Displaying publications 41 - 60 of 992 in total

Abstract:
Sort:
  1. Shaarani FW, Bou JJ
    Sci Total Environ, 2017 Nov 15;598:931-936.
    PMID: 28458211 DOI: 10.1016/j.scitotenv.2017.04.184
    Although carbon dioxide (CO2) is well known as one of the major green-house gases, it is also an economical C1 resource. Thus, CO2has been regarded as an appealing starting material for the synthesis of polymers, like polycarbonates by the reaction with epoxides. Herein the reaction between natural epoxidized soybean oil (ESO), propylene oxide (PO) and CO2under high pressure (4.0MPa) with the presence of Co-Zn double metal cyanide (Co-Zn DMC) catalyst was studied. Temperature and reaction time were varied accordingly and the products obtained were characterized by FTIR, GPC and1H NMR. The results obtained indicate the formation of polycarbonates in the samples collected with yields vary from 60 to 85%. The number average molecular weight (Mn) of the resultant polymer prepared at reaction temperature of 80°C and reaction time of 6h can reach up to 6498g/mol.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  2. Suparmaniam U, Lam MK, Uemura Y, Shuit SH, Lim JW, Show PL, et al.
    Sci Total Environ, 2020 Feb 01;702:134995.
    PMID: 31710849 DOI: 10.1016/j.scitotenv.2019.134995
    Flocculants are foreign particles that aggregate suspended microalgae cells and due to cost factor and toxicity, harvesting of microalgae biomass has shifted towards the use of bioflocculants. In this study, mild acid-extracted bioflocculants from waste chicken's eggshell and clam shell were used to harvest Chlorella vulgaris that was cultivated using chicken compost as nutrient source. It was found that a maximum of 99% flocculation efficiency can be attained at pH medium of 9.8 using 60 mg/L of hydrochloric acid-extracted chicken's eggshell bioflocculant at 50 °C of reaction temperature. On the other hand, 80 mg/L of hydrochloric acid-extracted clam shell bioflocculant was sufficient to recover C. vulgaris biomass at pH 9.8 and optimum temperature of 40 °C. The bioflocculants and bioflocs were characterized using microscopic, zeta potential, XRD, AAS and FT-IR analysis. The result revealed that calcium ions in the bioflocculants are the main contributor towards the flocculation of C. vulgaris, employing charge neutralization and sweeping as possible flocculation mechanisms. The kinetic parameters were best fitted pseudo-second order which resulted in R2 of 0.99 under optimal flocculation temperature. The results herein, disclosed the applicability of shell waste-derived bioflocculants for up-scaled microalgae harvesting for biodiesel production.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  3. Talebi A, Razali YS, Ismail N, Rafatullah M, Azan Tajarudin H
    Sci Total Environ, 2020 Mar 10;707:134533.
    PMID: 31865088 DOI: 10.1016/j.scitotenv.2019.134533
    An adsorption-desorption process was applied on fermented landfill leachate to adsorb and recover acetic and butyric acid, using activated carbon. In this study, the first, volatile fatty acids adsorption process from fermented leachate was optimized, by investigating various affecting factors such as pH, time, agitation speed, activated carbon dosage, and temperature. The optimum condition for maximum adsorption of 88.94% acetic acid and 98.53% butyric acid, was 19.79 %wt activated carbon dosage, 40.00 rpm of agitation speed, in 9.45 °C and contact time of 179.89 h, while the pH of the substrate was kept fixed at pH:3.0. Results of X-ray fluorescence (XRF) spectrometry, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and zeta potential revealed that carbon is the dominant component in the adsorbent with a significant effect to remove organic impurities, and it was observed that the activated carbon after the adsorption process showed an amorphous structure peak with a large internal surface area and pore volume. The results exposed that the adsorption on the surface of activated carbon was due to the chemisorption, and the chemisorption mechanism was supported by covalent bonding. The kinetic study displayed excellent fit to Pseudo-second order kinetics model. The second phase of this study was to recover the adsorbed VFAs using multistage desorption unit, in which application of deionized water and ethanol (as desorption agents) resulted in 89.1% of acetic acid and 67.8% of the butyric acid recovery.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  4. Cik Rohaida CH, Idris B, Mohd Reusmaazran Y, Rusnah M, Fadzley Izwan AM
    Med J Malaysia, 2004 May;59 Suppl B:156-7.
