of the difficulty in tracing the destiny of dispersed seeds in the canopy. Therefore, seed dispersal effectiveness (SDE) has never been evaluated for hemi-epiphytic figs. We evaluated the SDE of hemi-epiphytic figs using qualitative and quantitative components by three relatively large-sized (> 3 kg) arboreal and volant animals in Bornean rainforests that largely depend on fig fruits in their diets: binturongs Arctictis binturong, Mueller's gibbons Hylobates muelleri, and helmeted hornbills Rhinoplax vigil. The SDE values of binturongs was by far the highest among the three study animals. Meanwhile, successful seed dispersal of hemi-epiphytic figs by gibbons and helmeted hornbills is aleatory and rare. Given that seed deposition determines the fate of hemi-epiphytic figs, the defecatory habits of binturongs, depositing feces on specific microsites in the canopy, is the most reliable dispersal method, compared to scattering feces from the air or upper canopy. We showed that reliable directed dispersal of hemi-epiphytic figs occurs in high and uneven canopy of Bornean rainforests. This type of dispersal is limited to specific animal species, and therefore it may become one of the main factors regulating low-success hemi-epiphytic fig recruitment in Bornean rainforests.
    Matched MeSH terms: Rainforest
  7. Thüs H, Wolseley P, Carpenter D, Eggleton P, Reynolds G, Vairappan CS, et al.
    Microorganisms, 2021 Mar 05;9(3).
    PMID: 33807993 DOI: 10.3390/microorganisms9030541
    Many lowland rainforests in Southeast Asia are severely altered by selective logging and there is a need for rapid assessment methods to identify characteristic communities of old growth forests and to monitor restoration success in regenerating forests. We have studied the effect of logging on the diversity and composition of lichen communities on trunks of trees in lowland rainforests of northeast Borneo dominated by Dipterocarpaceae. Using data from field observations and vouchers collected from plots in disturbed and undisturbed forests, we compared a taxonomy-based and a taxon-free method. Vouchers were identified to genus or genus group and assigned to functional groups based on sets of functional traits. Both datasets allowed the detection of significant differences in lichen communities between disturbed and undisturbed forest plots. Bark type diversity and the proportion of large trees, particularly those belonging to the family Dipterocarpaceae, were the main drivers of lichen community structure. Our results confirm the usefulness of a functional groups approach for the rapid assessment of tropical lowland rainforests in Southeast Asia. A high proportion of Dipterocarpaceae trees is revealed as an essential element for the restoration of near natural lichen communities in lowland rainforests of Southeast Asia.
    Matched MeSH terms: Rainforest
  8. Tan WS, Yin WF, Chan KG
    Genome Announc, 2015;3(1).
    PMID: 25555739 DOI: 10.1128/genomeA.01372-14
    Aeromonas hydrophila species can be found in warm climates and can survive in different environments. They possess the ability to communicate within their populations, which is known as quorum sensing. In this work, we present the draft genome sequence of A. hydrophila M013, a bacterium isolated from a Malaysian tropical rainforest waterfall.
    Matched MeSH terms: Rainforest
  9. Kume T, Ohashi M, Makita N, Kho LK, Katayama A, Endo I, et al.
    Tree Physiol, 2018 12 01;38(12):1927-1938.
    PMID: 30452737 DOI: 10.1093/treephys/tpy124
    Clarifying the dynamics of fine roots is critical to understanding carbon and nutrient cycling in forest ecosystems. An optical scanner can potentially be used in studying fine-root dynamics in forest ecosystems. The present study examined image analysis procedures suitable for an optical scanner having a large (210 mm × 297 mm) root-viewing window. We proposed a protocol for analyzing whole soil images obtained by an optical scanner that cover depths of 0-210 mm. We tested our protocol using six observers with different experience in studying roots. The observers obtained data from the manual digitization of sequential soil images recorded for a Bornean tropical forest according to the protocol. Additionally, the study examined the potential tradeoff between the soil image size and accuracy of estimates of fine-root dynamics in a simple exercise. The six observers learned the protocol and obtained similar temporal patterns of fine-root growth and biomass with error of 10-20% regardless of their experience. However, there were large errors in decomposition owing to the low visibility of decomposed fine roots. The simple exercise revealed that a smaller root-viewing window (smaller than 60% of the original window) produces patterns of fine-root dynamics that are different from those for the original window size. The study showed the high applicability of our image analysis approach for whole soil images taken by optical scanners in estimating the fine-root dynamics of forest ecosystems.
