METHODOLOGY: We performed a cross-sectional cohort study on healthy subjects and patients with glaucoma. The AngioVue Enhanced Microvascular Imaging System was used to capture the optic nerve head and macula images during one visit. En face segment images of the macular and optic disc were studied in layers. Microvascular density of the optic nerve head and macula were quantified by the number of pixels measured by a novel in-house developed software. Areas under the receiver operating characteristic curves (AUROC) were used to determine the accuracy of differentiating between glaucoma and healthy subjects.
RESULTS: A total of 24 (32 eyes) glaucoma subjects (57.5±9.5-y old) and 29 (58 eyes) age-matched controls (51.17±13.5-y old) were recruited. Optic disc and macula scans were performed showing a greater mean vessel density (VD) in healthy compared with glaucoma subjects. The control group had higher VD than the glaucoma group at the en face segmented layers of the optic disc (optic nerve head: 0.209±0.05 vs. 0.110±0.048, P<0.001; vitreoretinal interface: 0.086±0.045 vs. 0.052±0.034, P=0.001; radial peripapillary capillary: 0.146±0.040 vs. 0.053±0.036, P<0.001; and choroid: 0.228±0.074 vs. 0.165±0.062, P<0.001). Similarly, the VD at the macula was also greater in controls than glaucoma patients (superficial retina capillary plexus: 0.115±0.016 vs. 0.088±0.027, P<0.001; deep retina capillary plexus: 0.233±0.027 vs. 0.136±0.073, P<0.001; outer retinal capillary plexus: 0.190±0.057 vs. 0.136±0.105, P=0.036; and choriocapillaris: 0.225±0.053 vs. 0.153±0.068, P<0.001. The AUROC was highest for optic disc radial peripapillary capillary (0.96), followed by nerve head (0.92) and optic disc choroid (0.76). At the macula, the AUROC was highest for deep retina (0.86), followed by choroid (0.84), superficial retina (0.81), and outer retina (0.72).
CONCLUSIONS: Microvascular density of the optic disc and macula in glaucoma patients was reduced compared with healthy controls. VD of both optic disc and macula had a high diagnostic ability in differentiating healthy and glaucoma eyes.
Objective: To compare treatment outcomes of ranibizumab, 0.5 mg, plus prompt vPDT combination therapy with ranibizumab, 0.5 mg, monotherapy in participants with PCV for 24 months.
Design, Setting, and Participants: This 24-month, phase IV, double-masked, multicenter, randomized clinical trial (EVEREST II) was conducted among Asian participants from August 7, 2013, to March 2, 2017, with symptomatic macular PCV confirmed using indocyanine green angiography.
Interventions: Participants (N = 322) were randomized 1:1 to ranibizumab, 0.5 mg, plus vPDT (combination therapy group; n = 168) or ranibizumab, 0.5 mg, plus sham PDT (monotherapy group; n = 154). All participants received 3 consecutive monthly ranibizumab injections, followed by a pro re nata regimen. Participants also received vPDT (combination group) or sham PDT (monotherapy group) on day 1, followed by a pro re nata regimen based on the presence of active polypoidal lesions.
Main Outcomes and Measures: Evaluation of combination therapy vs monotherapy at 24 months in key clinical outcomes, treatment exposure, and safety. Polypoidal lesion regression was defined as the absence of indocyanine green hyperfluorescence of polypoidal lesions.
Results: Among 322 participants (mean [SD] age, 68.1 [8.8] years; 225 [69.9%] male), the adjusted mean best-corrected visual acuity (BCVA) gains at month 24 were 9.6 letters in the combination therapy group and 5.5 letters in the monotherapy group (mean difference, 4.1 letters; 95% CI, 1.0-7.2 letters; P = .005), demonstrating that combination therapy was superior to monotherapy by the BCVA change from baseline to month 24. Combination therapy was superior to monotherapy in terms of complete polypoidal lesion regression at month 24 (81 of 143 [56.6%] vs 23 of 86 [26.7%] participants; P