    PMID: 15468865
    A mixture with different compositions of HA and TCP were synthesize in this work by precipitation method using Ca(NO3)2 4H2 and (NH4)2HPO4 as the starting materials. A mixture with HA and TCP phases in different ratios were produced. The powders were sintered from 1000 degrees C to 1250 degrees C. The phase compositions of the mixtures were then studied via XRD. This work shows that the pH value determines the different phase compositions of the HA-TCP mixture. Chemical analyses were carried out by FTIR. The microstructure was observed under SEM.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  5. Abd Rashid MY, Abu Bakar A, Mohd Asri MT, Iskandar SM
    Med J Malaysia, 2004 May;59 Suppl B:135-6.
    PMID: 15468855
    Poly (p-phenylene vinylene) (PPV) was synthesized from p-xylylene bis(tetrahydrothiophenium chloride) using the Wessling route and characterized by Fourier Transform Infra-Red (FTIR) and UV-visible (UV-VIS) spectroscopic techniques. The significance of thermal treatment along with evolution of precursor polymer to polymer PPV was also studied through these spectroscopic techniques. Thermally Stimulated Current (TSC) measurements indicated the presence of crystallization, sulphonium group which occurred through the evolution from precursor polymer to polymer PPV during thermal treatment.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  6. Hee SL, Nik Intan NI, Fazan F
    Med J Malaysia, 2004 May;59 Suppl B:77-8.
    PMID: 15468827
    There is a great demand of Hydroxyapatite (HA) material in Orthopaedics and Dental applications due to its similarity to human bone. However, the lack of availability and due to high import cost of this material in Malaysia, research in producing synthetic HA locally is therefore timely. The use of local resources as the raw materials for the production of HA is also desirable in reducing the overall cost of HA. In this study, two HA materials were synthesised from different starting precursors, i.e. commercial pure Ca(OH)2 (HAS) and Ca(OH)2 directly from a local natural limestone deposit (HAL). Whereas a commercially available HA "Captal 60" (HAC) was used as reference. The synthesised powders obtained were fired at 1000 degrees C and at 1250 degrees C. Characterisation evaluations on bulk properties were carried out using XRD, SEM-EDX, ICP and FTIR. The results indicate that both HAS and HAL are comparable to HAC even at 1000 degrees C. Thus, the local natural limestone can be used to form HA. However, the overall appearance of these materials are quite different (HAC - blue, HAS - greenish and HAL - light green). The reasons for this and the subsequent mechanical and bioactive effects of these materials are currently being investigated.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  7. Fazan F, Shahida KB
    Med J Malaysia, 2004 May;59 Suppl B:69-70.
    PMID: 15468823
    The paper presents a method of producing synthetic Hydroxyapatite (HA) Ca10(PO4)6(OH)2 and other apatites for biological use by solid-state reaction. The solid-state reaction involves mix-grinding dry powders of beta-tricalcium phosphate powder (TCP) and either calcium hydroxide (Ca(OH)2) or calcium carbonate (CaCO3) or combination thereof, from pure commercial chemicals or derived from natural limestone or from seashells, of total calcium/phosphorus molar ratio between 1.5 to 2.0, to particle size of less than 10 microns, and firing the resultant powder to temperature between 600 degrees C - 1250 degrees C in atmosphere or in controlled atmospheric condition. The resultant apatites formed were characterised using XRD, SEM-EDX and FTIR. The presented reaction process was found to be much simpler compared to conventional methods of producing synthetic apatites since it involves only dry mix-grinding of the reactants before firing at high temperatures based on the required levels of purity. It can also produce synthetic apatites with good reproducibility in a shorter time. Thus the presented method has a great industrial value.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  8. Ismarul IN, Ishak Y, Ismail Z, Mohd Shalihuddin WM
    Med J Malaysia, 2004 May;59 Suppl B:57-8.
