Displaying publications 41 - 60 of 729 in total

Abstract:
Sort:
  1. Taha M, Sultan S, Imran S, Rahim F, Zaman K, Wadood A, et al.
    Bioorg Med Chem, 2019 09 15;27(18):4081-4088.
    PMID: 31378594 DOI: 10.1016/j.bmc.2019.07.035
    In searchof the potenttherapeutic agent as an α-glucosidase inhibitor, we have synthesized twenty-five analogs (1-25) of quinoline-based Schiff bases as an inhibitoragainst α-glucosidase enzyme under positive control acarbose (IC50 = 38.45 ± 0.80 µM). From the activity profile it was foundthat analogs 1, 2, 3, 4, 11, 12 and 20with IC50values 12.40 ± 0.40, 9.40 ± 0.30, 14.10 ± 0.40, 6.20 ± 0.30, 14.40 ± 0.40, 7.40 ± 0.20 and 13.20 ± 0.40 µMrespectively showed most potent inhibition among the series even than standard drug acarbose (IC50 = 38.45 ± 0.80 µM). Here in the present study analog 4 (IC50 = 6.20 ± 0.30 µM) was found with many folds better α-glucosidase inhibitory activity than the reference drug. Eight analogs like 5, 7, 8, 16, 17, 22, 24 and 25 among the whole series displayed less than 50% inhibition. The substituents effects on phenyl ring thereby superficially established through SAR study. Binding interactions of analogs and the active site of ligands proteins were confirmed through molecular docking study. Spectroscopic techniques like 1H NMR, 13C NMR and ESIMS were used for characterization.
    Matched MeSH terms: Molecular Docking Simulation/methods*
  2. Rafique R, Khan KM, Arshia, Chigurupati S, Wadood A, Rehman AU, et al.
    Bioorg Chem, 2020 01;94:103410.
    PMID: 31732193 DOI: 10.1016/j.bioorg.2019.103410
    Over-expression of α-amylase enzyme causes hyperglycemia which lead to many physiological complications including oxidative stress, one of the most commonly associated problem with diabetes mellitus. Marketed α-amylase inhibitors such as acarbose, voglibose, and miglitol used to treat type-II diabetes mellitus, but also linked to several harmful effects. Therefore, it is essential to explore new and nontoxic antidiabetic agents with additional antioxidant properties. In this connection, a series of new N-sulfonohydrazide substituted indazoles 1-19 were synthesized by multistep reaction scheme and assessed for in vitro α-amylase inhibitory and radical (DPPH and ABTS) scavenging properties. All compounds were fully characterized by different spectroscopic techniques including 1H, 13C NMR, EI-MS, HREI-MS, ESI-MS, and HRESI-MS. Compounds showed promising α-amylase inhibitory activities (IC50 = 1.23 ± 0.06-4.5 ± 0.03 µM) as compared to the standard acarbose (IC50 1.20 ± 0.09 µM). In addition to that all derivatives were found good to moderate scavengers of DPPH (IC50 2.01 ± 0.13-5.3 ± 0.11) and ABTS (IC50 = 2.34 ± 0.07-5.5 ± 0.07 µM) radicals, in comparison with standard ascorbic acid having scavenging activities with IC50 = 1.99 ± 0.09 µM, and IC50 2.03 ± 0.11 µM for DPPH and ABTS radicals. In silico molecular docking study was conducted to rationalize the binding interaction of α-amylase enzyme with ligands. Compounds were observed as mixed type inhibitors in enzyme kinetic characterization.
    Matched MeSH terms: Molecular Docking Simulation/methods*
  3. James SA, Yam WK
    Comput Biol Chem, 2021 Jun;92:107499.
    PMID: 33932782 DOI: 10.1016/j.compbiolchem.2021.107499
    Rhinoviruses (RV), especially Human rhinovirus (HRVs) have been accepted as the most common cause for upper respiratory tract infections (URTIs). Pleconaril, a broad spectrum anti-rhinoviral compound, has been used as a drug of choice for URTIs for over a decade. Unfortunately, for various complications associated with this drug, it was rejected, and a replacement is highly desirable. In silico screening and prediction methods such as sub-structure search and molecular docking have been widely used to identify alternative compounds. In our study, we have utilised sub-structure search to narrow down our quest in finding relevant chemical compounds. Molecular docking studies were then used to study their binding interaction at the molecular level. Interestingly, we have identified 3 residues that is worth further investigation in upcoming molecular dynamics simulation systems of their contribution in stable interaction.
    Matched MeSH terms: Molecular Docking Simulation*
  4. Ali EZ, Zakaria Y, Mohd Radzi MA, Ngu LH, Jusoh SA
    Biomed Res Int, 2018;2018:4320831.
    PMID: 30175132 DOI: 10.1155/2018/4320831
    Ornithine transcarbamylase deficiency (OTCD), an X-linked disorder that results from mutations in the OTC gene, causes hyperammonemia and leads to various clinical manifestations. Mutations occurring close to the catalytic site of OTCase can cause severe OTCD phenotypes compared with those caused by mutations occurring on the surface of this protein. In this study, we report two novel OTC missense mutations, Q171H and N199H, found in Malaysian patients. Q171H and N199H caused neonatal onset OTCD in a male and late OTCD in a female, respectively. In silico predictions and molecular docking were performed to examine the effect of these novel mutations, and the results were compared with other 30 known OTC mutations. In silico servers predicted that Q171H and N199H, as well as 30 known missense mutations, led to the development of OTCD. Docking analysis indicated that N-(phosphonoacetyl)-L-ornithine (PALO) was bound to the catalytic site of OTCase mutant structure with minimal conformational changes. However, the mutations disrupted interatomic interactions in the catalytic site. Therefore, depending on the severity of disruption occurring at the catalytic site, the mutation may affect the efficiency of mechanism and functions of OTCase.
    Matched MeSH terms: Molecular Docking Simulation*
  5. Ha ZY, Ong HC, Oo CW, Yeong KY
    Curr Alzheimer Res, 2020;17(13):1177-1185.
    PMID: 33602088 DOI: 10.2174/1567205018666210218151228
    BACKGROUND: Benzimidazole is an interesting pharmacophore which has been extensively studied in medicinal chemistry due to its high affinity towards various enzymes and receptors. Its derivatives have been previously shown to possess a wide range of biological activities including anthelmintic, antihypertensive, antiulcer, as well as anticholinesterase activity.