    Matched MeSH terms: Rainforest*
  10. Venkataraman VV, Kraft TS, Dominy NJ, Endicott KM
    Proc Natl Acad Sci U S A, 2017 03 21;114(12):3097-3102.
    PMID: 28265058 DOI: 10.1073/pnas.1617542114
    The residential mobility patterns of modern hunter-gatherers broadly reflect local resource availability, but the proximate ecological and social forces that determine the timing of camp movements are poorly known. We tested the hypothesis that the timing of such moves maximizes foraging efficiency as hunter-gatherers move across the landscape. The marginal value theorem predicts when a group should depart a camp and its associated foraging area and move to another based on declining marginal return rates. This influential model has yet to be directly applied in a population of hunter-gatherers, primarily because the shape of gain curves (cumulative resource acquisition through time) and travel times between patches have been difficult to estimate in ethnographic settings. We tested the predictions of the marginal value theorem in the context of hunter-gatherer residential mobility using historical foraging data from nomadic, socially egalitarian Batek hunter-gatherers (n = 93 d across 11 residential camps) living in the tropical rainforests of Peninsular Malaysia. We characterized the gain functions for all resources acquired by the Batek at daily timescales and examined how patterns of individual foraging related to the emergent property of residential movements. Patterns of camp residence times conformed well with the predictions of the marginal value theorem, indicating that communal perceptions of resource depletion are closely linked to collective movement decisions. Despite (and perhaps because of) a protracted process of deliberation and argument about when to depart camps, Batek residential mobility seems to maximize group-level foraging efficiency.
    Matched MeSH terms: Rainforest*
  11. Majid A, Kruspe N
    Curr Biol, 2018 02 05;28(3):409-413.e2.
    PMID: 29358070 DOI: 10.1016/j.cub.2017.12.014
    People struggle to name odors [1-4]. This has been attributed to a diminution of olfaction in trade-off to vision [5-10]. This presumption has been challenged recently by data from the hunter-gatherer Jahai who, unlike English speakers, find odors as easy to name as colors [4]. Is the superior olfactory performance among the Jahai because of their ecology (tropical rainforest), their language family (Aslian), or because of their subsistence (they are hunter-gatherers)? We provide novel evidence from the hunter-gatherer Semaq Beri and the non-hunter-gatherer (swidden-horticulturalist) Semelai that subsistence is the critical factor. Semaq Beri and Semelai speakers-who speak closely related languages and live in the tropical rainforest of the Malay Peninsula-took part in a controlled odor- and color-naming experiment. The swidden-horticulturalist Semelai found odors much more difficult to name than colors, replicating the typical Western finding. But for the hunter-gatherer Semaq Beri odor naming was as easy as color naming, suggesting that hunter-gatherer olfactory cognition is special.
    Matched MeSH terms: Rainforest
  12. Brodie JF, Mohd-Azlan J, Schnell JK
    Ecology, 2016 Jul;97(7):1658-1667.
    PMID: 27859156 DOI: 10.1890/15-1613.1
    Elucidating how dispersal and landscape connectivity influence metacommunity stability will shed light on natural processes structuring ecosystems and help prioritize conservation actions in an increasingly fragmented world. Much of the theoretical and mathematical development of the metacommunity concept has been based on simplified experimental systems or simulated data. We still have limited understanding of how variation in the habitat matrix and species-specific differences in dispersal ability contribute to metacommunity dynamics in heterogeneous landscapes. We model a metacommunity of rainforest mammals in Borneo, a tropical biodiversity hotspot, where protected areas are increasingly isolated by ongoing habitat disturbance and loss. We employ a combination of hierarchical models of local abundance, circuit-theory-based dispersal analysis, and metapopulation models. Our goal was to understand which landscape links were the most important to metapopulation persistence and metacommunity stability. Links were particularly important if they were short and connected two large patches. This was partly because only the very shortest links could be traversed by poorly dispersing species, including small herbivores such as chevrotains (Tragulus spp.) and porcupines. Links that join large patches into a "super-patch" may also promote island-mainland rather than Levins-type metapopulation dynamics for good dispersers, particularly large carnivores such as clouded leopards (Neofelis diardi) and sun bears (Helarctos malayanus), reducing metapopulation extinction risk and thereby enhancing metacommunity stability. Link importance to metacommunity stability was highly correlated between heterogeneous and homogeneous landscapes. But link importance to metapopulation capacity varied strongly across species, and the correlation between heterogeneous and homogeneous landscape matrix scenarios was low for poorly dispersing taxa. This suggests that the environmental conditions in the area between habitat patches, the landscape matrix, is important for assessing certain individual species but less so for understanding the stability of the entire metacommunity.