    PMID: 15468817
    Various proportions of chitosan/collagen films (70/30% to 95/05%) w/w were prepared and evaluated for its suitability as skin regenerating scaffold. Interactions between chitosan and collagen were studied using Fourier Transform Infrared spectroscopy (FTIR) and Differential Scanning Colorimetry (DSC). Scanning Electron Microscope (SEM) was used to investigate the morphology of the blend. Mechanical properties were evaluated using a Universal Testing Machine (UTM). The chitosan/collagen films were found to swell proportionally with time until it reaches equilibrium. FTIR spectroscopy indicated no chemical interaction between the components of the blends. DSC data indicated only one peak proving that these two materials are compatible at all proportions investigated. SEM micrographs also indicated good homogeneity between these two materials.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  9. Chadda H, Naveen SV, Mohan S, Satapathy BK, Ray AR, Kamarul T
    J Prosthet Dent, 2016 Jul;116(1):129-35.
    PMID: 26873771 DOI: 10.1016/j.prosdent.2015.12.013
    STATEMENT OF PROBLEM: Although the physical and mechanical properties of hydroxyapatite-filled dental restorative composite resins have been examined, the biocompatibility of these materials has not been studied in detail.

    PURPOSE: The purpose of this in vitro study was to analyze the toxicity of acrylate-based restorative composite resins filled with hydroxyapatite and a silica/hydroxyapatite combination.

    MATERIAL AND METHODS: Five different restorative materials based on bisphenol A-glycidyl methacrylate (bis-GMA) and tri-ethylene glycol dimethacrylate (TEGDMA) were developed: unfilled (H0), hydroxyapatite-filled (H30, H50), and silica/hydroxyapatite-filled (SH30, SH50) composite resins. These were tested for in vitro cytotoxicity by using human bone marrow mesenchymal stromal cells. Surface morphology, elemental composition, and functional groups were determined by scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), and Fourier-transformed infrared spectroscopy (FTIR). The spectra normalization, baseline corrections, and peak integration were carried out by OPUS v4.0 software.

    RESULTS: Both in vitro cytotoxicity results and SEM analysis indicated that the composite resins developed were nontoxic and supported cell adherence. Elemental analysis with EDX revealed the presence of carbon, oxygen, calcium, silicon, and gold, while the presence of methacrylate, hydroxyl, and methylene functional groups was confirmed through FTIR analysis.

    CONCLUSIONS: The characterization and compatibility studies showed that these hydroxyapatite-filled and silica/hydroxyapatite-filled bis-GMA/TEGDMA-based restorative composite resins are nontoxic to human bone marrow mesenchymal stromal cells and show a favorable biologic response, making them potential biomaterials.

    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  10. Lee LC, Jemain AA
    Analyst, 2019 Apr 08;144(8):2670-2678.