    OBJECTIVE: The objective of this study is to search for more potent benzimidazole-based cholinesterase inhibitors, through the modification of the 1- and 2-positions of the benzimidazole core.

    METHODS: Synthesis of compounds were carried out via a 4-step reaction scheme following a previously reported protocol. Structure-activity relationship of the compounds are established through in vitro cholinesterase assays and in silico docking studies. Furthermore, cytotoxicity and blood brain barrier (BBB) permeability of the compounds were also investigated.

    RESULTS: Among the synthesised compounds, three of them (5IIa, 5IIb, and 5IIc) exhibited potent selective butyrylcholinesterase inhibition at low micromolar level. The compounds did not show any significant cytotoxicity when tested against a panel of human cell lines. Moreover, the most active compound, 5IIc, was highly permeable across the blood brain barrier.

    CONCLUSION: In total 10 benzimidazole derivatives were synthesized and screened for their AChE and BuChE inhibitory activities. Lead compound 5Iic, represents a valuable compound for further development as potential AD therapeutics.

    Matched MeSH terms: Molecular Docking Simulation*
  6. Roney M, Singh G, Huq AKMM, Forid MS, Ishak WMBW, Rullah K, et al.
    Mol Biotechnol, 2024 Apr;66(4):696-706.
    PMID: 36752937 DOI: 10.1007/s12033-023-00667-5
    The infection produced by the SARS-CoV-2 virus remains a significant health crisis worldwide. The lack of specific medications for COVID-19 necessitates a concerted effort to find the much-desired therapies for this condition. The main protease (Mpro) of SARS-CoV-2 is a promising target, vital for virus replication and transcription. In this study, fifty pyrazole derivatives were tested for their pharmacokinetics and drugability, resulting in eight hit compounds. Subsequent molecular docking simulations on SARS-CoV-2 main protease afforded two lead compounds with strong affinity at the active site. Additionally, the molecular dynamics (MD) simulations of lead compounds (17 and 39), along with binding free energy calculations, were accomplished to validate the stability of the docked complexes and the binding poses achieved in docking experiments. Based on these findings, compound 17 and 39, with their favorable projected pharmacokinetics and pharmacological characteristics, are the proposed potential antiviral candidates which require further investigation to be used as anti-SARS-CoV-2 medication.
    Matched MeSH terms: Molecular Docking Simulation*
  7. Nag S, Stany B, Mishra S, Kumar S, Mohanto S, Ahmed MG, et al.
    Endocrinol Diabetes Metab, 2024 Jul;7(4):e509.
    PMID: 38982323 DOI: 10.1002/edm2.509
    BACKGROUND: Diabetes mellitus, notably type 2, is a rising global health challenge, prompting the need for effective management strategies. Common medications such as metformin, insulin, repaglinide and sitagliptin can induce side effects like gastrointestinal disturbances, hypoglycemia, weight gain and specific organ risks. Plant-derived therapies like Karanjin from Pongamia pinnata present promising alternatives due to their historical use, holistic health benefits and potentially fewer adverse effects. This study employs in silico analysis to explore Karanjin's interactions with diabetes-associated receptors, aiming to unveil its therapeutic potential while addressing the limitations and side effects associated with conventional medications.

