Displaying publications 41 - 60 of 68 in total

Abstract:
Sort:
  1. Palasubramaniam S, Muniandy S, Navaratnam P
    J Microbiol Methods, 2008 Jan;72(1):107-9.
    PMID: 18054098
    Multi-resistant Enterobacteriaceae pose a serious threat of hospital acquired infections and their rapid identification is important for better clinical outcome. This study describes the rapid identification of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae of the sulphydryl variable-type by fluorescent in-situ hybridization. The method which rapidly identifies the target genes within 1 h could be a potentially rapid bacterial diagnostic tool.
    Matched MeSH terms: beta-Lactamases/genetics*
  2. Wong JS, Mohd Azri ZA, Subramaniam G, Ho SE, Palasubramaniam S, Navaratnam P
    Malays J Pathol, 2003 Dec;25(2):113-9.
    PMID: 16196367
    beta-Lactamases have been identified as the major cause of antimicrobial resistance to beta-lactam antibiotics in Escherichia coli. The activities of ampicillin-sulbactam and amoxicillin-clavulanate as well as a range of beta-lactam antibiotics were studied with 87 clinical E. coli isolates from patients of the University Malaya Medical Center using the disc diffusion technique. Susceptible, intermediate and resistant categories were established based on the diameter of zones of inhibition set by the National Committee for Clinical Laboratory Standards (NCCLS). The isolates were then classified into 6 phenotypes according to the criteria stated in the methodology: S (susceptible to all beta-lactams); TL (resistant to aminopenicillins; amoxicillin-clavulanate susceptible and susceptible or intermediate to ampicillin-sulbactam); TI (resistant to aminopenicillins and ampicillin-sulbactam; susceptible to amoxicilin-clavulanate); TH-IRT (resistant to aminopenicillins; intermediate or resistant to amoxicillin-clavulanate; resistant to ampicillin-sulbactam); ESBL (resistant to aminopenicillins and oxyimino cephalosporins; positive results with the double-disc diffusion test); and CP (resistant to aminopenicillins, beta-lactam-beta-lactamase inhibitor combinations, oxyimino cephalosporins and cephamycins). Results showed that the TL phenotype was the commonest (40.2% of the isolates) followed by S (31%), TH-IRT (16.1%), ESBL and CP (3.4% each) and TI (2.3%). One isolate showed both ESBL and CP phenotypes while two isolates were classified as inconclusive. Representatives from each phenotype were further analysed for the presence of beta-lactamases which revealed a predominance of TEM and SHV enzyme producers. PCR-SSCP analysis of the SHV gene from all the ESBL and CP isolates revealed the predominance of SHV 5-type enzyme which was concurrent with our previous studies.
    Matched MeSH terms: beta-Lactamases/genetics
  3. Ho SE, Subramaniam G, Palasubramaniam S, Navaratnam P
    Antimicrob Agents Chemother, 2002 Oct;46(10):3286-7.
    PMID: 12234862
    We have isolated and identified a carbapenem-resistant Pseudomonas aeruginosa strain from Malaysia that produces an IMP-7 metallo-beta-lactamase. This isolate showed high-level resistance to meropenem and imipenem, the MICs of which were 256 and 128 micro g/ml, respectively. Isoelectric focusing analyses revealed pI values of >9.0, 8.2, and 7.8, which indicated the possible presence of IMP and OXA. DNA sequencing confirmed the identity of the IMP-7 determinant.
    Matched MeSH terms: beta-Lactamases/genetics
  4. Subramaniam G, Palasubramaniam S, Navaratnam P
    Indian J Med Microbiol, 2006 Jul;24(3):205-7.
    PMID: 16912441
    Escherichia coli isolates resistant to ceftazidime isolated in the University Malaya Medical Center (UMMC) Kuala Lumpur, Malaysia, between the years 1998 and 2000 were studied for extended-spectrum beta-lactamase (ESBL) production. All strains were analysed phenotypically and genotypically and found to be ESBL-producing organisms harbouring SHV-5 beta-lactamase. This was confirmed by PCR-SSCP and nucleotide sequencing of the blaSHV amplified gene. As there was no evidence of ESBL activity in E. coli prior to this, coupled with the fact that there was a predominance of SHV-5 beta-lactamases in Klebsiella pneumoniae isolates in UMMC, we postulate that the E. coli obtained the SHV-5 beta-lactamase genes by plasmid transfer from the ESBL-producing K. pneumoniae.