    Matched MeSH terms: Rainforest
  13. Tomimatsu H, Iio A, Adachi M, Saw LG, Fletcher C, Tang Y
    Tree Physiol, 2014 Sep;34(9):944-54.
    PMID: 25187569 DOI: 10.1093/treephys/tpu066
    Understory plants in tropical forests often experience a low-light environment combined with high CO2 concentration. We hypothesized that the high CO2 concentration may compensate for leaf carbon loss caused by the low light, through increasing light-use efficiency of both steady-state and dynamic photosynthetic properties. To test the hypothesis, we examined CO2 gas exchange in response to an artificial lightfleck in Dipterocarpus sublamellatus Foxw. seedlings under contrasting CO2 conditions: 350 and 700 μmol CO2 mol(-1) air in a tropical rain forest, Pasoh, Malaysia. Total photosynthetic carbon gain from the lightfleck was about double when subjected to the high CO2 when compared with the low CO2 concentration. The increase of light-use efficiency in dynamic photosynthesis contributed 7% of the increased carbon gain, most of which was due to reduction of photosynthetic induction to light increase under the high CO2. The light compensation point of photosynthesis decreased by 58% and the apparent quantum yield increased by 26% at the high CO2 compared with those at the low CO2. The study suggests that high CO2 increases photosynthetic light-use efficiency under both steady-state and fluctuating light conditions, which should be considered in assessing the leaf carbon gain of understory plants in low-light environments.
    Matched MeSH terms: Rainforest
  14. Ng CH, Lee SL, Tnah LH, Ng KKS, Lee CT, Diway B, et al.
    J Hered, 2019 12 17;110(7):844-856.
    PMID: 31554011 DOI: 10.1093/jhered/esz052
    Southeast Asian rainforests at upper hill elevations are increasingly vulnerable to degradation because most lowland forest areas have been converted to different land uses. As such, understanding the genetics of upper hill species is becoming more crucial for their future management and conservation. Shorea platyclados is an important, widespread upper hill dipterocarp in Malaysia. To elucidate the genetic structure of S. platyclados and ultimately provide guidelines for a conservation strategy for this species, we carried out a comprehensive study of the genetic diversity and demographic history of S. platyclados. Twenty-seven populations of S. platyclados across its range in Malaysia were genotyped at 15 polymorphic microsatellite loci and sequenced at seven noncoding chloroplast DNA (cpDNA) regions. A total of 303 alleles were derived from the microsatellite loci, and 29 haplotypes were identified based on 2892 bp of concatenated cpDNA sequences. The populations showed moderately high genetic diversity (mean HE = 0.680 for microsatellite gene diversity and HT = 0.650 for total haplotype diversity) and low genetic differentiation (FST = 0.060). Bayesian clustering divided the studied populations into two groups corresponding to western and eastern Malaysia. Bottleneck analysis did not detect any recent bottleneck events. Extended Bayesian skyline analyses showed a model of constant size for the past population history of this species. Based on our findings, priority areas for in situ and ex situ conservation and a minimum population size are recommended for the sustainable utilization of S. platyclados.
    Matched MeSH terms: Rainforest
  15. Kerfahi D, Tripathi BM, Dong K, Kim M, Kim H, Ferry Slik JW, et al.
    Microb Ecol, 2019 Jan;77(1):168-185.