    PMID: 30849143 DOI: 10.1039/c8an02074d
    In response to our review paper [L. C. Lee et al., Analyst, 2018, 143, 3526-3539], we present a study that compares empirical differences between PLS1-DA and PLS2-DA algorithms in modelling a colossal ATR-FTIR spectral dataset. Over the past two decades, partial least squares-discriminant analysis (PLS-DA) has gained wide acceptance and huge popularity in the field of applied research, partly due to its dimensionality reduction capability and ability to handle multicollinear and correlated variables. To solve a K-class problem (K > 2) using PLS-DA and high-dimensional data like infrared spectra, one can construct either K one-versus-all PLS1-DA models or only one PLS2-DA model. The aim of this work is to explore empirical differences between the two PLS-DA algorithms in modeling a colossal ATR-FTIR spectral dataset. The practical task is to build a prediction model using the imbalanced, high dimensional, colossal and multi-class ATR-FTIR spectra of blue gel pen inks. Four different sub-datasets were prepared from the principal dataset by considering the raw and asymmetric least squares (AsLS) preprocessed forms: (a) Raw-global region; (b) Raw-local region; (c) AsLS-global region; and (d) AsLS-local region. A series of 50 models which includes the first 50 PLS components incrementally was constructed repeatedly using the four sub-datasets. Each model was evaluated using six different variants of v-fold cross validation, autoprediction and external testing methods. As a result, each PLS-DA algorithm was represented by a number of figures of merit. The differences between PLS1-DA and PLS2-DA algorithms were assessed using hypothesis tests with respect to model accuracy, stability and fitting. On the other hand, confusion matrices of the two PLS-DA algorithms were inspected carefully for assessment of model parsimony. Overall, both the algorithms presented satisfactory model accuracy and stability. Nonetheless, PLS1-DA models showed significantly higher accuracy rates than PLS2-DA models, whereas PLS2-DA models seem to be much more stable compared to PLS1-DA models. Eventually, PLS2-DA also proved to be less prone to overfitting and is more parsimonious than PLS1-DA. In conclusion, the relatively high accuracy of the PLS1-DA algorithm is achieved at the cost of rather low parsimony and stability, and with an increased risk of overfitting.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  11. Abd Ali LI, Ibrahim WA, Sulaiman A, Kamboh MA, Sanagi MM
    Talanta, 2016 Feb 1;148:191-9.
    PMID: 26653440 DOI: 10.1016/j.talanta.2015.10.062
    This study describes the synthesis, characterization and application of a new chrysin-based silica core-shell magnetic nanoparticles (Fe3O4@SiO2-N-chrysin) as an adsorbent for the preconcentration of Cu(II) from aqueous environment. The morphology, thermal stability and magnetic property of Fe3O4@SiO2-N-chrysin were analyzed using FTIR, FESEM, TEM, XRD, thermal analysis and VSM. The extraction efficiency of Fe3O4@SiO2-N-chrysin was analyzed using the batch wise method with flame atomic absorption spectrometry. Parameters such as the pH, the sample volume, the adsorption-desorption time, the concentration of the desorption solvent, the desorption volume, the interference effects and the regeneration of the adsorbent were optimized. It was determined that Cu(II) adsorption is highly pH-dependent, and a high recovery (98%) was achieved at a pH 6. The limit of detection (S/N=3), the limit of quantification (S/N=10), the preconcentration factor and the relative standard deviation for Cu(II) extraction were 0.3 ng mL(-1), 1 ng mL(-1), 100 and 1.9% (concentration=30 ng mL(-1), n=7), respectively. Excellent relative recoveries of 97-104% (%RSD<3.12) were achieved from samples from a spiked river, a lake and tap water. The MSPE method was also validated using certified reference materials SLRS-5 with good recovery (92.53%).
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  12. Sim SF, Ting W
    Talanta, 2012 Jan 15;88:537-43.
    PMID: 22265538 DOI: 10.1016/j.talanta.2011.11.030
    This paper reports a computational approach for analysis of FTIR spectra where peaks are detected, assigned and matched across samples to produce a peak table with rows corresponding to samples and columns to variables. The algorithm is applied on a dataset of 103 spectra of a broad range of edible oils for exploratory analysis and variable selection using Self Organising Maps (SOMs) and t-statistics, respectively. Analysis on the resultant peak table allows the underlying patterns and the discriminatory variables to be revealed. The algorithm is user-friendly; it involves a minimal number of tunable parameters and would be useful for analysis of a large and complicated FTIR dataset.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  13. Saaid M, Saad B, Rahman IA, Ali AS, Saleh MI
    Talanta, 2010 Jan 15;80(3):1183-90.