    Matched MeSH terms: beta-Lactamases/genetics*
  5. Biglari S, Hanafiah A, Mohd Puzi S, Ramli R, Rahman M, Lopes BS
    Microb Drug Resist, 2017 Jul;23(5):545-555.
    PMID: 27854165 DOI: 10.1089/mdr.2016.0130
    Multidrug-resistant (MDR) Acinetobacter baumannii has increasingly emerged as an important nosocomial pathogen. The aim of this study was to determine the resistance profiles and genetic diversity in A. baumannii clinical isolates in a tertiary medical center in Malaysia. The minimum inhibitory concentrations of carbapenems (imipenem and meropenem), cephalosporins (ceftazidime and cefepime), and ciprofloxacin were determined by E-test. PCR and sequencing were carried out for the detection of antibiotic resistance genes and mutations. Clonal relatedness among A. baumannii isolates was determined by REP-PCR. Sequence-based typing of OXA-51 and multilocus sequence typing were performed. One hundred twenty-five of 162 (77.2%) A. baumannii isolates had MDR phenotype. From the 162 A. baumannii isolates, 20 strain types were identified and majority of A. baumannii isolates (66%, n = 107) were classified as strain type 1 and were positive for ISAba1-blaOXA-23and ISAba1-blaADCand had mutations in both gyrA and parC genes at positions, 83 and 80, resulting in serine-to-leucine conversion. REP-PCR analysis showed 129 REP types that generated 31 clones with a 90% similarity cutoff value. OXA-66 variant of the blaOXA-51-likegenes was predominantly detected among our A. baumannii clinical isolates belonging to ST195 (found in six clones: 1, 8, 9, 19, 27, and 30) and ST208 (found in clone 21). The study helps us in understanding the genetic diversity of A. baumannii isolates in our setting and confirms that international clone II is the most widely distributed clone in Universiti Kebangsaan Malaysia Medical Centre, Malaysia.
    Matched MeSH terms: beta-Lactamases/genetics*
  6. Yap PS, Krishnan T, Chan KG, Lim SH
    J Microbiol Biotechnol, 2015 Aug;25(8):1299-306.
    PMID: 25381741 DOI: 10.4014/jmb.1407.07054
    This study aimed to investigate the mechanism of action of the cinnamon bark essential oil (CB), when used singly and also in combination with piperacillin, for its antimicrobial and synergistic activity against beta-lactamase TEM-1 plasmid-conferred Escherichia coli J53 R1. Viable count of this combination showed a complete killing profile at 20 h and further confirmed its synergistic effect by reducing the bacteria cell numbers. Analysis on the stability of treated cultures for cell membrane permeability by CB when tested against sodium dodecyl sulfate revealed that the bacterial cell membrane was disrupted by the essential oils. Scanning electron microscopy observation and bacterial surface charge measurement also revealed that CB causes irreversible membrane damage and reduces the bacterial surface charge. In addition, bioluminescence expression of Escherichia coli [pSB1075] and E. coli [pSB401] by CB showed reduction, indicating the possibility of the presence of quorum sensing (QS) inhibitors. Gas-chromatography and mass spectrometry of the essential oil of Cinnamomum verum showed that trans-cinnamaldehyde (72.81%), benzyl alcohol (12.5%), and eugenol (6.57%) were the major components in the essential oil. From this study, CB has the potential to reverse E. coli J53 R1 resistance to piperacillin through two pathways; modification in the permeability of the outer membrane or bacterial QS inhibition.
    Matched MeSH terms: beta-Lactamases/genetics
  7. Kim MJ, Bae IK, Jeong SH, Kim SH, Song JH, Choi JY, et al.
    J Antimicrob Chemother, 2013 Dec;68(12):2820-4.