    PMID: 29882154 DOI: 10.1007/s00248-018-1215-z
    Comparing the functional gene composition of soils at opposite extremes of environmental gradients may allow testing of hypotheses about community and ecosystem function. Here, we were interested in comparing how tropical microbial ecosystems differ from those of polar climates. We sampled several sites in the equatorial rainforest of Malaysia and Brunei, and the high Arctic of Svalbard, Canada, and Greenland, comparing the composition and the functional attributes of soil biota between the two extremes of latitude, using shotgun metagenomic Illumina HiSeq2000 sequencing. Based upon "classical" views of how tropical and higher latitude ecosystems differ, we made a series of predictions as to how various gene function categories would differ in relative abundance between tropical and polar environments. Results showed that in some respects our predictions were correct: the polar samples had higher relative abundance of dormancy related genes, and lower relative abundance of genes associated with respiration, and with metabolism of aromatic compounds. The network complexity of the Arctic was also lower than the tropics. However, in various other respects, the pattern was not as predicted; there were no differences in relative abundance of stress response genes or in genes associated with secondary metabolism. Conversely, CRISPR genes, phage-related genes, and virulence disease and defense genes, were unexpectedly more abundant in the Arctic, suggesting more intense biotic interaction. Also, eukaryote diversity and bacterial diversity were higher in the Arctic of Svalbard compared to tropical Brunei, which is consistent with what may expected from amplicon studies in terms of the higher pH of the Svalbard soil. Our results in some respects confirm expectations of how tropical versus polar nature may differ, and in other respects challenge them.
    Matched MeSH terms: Rainforest
  16. Tan WS, Yunos NY, Tan PW, Mohamad NI, Adrian TG, Yin WF, et al.
    Sensors (Basel), 2014;14(6):10527-37.
    PMID: 24932870 DOI: 10.3390/s140610527
    One obvious requirement for concerted action by a bacterial population is for an individual to be aware of and respond to the other individuals of the same species in order to form a response in unison. The term "quorum sensing" (QS) was coined to describe bacterial communication that is able to stimulate expression of a series of genes when the concentration of the signaling molecules has reached a threshold level. Here we report the isolation from aquatic environment of a bacterium that was later identified as Enterobacter sp.. Chromobacterium violaceum CV026 and Escherichia coli [pSB401] were used for preliminary screening of N-acyl homoserine lactone (AHL) production. The Enterobacter sp. isolated was shown to produce two types of AHLs as confirmed by analysis using high resolution tandem mass spectrometry. To the best of our knowledge, this is the first documentation of an Enterobacter sp. that produced both 3-oxo-C6-HSL and 3-oxo-C8-HSL as QS signaling molecules.
    Matched MeSH terms: Rainforest*
  17. Mansor MS, Ramli R
    PLoS One, 2017;12(3):e0172836.
    PMID: 28253284 DOI: 10.1371/journal.pone.0172836
    Tropical rainforests are considered as hotspots for bird diversity, yet little is known about the system that upholds the coexistence of species. Differences in body size that are associated with foraging strategies and spatial distribution are believed to promote the coexistence of closely related species by reducing competition. However, the fact that many babbler species do not differ significantly in their morphology has challenged this view. We studied the foraging ecology of nine sympatric babbler species (i.e., Pellorneum capistratum, P. bicolor, P. malaccense, Malacopteron cinereum, M. magnum, Stachyris nigriceps, S. nigricollis, S. maculata, and Cyanoderma erythropterum) in the Krau Wildlife Reserve in Peninsular Malaysia. We investigated; i) how these babblers forage in the wild and use vegetation to obtain food, and ii) how these trophically similar species differ in spatial distribution and foraging tactics. Results indicated that most babblers foraged predominantly on aerial leaf litter and used gleaning manoeuvre in intermediate-density foliage but exhibited wide ranges of vertical strata usage, thus reducing interspecific competition. The principal component analysis indicated that two components, i.e., foraging height and substrate are important as mechanisms to allow the coexistence of sympatric babblers. The present findings revealed that these bird species have unique foraging niches that are distinct from each other, and this may apply to other insectivorous birds inhabiting tropical forests. This suggests that niche separation does occur among coexisting birds, thus following Gause' law of competitive exclusion, which states two species occupying the same niche will not stably coexist.