    PMID: 20006072 DOI: 10.1016/j.talanta.2009.09.006
    Three sorbent materials (A18C6-MS, DA18C6-MS and AB18C6-MS) based on the crown ether ligands, 1-aza-18-crown-6, 1,4,10,13-tetraoxa-7,16-diazacyclo octadecane and 4'-aminobenzo-18-crown-6, respectively, were prepared by the chemical immobilization of the ligand onto mesoporous silica support. The sorbents were characterized by FT-IR, scanning electron microscopy-energy dispersive X-ray microanalysis, elemental analysis and nitrogen adsorption-desorption test. The applicability of the sorbents for the extraction of biogenic amines by the batch sorption method was extensively studied and evaluated as a function of pH, biogenic amines concentration, contact time and reusability. Under the optimized conditions, all the sorbents exhibited highest selectivity toward spermidine (SPD) compared to other biogenic amines (tryptamine, putrescine, histamine and tyramine). Among the sorbents, AB18C6-MS offer the highest capacity and best selectivity towards SPD in the presence of other biogenic amines. The AB18C6-MS sorbent can be repeatedly used three times as there was no significant degradation in the extraction of the biogenic amines (%E>85). The optimized procedure was successfully applied for the separation of SPD in food samples prior to the reversed-phase high performance liquid chromatography separation.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  14. Ikhsan NI, Rameshkumar P, Pandikumar A, Mehmood Shahid M, Huang NM, Vijay Kumar S, et al.
    Talanta, 2015 Nov 1;144:908-14.
    PMID: 26452907 DOI: 10.1016/j.talanta.2015.07.050
    In this report, silver nanoparticles (Ag NPs) were successfully deposited on graphene oxide (GO) sheets to form GO-Ag nanocomposite using garlic extract and sunlight and the nanocomposite modified glassy carbon (GC) electrode was applied as an electrochemical sensor for the detection of nitrite ions. The formation of GO-Ag nanocomposite was confirmed by using UV-visible absorption spectroscopy, TEM, XRD and FTIR spectroscopy analyses. Further, TEM pictures showed a uniform distribution Ag on GO sheets with an average size of 19 nm. The nanocomposite modified electrode produced synergistic catalytic current in nitrite oxidation with a negative shift in overpotential. The limit of detection (LOD) values were found as 2.1 µM and 37 nM, respectively using linear sweep voltammetry (LSV) and amperometric i-t curve techniques. The proposed sensor was stable, reproducible, sensitive and selective toward the detection nitrite and could be applied for the detection of nitrite in real water sample.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  15. Goh KM, Maulidiani M, Rudiyanto R, Wong YH, Ang MY, Yew WM, et al.
    Talanta, 2019 Jun 01;198:215-223.
    PMID: 30876552 DOI: 10.1016/j.talanta.2019.01.111
    The technique of Fourier transform infrared spectroscopy is widely used to generate spectral data for use in the detection of food contaminants. Monochloropropanediol (MCPD) is a refining process-induced contaminant that is found in palm-based fats and oils. In this study, a chemometric approach was used to evaluate the relationship between the FTIR spectra and the total MCPD content of a palm-based cooking oil. A total of 156 samples were used to develop partial least squares regression (PLSR), artificial neural network (nnet), average artificial neural network (avNNET), random forest (RF) and cubist models. In addition, a consensus approach was used to generate fusion result consisted from all the model mentioned above. All the models were evaluated based on validation performed using training and testing datasets. In addition, the box plot of coefficient of determination (R2), root mean square error (RMSE), slopes and intercepts by 100 times randomization was also compared. Evaluation of performance based on the testing R2 and RMSE suggested that the cubist model predicted total MCPD content with the highest accuracy, followed by the RF, avNNET, nnet and PLSR models. The overfitting tendency was assessed based on differences in R2 and RMSE in the training and testing calibrations. The observations showed that the cubist and avNNET models possessed a certain degree of overfitting. However, the accuracy of these models in predicting the total MCPD content was high. Results of the consensus model showed that it slightly improved the accuracy of prediction as well as significantly reduced its uncertainty. The important variables derived from the cubist and RF models suggested that the wavenumbers corresponding to the MCPDs originated from the -CH=CH2 or CH=CH (990-900 cm-1) and C-Cl stretch (800-700 cm-1) regions of the FTIR spectrum data. In short, chemometrics in combination with FTIR analysis especially for the consensus model represent a potential and flexible technique for estimating the total MCPD content of refined vegetable oils.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  16. Shahriman MS, Ramachandran MR, Zain NNM, Mohamad S, Manan NSA, Yaman SM
    Talanta, 2018 Feb 01;178:211-221.