    PMID: 23843299 DOI: 10.1093/jac/dkt269
    To investigate the epidemiological traits of metallo-β-lactamase (MBL)-producing Pseudomonas aeruginosa (MPPA) clinical isolates collected by the Asian Network for Surveillance of Resistant Pathogens (ANSORP).
    Matched MeSH terms: beta-Lactamases/genetics
  8. Yang SK, Yusoff K, Ajat M, Thomas W, Abushelaibi A, Akseer R, et al.
    PLoS One, 2019;14(4):e0214326.
    PMID: 30939149 DOI: 10.1371/journal.pone.0214326
    Klebsiella pneumoniae (KP) remains the most prevalent nosocomial pathogen and carries the carbapenemase (KPC) gene which confers resistance towards carbapenem. Thus, it is necessary to discover novel antimicrobials to address the issue of antimicrobial resistance in such pathogens. Natural products such as essential oils are a promising source due to their complex composition. Essential oils have been shown to be effective against pathogens, but the overall mechanisms have yet to be fully explained. Understanding the molecular mechanisms of essential oil towards KPC-KP cells would provide a deeper understanding of their potential use in clinical settings. Therefore, we aimed to investigate the mode of action of essential oil against KPC-KP cells from a proteomic perspective by comparing the overall proteome profile of KPC-KP cells treated with cinnamon bark (Cinnamomum verum J. Presl) essential oil (CBO) at their sub-inhibitory concentration of 0.08% (v/v). A total of 384 proteins were successfully identified from the non-treated cells, whereas only 242 proteins were identified from the CBO-treated cells. Proteins were then categorized based on their biological processes, cellular components and molecular function prior to pathway analysis. Pathway analysis showed that CBO induced oxidative stress in the KPC-KP cells as indicated by the abundance of oxidative stress regulator proteins such as glycyl radical cofactor, catalase peroxidase and DNA mismatch repair protein. Oxidative stress is likely to oxidize and disrupt the bacterial membrane as shown by the loss of major membrane proteins. Several genes selected for qRT-PCR analysis validated the proteomic profile and were congruent with the proteomic abundance profiles. In conclusion, KPC-KP cells exposed to CBO undergo oxidative stress that eventually disrupts the bacterial membrane possibly via interaction with the phospholipid bilayer. Interestingly, several pathways involved in the bacterial membrane repair system were also affected by oxidative stress, contributing to the loss of cells viability.
    Matched MeSH terms: beta-Lactamases/genetics
  9. Kim DH, Choi JY, Kim HW, Kim SH, Chung DR, Peck KR, et al.
    Antimicrob Agents Chemother, 2013 Nov;57(11):5239-46.
    PMID: 23939892 DOI: 10.1128/AAC.00633-13
    In this surveillance study, we identified the genotypes, carbapenem resistance determinants, and structural variations of AbaR-type resistance islands among carbapenem-resistant Acinetobacter baumannii (CRAB) isolates from nine Asian locales. Clonal complex 92 (CC92), corresponding to global clone 2 (GC2), was the most prevalent in most Asian locales (83/108 isolates; 76.9%). CC108, or GC1, was a predominant clone in India. OXA-23 oxacillinase was detected in CRAB isolates from most Asian locales except Taiwan. blaOXA-24 was found in CRAB isolates from Taiwan. AbaR4-type resistance islands, which were divided into six subtypes, were identified in most CRAB isolates investigated. Five isolates from India, Malaysia, Singapore, and Hong Kong contained AbaR3-type resistance islands. Of these, three isolates harbored both AbaR3- and AbaR4-type resistance islands simultaneously. In this study, GC2 was revealed as a prevalent clone in most Asian locales, with the AbaR4-type resistance island predominant, with diverse variants. The significance of this study lies in identifying the spread of global clones of carbapenem-resistant A. baumannii in Asia.
    Matched MeSH terms: beta-Lactamases/genetics
  10. Kim SY, Ko KS
    Microb Drug Resist, 2019 Mar;25(2):227-232.