    Matched MeSH terms: Rainforest
  18. Heo, Chong Chin, Mohamad Abdullah Marwi, Jeffery, John, Ismarulyusda Ishak, Baharudin Omar
    MyJurnal
    This study was carried out in Agricultural Park, Teluk Cempedak and Bukit Pelindung at Kuantan, Pahang in October 2007. These three areas were different in ecological characteristic, Agricultural Park is a lowland region in Kuantan rural area, Teluk Cempedak is Kuantan’s most famous beach, and Bukit Pelindung is a reserved rainforest which is 200 meters from the sea level. Fly specimens were collected using four different kinds of baits: dry prawn, salted fish, pork and mango. Each of these baits was placed in a plastic container and exposed for one hour to attract flies. Within 5 minutes, flies started swarming around the baits. The flies were more attracted to the pork and salted fish compared to the other two baits. Fifty one flies, one moth (Lepidoptera) and one wasp (Hymenoptera) were collected. In Agricultural Park, two Lucilia cuprina, one Chrysomya megacephala and one Sarcophaga sp. were collected. For Teluk Cempedak beach, there were two Sarcophagids, 31 Chrysomya megacephala, five Musca domestica, one Lucilia cuprina and one moth were caught. Flies collected from Bukit Pelindung included five C.megacephala, two Sarcophagids, one Musca domestica and one wasp. Most C.megacephala were attracted to the pork and salted fish.
    Matched MeSH terms: Rainforest
  19. Rees KA, Bermudez C, Edwards DJ, Elliott AG, Ripen JE, Seta C, et al.
    J Nat Prod, 2015 Aug 28;78(8):2141-4.
    PMID: 26284978 DOI: 10.1021/acs.jnatprod.5b00410
    In an ongoing program to identify new anti-infective leads, an extract derived from whole plant material of Desmodium congestum collected in the Sarawak rainforest was found to have anti-MRSA activity. Bioassay-guided isolation led to the isolation of two new prenylated chalcones, 5'-O-methyl-3-hydroxyflemingin A (1) and 5'-O-methylflemingin C (2), which were closely related to the flemingins previously isolated from various Flemingia species. Chalcones 1 and 2, which were determined to be 4:6 enantiomeric mixtures by chiral HPLC, exhibited moderate activity against a panel of Gram-positive bacteria and were also cytotoxic to the HEK293 human embryonic kidney cell line.
    Matched MeSH terms: Rainforest
  20. Huaraca Huasco W, Riutta T, Girardin CAJ, Hancco Pacha F, Puma Vilca BL, Moore S, et al.
    Glob Chang Biol, 2021 08;27(15):3657-3680.
    PMID: 33982340 DOI: 10.1111/gcb.15677
    Fine roots constitute a significant component of the net primary productivity (NPP) of forest ecosystems but are much less studied than aboveground NPP. Comparisons across sites and regions are also hampered by inconsistent methodologies, especially in tropical areas. Here, we present a novel dataset of fine root biomass, productivity, residence time, and allocation in tropical old-growth rainforest sites worldwide, measured using consistent methods, and examine how these variables are related to consistently determined soil and climatic characteristics. Our pantropical dataset spans intensive monitoring plots in lowland (wet, semi-deciduous, and deciduous) and montane tropical forests in South America, Africa, and Southeast Asia (n = 47). Large spatial variation in fine root dynamics was observed across montane and lowland forest types. In lowland forests, we found a strong positive linear relationship between fine root productivity and sand content, this relationship was even stronger when we considered the fractional allocation of total NPP to fine roots, demonstrating that understanding allocation adds explanatory power to understanding fine root productivity and total NPP. Fine root residence time was a function of multiple factors: soil sand content, soil pH, and maximum water deficit, with longest residence times in acidic, sandy, and water-stressed soils. In tropical montane forests, on the other hand, a different set of relationships prevailed, highlighting the very different nature of montane and lowland forest biomes. Root productivity was a strong positive linear function of mean annual temperature, root residence time was a strong positive function of soil nitrogen content in montane forests, and lastly decreasing soil P content increased allocation of productivity to fine roots. In contrast to the lowlands, environmental conditions were a better predictor for fine root productivity than for fractional allocation of total NPP to fine roots, suggesting that root productivity is a particularly strong driver of NPP allocation in tropical mountain regions.
    Matched MeSH terms: Rainforest*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links