    PMID: 29136814 DOI: 10.1016/j.talanta.2017.09.023
    In this present study, magnetic nanoparticles (MNPs) nanocomposites modified with polyaniline (PANI) coated newly synthesised dicationic ionic liquid (DICAT) forming MNP-PANI-DICAT were successfully synthesised as new generation material for magnetic solid phase extraction (MSPE). MNP-PANI-DICAT was characterised by FT-IR NMR, CHN, BET, SEM, TEM, and VSM techniques and the results were compared with MNP-PANI and native MNP. This new material was applied as a magnetic adsorbent for the pre-concentration and separation of polycyclic aromatic hydrocarbons (PAHs) due to the π-π interaction between polyaniline shell and dicationic ionic liquid (DICAT) with PAHs compounds. Under the optimal conditions, the proposed method was evaluated and applied for the analysis of PAHs in environmental samples using gas chromatography-mass spectrometry (GC-MS). The validation method showed good linearity (0.005-500µgL-1) with the coefficient of determination (R2) > 0.999. The limits of detection (LOD) and quantification (LOQ) of the developed method (MNP-PANI-DICAT-MSPE) were in the range of 0.0008-0.2086µgL-1and 0.0024-0.6320µgL-1, respectively. The enrichment factor (EF) of PAHs on MNP-PANI-DICAT-MSPE were in the range of 7.546-29.632. The extraction recoveries of natural water, sludge, and soil samples were ranged from 80.2% to 111.9% with relative standard deviation (RSD) less than 5.6%. The newly synthesised MNP-PANI-DICAT possess good sensitivity, reusability, and fast extraction of PAHs under the MSPE procedure in various environmental samples.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  17. Abosadiya HM, Anouar el H, Hasbullah SA, Yamin BM
    PMID: 25748989 DOI: 10.1016/j.saa.2015.01.092
    A new isomers of thiourea derivatives, namely N-(4-chlorobutanoyl)-N'-(2-methylphenyl)-thiourea (1a), N-(4-chlorobutanoyl)-N'-(3-methylphenyl)thiourea (1b) and N-(4-chlorobutanoyl)-N'-(4-methylphenyl)thiourea (1c) have been synthesized by refluxing mixture of equimolar amounts of 4-chlorobutanoylisothiocyanate with 2, 3 or 4-toluidine, respectively. The three isomers were characterized by spectroscopic (UV/vis, FT-IR and NMR) and X-ray crystallography techniques. To investigate the isomerization effect on spectroscopic data, DFT and TD-DFT calculations have been carried out using five hybrid functionals (B3LYP, B3P86, CAM-B3LYP, M06-2X and PBE0) to predict UV/vis absorption bands (n→π∗ and π→π∗), (1)H and (13)C NMR chemical shifts, FT-IR vibration modes and X-ray parameters (bonds, bond angles and torsion angles) for 1a, 1b and 1c isomers. The results showed that the isomerization effect is significant on λ(MAX) absorption bands, while for IR and NMR the effect is negligible. In accordance with previous studies, B3LYP, B3P86 and PBE0 gave the most reliable to predict the excitation energies of thiourea derivatives.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  18. Kianfar AH, Kamil Mahmood WA, Dinari M, Farrokhpour H, Enteshari M, Azarian MH
    Spectrochim Acta A Mol Biomol Spectrosc, 2015 Feb 05;136 Pt C:1582-92.