    PMID: 30212274 DOI: 10.1089/mdr.2018.0020
    To reveal whether an increase of CTX-M-15-producing Klebsiella pneumoniae ST11 isolates is due to clonal dissemination across the countries, plasmids (pHK02-026, pM16-13, pIN03-01, and pTH02-34) were extracted from four K. pneumoniae isolates collected in Hong Kong, Malaysia, Thailand, and Indonesia, respectively. Complete sequencing of blaCTX-M-15-carrying plasmids was performed. In addition to the four plasmids, a previously sequenced plasmid (pKP12226) of a K. pneumoniae ST11 isolate from Korea was included in the analysis. While pIN03-01 and pTH02-34, which belonged to the incompatibility group IncX3, showed nearly the same structure, the others of IncF1A or IncFII exhibited very different structures. The number and kinds of antibiotic genes found in the plasmids were also different from each other. Cryptic prophage genes were identified in all five blaCTX-M-15-harboring plasmids from the ST11 isolates; P1-like region in pKP12226, CPZ-55 prophage region in pHK02-026, phage shock operon pspFABCD in pM16-13, and SPBc2 prophage yokD in pIN03-01 and pTH02-34. The plasmids with blaCTX-M-15 in the prevailing K. pneumoniae ST11 isolates in Asian countries might emerge from diverse origins by recombination. The prevalence of CTX-M-15-producing K. pneumoniae ST11 clone in Asian countries is not mainly due to the dissemination of a single strain.
    Matched MeSH terms: beta-Lactamases/genetics*
  11. Aklilu E, Harun A, Singh KKB, Ibrahim S, Kamaruzzaman NF
    Biomed Res Int, 2021;2021:5596502.
    PMID: 34660793 DOI: 10.1155/2021/5596502
    Carbapenem-resistant Enterobacteriaceae (CRE) has been a public health risk in several countries, and recent reports indicate the emergence of CRE in food animals. This study was conducted to investigate the occurrence, resistance patterns, and phylogenetic diversity of carbapenem-resistant E. coli (CREC) from chicken. Routine bacteriology, PCR detection of E. coli species, multiplex PCR to detect carbapenemase-encoding genes, and phylogeny of CRE E. coli were conducted. The results show that 24.36% (19/78) were identified as CREC based on the phenotypic identifications of which 17 were positive for the tested carbapenemases genes. The majority, 57.99% (11/19), of the isolates harbored multiple carbapenemase genes. Four isolates harbored all bla NDM, bla OXA, and bla IMP, and five and two different isolates harbored bla NDM and bla OXA and bla OXA and bla IMP, respectively. The meropenem, imipenem, and ertapenem MIC values for the isolates ranged from 2 μg/mL to ≥256 μg/mL. Phylogenetic grouping showed that the CREC isolates belonged to five different groups: groups A, B1, C, D, and unknown. The detection of CREC in this study shows that it has become an emerging problem in farm animals, particularly, in poultry farms. This also implies the potential public health risks posed by CRE from chicken to the consumers.
    Matched MeSH terms: beta-Lactamases/genetics*
  12. Salawudeen A, Raji YE, Jibo GG, Desa MNM, Neoh HM, Masri SN, et al.
    Antimicrob Resist Infect Control, 2023 Dec 07;12(1):142.
    PMID: 38062531 DOI: 10.1186/s13756-023-01346-5
    The rising prevalence of multidrug-resistant (MDR) and extended-spectrum beta lactamase-resistant (ESBL) Klebsiella pneumoniae (K. pneumoniae) is an important global public health challenge. This threat is even more pertinent in clinical settings. Morbidity and mortality associated with this condition are alarming particularly in the developing regions of the world. A comprehensive evaluation of the epidemiology of this phenomenon will assist towards the global effort of reducing its burden. So, this systematic review and meta-analysis was conducted to evaluate the epidemiology of MDR K. pneumoniae in South-Eastern Asia (SEA). The study was done under the PRISMA guidelines and was preceded by the development of a priori protocol. The protocol was then registered in PROSPERO-the public registry for systematic reviews. Seven important outcomes which include the assessment of the overall MDR K. pneumoniae prevalence were designed to be evaluated. A literature search was carried out in five selected electronic databases and 4389 were screened. Of these articles, 21 studies that met the eligibility criteria were included in the review. Relevant data were extracted from the included studies. By conducting a quality effect meta-analysis, the pooled prevalence for MDR and ESBL K. pneumoniae in SEA was estimated at 55% (CI 9-96) and 27% (CI 32-100) respectively. The review also identified ESBL genes types of allodemic situations occurring mostly in respiratory tract infections. The high prevalence of MDR and ESBL K. pneumoniae in this subregion is highly significant and of both public health and clinical relevance. Overall, the findings of this review will assist in the effective prevention and control of this threat in SEA.
    Matched MeSH terms: beta-Lactamases/genetics
  13. Ahmad N, Hashim R, Shukor S, Mohd Khalid KN, Shamsudin F, Hussin H
    J Med Microbiol, 2013 May;62(Pt 5):804-806.
    PMID: 23449878 DOI: 10.1099/jmm.0.050781-0
    Matched MeSH terms: beta-Lactamases/genetics
  14. Ikryannikova LN, Shitikov EA, Zhivankova DG, Il'ina EN, Edelstein MV, Govorun VM
    J Microbiol Methods, 2008 Dec;75(3):385-91.
    PMID: 18694787 DOI: 10.1016/j.mimet.2008.07.005
    A minisequencing method based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) was developed for rapid identification of single nucleotide polymorphisms at bla(TEM) gene codons 104, 164 and 238 associated with extended-spectrum activity on TEM-type beta-lactamases. The method was validated by testing the Escherichia coli and Klebsiella pneumoniae strains possessing the known bla(TEM) gene sequences.
    Matched MeSH terms: beta-Lactamases/genetics*
  15. Tan HS, Yan P, Agustie HA, Loh HS, Rayamajhi N, Fang CM
    Lett Appl Microbiol, 2023 Jan 23;76(1).
    PMID: 36688778 DOI: 10.1093/lambio/ovac044
    Extended-spectrum beta-lactamases (ESBLs) and AmpC beta-lactamases (AmpCs)-producing Enterobacteriaceae have been increasingly reported and imposing significant threat to public. Livestock production industry might be the important source for clinically important ESBL-producing Enterobacteriaceae. This study aims to investigate the resistance profile, phenotypic ESBL production, beta-lactamase genes, virulence factors, and plasmid replicon types among 59 Enterobacteriaceae strains isolated from poultry faecal samples in Malaysia's commercial poultry farm. There were 38.7% and 32.3% of Escherichia coli resistant to cefotaxime and cefoxitin, respectively, while Klebsiellaspp. demonstrated resistance rate of 52.6% to both mentioned antimicrobials. Majority of the E. coli isolates carried blaTEM and blaCMY-2 group. blaSHV was the most prevalent gene detected in Klebsiellaspp., followed by blaDHA and blaTEM. Resistance to extended spectrum cephalosporin in our isolates was primarily mediated by plasmid mediated AmpC beta-lactamase such as CMY-2 group and DHA enzyme. The CTX-M genes were found in two ESBL-producing E. coli. IncF, IncI1, and IncN plasmids were most frequently detected in E. coli and Klebsiellaspp. The virulence factor, including EAST1 and pAA were identified at low frequency. This study highlights the poultry as a reservoir of resistance and virulence determinants and prevalence of plasmids in Enterobacteriaceae might drive their dissemination.
    Matched MeSH terms: beta-Lactamases/genetics
  16. Lemlem M, Aklilu E, Mohammed M, Kamaruzzaman F, Zakaria Z, Harun A, et al.
    PLoS One, 2023;18(5):e0285743.