    PMID: 25459719 DOI: 10.1016/j.saa.2014.10.051
    The [Co(naphophen)(PPh3)(OH2)]ClO4 and [Co(naphophen)(PBu3)(OH2)]BF4 (where naphophen=bis(naphthaldehyde)1,2-phenylenediimine) complexes were synthesized and chracterized by FT-IR, UV-Vis, (1)H NMR, (13)C NMR spectroscopy and elemental analysis techniques. The coordination geometry of the synthesized complexes were determined by X-ray crystallography. Cobalt (III) complexes have six-coordinated pseudo-octahedral geometry in which the O(1), O(2), N(1) and N(2) atoms of the Schiff base forms the equatorial plane. These complexes showed a dimeric structure via hydrogen bonding between the phenolate oxygen and the hydrogens of the coordinated H2O molecule. The theoretical calculations were also performed to optimize the structure of the complexes in the gas phase to confirm the structures proposed by X-ray crystallography. In addition, UV-Visible and IR spectra of complexes were calculated and compared with the corresponding experimental spectra to complete the experimental structural identification. The synthesized complexes were incorporated onto the Montmorillonite-K10 nanoclay via simple ion-exchange reaction. The structure and morphology of the obtained nanohybrids were identified by FT-IR, XRD, TGA/DTA, SEM and TEM techniques. Based on the XRD results of the new nanohybrid materials, the Schiff base complexes were intercalated in the interlayer spaces of clay. SEM and TEM micrographs of the clay/complex shows that the resulting hybrid nanomaterials has layer structures.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  19. Mary YS, Panicker CY, Sapnakumari M, Narayana B, Sarojini BK, Al-Saadi AA, et al.
    Spectrochim Acta A Mol Biomol Spectrosc, 2015 Feb 5;136 Pt B:473-82.
    PMID: 25448948 DOI: 10.1016/j.saa.2014.09.060
    The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of 1-[5-(4-bromophenyl)-3-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl]ethanone have been investigated experimentally and theoretically using Gaussian09 software package. The title compound was optimized using the HF/6-31G(d) (6D, 7F), B3LYP/6-31G (6D, 7F) and B3LYP/6-311++G(d,p) (5D, 7F) calculations. The B3LYP/6-311++G(d,p) (5D, 7F) results and in agreement with experimental infrared bands. The geometrical parameters are in agreement with XRD data. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. Molecular electrostatic potential was also performed. From the MEP it is evident that the negative charge covers the C=O group and the positive region is over the rings. First hyperpolarizability is calculated in order to find its role in nonlinear optics. Molecular docking studies suggest that the compound might exhibit inhibitory activity against TPII and may act as anti-neoplastic agent.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  20. Mary YS, Panicker CY, Sapnakumari M, Narayana B, Sarojini BK, Al-Saadi AA, et al.
    PMID: 25528512 DOI: 10.1016/j.saa.2014.11.041
    The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of 3-(4-fluorophenyl)-5-phenyl-4,5-dihydro-1H-pyrazole-1-carbaldehyde have been investigated experimentally and theoretically. The title compound was optimized using at HF and DFT levels of calculations. The B3LYP/6-311++G(d,p) (5D,7F) results and in agreement with experimental infrared bands. The normal modes are assigned using potential energy distribution. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using natural bonding orbital analysis. The frontier molecular orbital analysis is used to determine the charge transfer within the molecule. From molecular electrostatic potential map, it is evident that the negative electrostatic potential regions are mainly localized over the carbonyl group and mono substituted phenyl ring and are possible sites for electrophilic attack and, positive regions are localized around all para substituted phenyl and pyrazole ring, indicating possible sites for nucleophilic attack. First hyperpolarizability is calculated in order to find its role in nonlinear optics. The geometrical parameters are in agreement with experimental data. From the molecular docking studies, it is evident that the fluorine atom attached to phenyl ring and the carbonyl group attached to pyrazole ring are crucial for binding and the results draw us to the conclusion that the compound might exhibit phosphodiesterase inhibitory activity.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links