    PMID: 37205716 DOI: 10.1371/journal.pone.0285743
    Antimicrobial resistance is one of the major public health threats globally. This challenge has been aggravated with the overuse and misuse of antibiotics in food animals and humans. The present study aimed to investigate the prevalence of Extended-Spectrum β-lactamase (ESBL) genes in Escherichia coli (E. coli) isolated from broiler chickens in Kelantan, Malaysia. A total of 320 cloacal swabs were collected from farms in different districts of Kelantan and were analyzed using routine bacteriology, antimicrobial susceptibility test, and molecular techniques for further identification and characterization of ESBL encoding genes. Based on PCR detection for the E. coli species-specific Pho gene, 30.3% (97/320) of isolates were confirmed as E. coli, and 84.5% (82/97) of the isolates were positive for at least one ESBL gene. Majority of the isolates, 62.9% (61/97) were harboring blaCTX-M followed by 45.4% (44/97) of blaTEM genes, while 16.5% (16/97) of the isolates were positive for both mcr-1 and ESBL genes. Overall, 93.8% (90/97) of the E. coli were resistant to three or more antimicrobials; indicating that the isolates were multi-drug resistance. 90.7% of multiple antibiotic resistance (MAR) index value greater than 0.2, would also suggest the isolates were from high-risk sources of contamination. The MLST result shows that the isolates are widely diverse. Our findings provide insight into the alarmingly high distribution of antimicrobial resistant bacteria, mainly ESBL producing E. coli in apparently healthy chickens indicating the role of food animals in the emergence and spread of antimicrobial resistance, and the potential public health threats it may pose.
    Matched MeSH terms: beta-Lactamases/genetics
  17. Das S, Pandey AK, Morris DE, Anderson R, Lim V, Wie CC, et al.
    BMC Genomics, 2024 Apr 17;25(1):381.
    PMID: 38632538 DOI: 10.1186/s12864-024-10276-4
    Klebsiella pneumoniae is a Gram-negative Enterobacteriaceae that is classified by the World Health Organisation (WHO) as a Priority One ESKAPE pathogen. South and Southeast Asian countries are regions where both healthcare associated infections (HAI) and community acquired infections (CAI) due to extended-spectrum β-lactamase (ESBL)-producing and carbapenem-resistant K. pneumoniae (CRKp) are of concern. As K. pneumoniae can also exist as a harmless commensal, the spread of resistance genotypes requires epidemiological vigilance. However there has been no significant study of carriage isolates from healthy individuals, particularly in Southeast Asia, and specially Malaysia. Here we describe the genomic analysis of respiratory isolates of K. pneumoniae obtained from Orang Ulu and Orang Asli communities in Malaysian Borneo and Peninsular Malaysia respectively. The majority of isolates were K. pneumoniae species complex (KpSC) 1 K. pneumoniae (n = 53, 89.8%). Four Klebsiella variicola subsp. variicola (KpSC3) and two Klebsiella quasipneumoniae subsp. similipneumoniae (KpSC4) were also found. It was discovered that 30.2% (n = 16) of the KpSC1 isolates were ST23, 11.3% (n = 6) were of ST65, 7.5% (n = 4) were ST13, and 13.2% (n = 7) were ST86. Only eight of the KpSC1 isolates encoded ESBL, but importantly not carbapenemase. Thirteen of the KpSC1 isolates carried yersiniabactin, colibactin and aerobactin, all of which harboured the rmpADC locus and are therefore characterised as hypervirulent. Co-carriage of multiple strains was minimal. In conclusion, most isolates were KpSC1, ST23, one of the most common sequence types and previously found in cases of K. pneumoniae infection. A proportion were hypervirulent (hvKp) however antibiotic resistance was low.
    Matched MeSH terms: beta-Lactamases/genetics
  18. Chung PY
    FEMS Microbiol Lett, 2016 10;363(20).
    PMID: 27664057
    Klebsiella pneumoniae is an opportunistic pathogen that commonly causes nosocomial infections in the urinary tract, respiratory tract, lung, wound sites and blood in individuals with debilitating diseases. Klebsiella pneumoniae is still a cause of severe pneumonia in alcoholics in Africa and Asia, and the predominant primary pathogen of primary liver abscess in Taiwan and Southeast Asia, particularly in Asian and Hispanic patients, and individuals with diabetes mellitus. In the United States and Europe, K. pneumoniae infections are most frequently associated with nosocomial infections. The emergence of antibiotic-resistant strains of K. pneumoniae worldwide has become a cause of concern where extended-spectrum β-lactamases (ESBLs) and carbapenemase-producing strains have been isolated with increasing frequency. The pathogen's ability to form biofilms on inserted devices such as urinary catheter has been proposed as one of the important mechanisms in nosocomially acquired and persistent infections, adding to the increased resistance to currently used antibiotics. In this review, infections caused by K. pneumoniae, antibiotic resistance and formation of biofilm will be discussed.
    Matched MeSH terms: beta-Lactamases/genetics
  19. Puah SM, Puthucheary SD, Chua KH
    Jpn J Infect Dis, 2019 Jul 24;72(4):266-269.
    PMID: 30918144 DOI: 10.7883/yoken.JJID.2018.031
    There is an alarming increase in the prevalence of extended-spectrum β-lactamases (ESBLs) present mainly in Enterobacteriaceae and other nonfermenting gram-negative bacteria, such as Alcaligenes faecalis, which is the only species in that genus that is clinically relevant. We investigated Alcaligenes species from 7 cases (6 inpatients and one outpatient) at our tertiary-care hospital. Four patients had urinary tract infections, and one each had systemic lupus erythematosus, pulmonary stenosis, and diabetic ulcer. All 7 isolates were identified as Alcaligenes spp. based on their 16S rRNA gene sequences, and antibiotic susceptibility was determined using a Vitek 2 system with AST-GN87 cards. All the strains were resistant to cefazolin; 6 were resistant to trimethoprim/sulfamethoxazole; 5 manifested resistance to ampicillin/sulbactam, cefepime, tobramycin, ciprofloxacin, and nitrofurantoin; whereas 5 had multidrug resistance profiles. All the strains (7/7) expressed ESBL activity; PCR screening and sequencing showed evidence of genes blaTEM-116 (7/7) and blaOXA-10 (4/7), and we believe that this is the first report on the presence of TEM-116 and OXA-10 in an Alcaligenes spp. A combination of the 2 genes was present in 4 strains. All 7 strains were found to harbor at least one ESBL gene probably contributing to the drug resistance.
    Matched MeSH terms: beta-Lactamases/genetics*
  20. Khor WC, Puah SM, Koh TH, Tan JAMA, Puthucheary SD, Chua KH
    Microb Drug Resist, 2018 May;24(4):469-478.
    PMID: 29461928 DOI: 10.1089/mdr.2017.0083
    OBJECTIVE: The objective of this study was to examine the species distribution, genetic relatedness, virulence gene profiles, antimicrobial sensitivities, and resistance gene distribution of clinical Aeromonas strains from Singapore and Malaysia.

    METHODS: A total of 210 Aeromonas clinical isolates were investigated: 116 from Singapore General Hospital and 94 archived clinical isolates from University of Malaya Medical Center, Malaysia. The isolates were genetically identified based on the gcat gene screening and the partial sequences of the rpoD housekeeping gene. Genetic relatedness, distribution of 15 virulence genes and 4 beta-lactamase resistance genes, and susceptibility patterns to 11 antimicrobial agents were compared.

    RESULTS: Of the 210 Aeromonas isolates, A. dhakensis-94 (45%) was the dominant species in Singapore and Malaysia. Species composition was similar and enterobacterial repetitive intergenic consensus-PCR did not show genetic relatedness between strains from the two countries. Of the 15 virulence genes, A. dhakensis and A. hydrophila harbored the most compared with other species. Different combinations of 9 virulence genes (exu, fla, lip, eno, alt, dam, hlyA, aexU, and ascV) were present in A. dhakensis, A. hydrophila, and A. veronii from both the countries. Distribution of virulence genes was species and anatomic site related. Majority (>80%) of the strains were susceptible to all antimicrobial agents tested, except amoxicillin and cephalothin. A. dhakensis strains from Malaysia significantly harbored the cphA gene compared with A. dhakensis from Singapore. Multidrug resistance was mostly detected in strains from peritoneal fluids of dialysis patients.

    CONCLUSION: This study revealed A. dhakensis as the dominant species isolated in both geographic regions, and that it carried a high number of virulence genes. It also highlights the geographic-related differences of virulence gene distribution and antimicrobial resistance profiles of clinical Aeromonas strains from Singapore and Malaysia.

    Matched MeSH terms: beta-Lactamases/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links