    METHODOLOGY: The research encompassed the selection of proteins from the Protein Data Bank (PDB), followed by structural refinement processes and optimization. Ligands such as Karanjin and standard drugs were retrieved from PubChem, followed by a comprehensive analysis of their ADMET profiling and pharmacokinetic properties. Protein-ligand interactions were evaluated through molecular docking using AutoDockTools 1.5.7, followed by the analysis of structural stability using coarse-grained simulations with CABS Flex 2.0. Molecular dynamics simulations were performed using Desmond 7.2 and the OPLS4 force field to explore how Karanjin interacts with proteins over 100 nanoseconds, focusing on the dynamics and structural stability.

    RESULTS: Karanjin, a phytochemical from Pongamia pinnata, shows superior drug candidate potential compared to common medications, offering advantages in efficacy and reduced side effects. It adheres to drug-likeness criteria and exhibits optimal ADMET properties, including moderate solubility, high gastrointestinal absorption and blood-brain barrier penetration. Molecular docking revealed Karanjin's highest binding energy against receptor 3L2M (Pig pancreatic alpha-amylase) at -9.1 kcal/mol, indicating strong efficacy potential. Molecular dynamics simulations confirmed stable ligand-protein complexes with minor fluctuations in RMSD and RMSF, suggesting robust interactions with receptors 3L2M.

    CONCLUSION: Karanjin demonstrates potential in pharmaceutical expansion for treating metabolic disorders such as diabetes, as supported by computational analysis. Prospects for Karanjin in pharmaceutical development include structural modifications for enhanced efficacy and safety. Nanoencapsulation may improve bioavailability and targeted delivery to pancreatic cells, while combination therapies could optimize treatment outcomes in diabetes management. Clinical trials and experimental studies are crucial to validate its potential as a novel therapeutic agent.

    Matched MeSH terms: Molecular Docking Simulation*
  8. Khan IA, Ahmad M, Ashfaq UA, Sultan S, Zaki MEA
    Molecules, 2021 Aug 06;26(16).
    PMID: 34443347 DOI: 10.3390/molecules26164760
    α-Glucosidase inhibitors (AGIs) are used as medicines for the treatment of diabetes mellitus. The α-Glucosidase enzyme is present in the small intestine and is responsible for the breakdown of carbohydrates into sugars. The process results in an increase in blood sugar levels. AGIs slow down the digestion of carbohydrates that is helpful in controlling the sugar levels in the blood after meals. Among heterocyclic compounds, benzimidazole moiety is recognized as a potent bioactive scaffold for its wide range of biologically active derivatives. The aim of this study is to explore the α-glucosidase inhibition ability of benzimidazolium salts. In this study, two novel series of benzimidazolium salts, i.e., 1-benzyl-3-{2-(substituted) amino-2-oxoethyl}-1H-benzo[d]imidazol-3-ium bromide 9a-m and 1-benzyl-3-{2-substituted) amino-2-oxoethyl}-2-methyl-1H-benzo[d] imidazol-3-ium bromide 10a-m were screened for their in vitro α-glucosidase inhibitory potential. These compounds were synthesized through a multistep procedure and were characterized by 1H-NMR, 13C-NMR, and EI-MS techniques. Compound 10d was identified as the potent α-glucosidase inhibitor among the series with an IC50 value of 14 ± 0.013 μM, which is 4-fold higher than the standard drug, acarbose. In addition, compounds 10a, 10e, 10h, 10g, 10k, 10l, and 10m also exhibited pronounced potential for α-glucosidase inhibition with IC50 value ranging from 15 ± 0.037 to 32.27 ± 0.050 µM when compared with the reference drug acarbose (IC50 = 58.8 ± 0.12 μM). A molecular docking study was performed to rationalize the binding interactions of potent inhibitors with the active site of the α-glucosidase enzyme.
    Matched MeSH terms: Molecular Docking Simulation*
  9. Alam A, Gul S, Zainab, Khan M, Elhenawy AA, Islam MS, et al.
    Future Med Chem, 2024;16(12):1185-1203.
    PMID: 38989989 DOI: 10.1080/17568919.2024.2342707
    Aim: Synthesis of novel bis-Schiff bases having potent inhibitory activity against phosphodiesterase (PDE-1 and -3) enzymes, potentially offering therapeutic implications for various conditions. Methods: Bis-Schiff bases were synthesized by refluxing 2,4-dihydroxyacetophenone with hydrazine hydrate, followed by treatment of substituted aldehydes with the resulting hydrazone to obtain the product compounds. After structural confirmation, the compounds were screened for their in vitro PDE-1 and -3 inhibitory activities. Results: The prepared compounds exhibited noteworthy inhibitory efficacy against PDE-1 and -3 enzymes by comparing with suramin standard. To clarify the binding interactions between the drugs, PDE-1 and -3 active sites, molecular docking studies were carried out. Conclusion: The potent compounds discovered in this study may be good candidates for drug development.
    Matched MeSH terms: Molecular Docking Simulation*
  10. Kanakal MM, Abbas SA, Khan A, Sultana S, Fatima H, Tabasssum R, et al.
    PMID: 39082166 DOI: 10.2174/0118715230309053240718122527
    INTRODUCTION: This research aims to create a gel formulation of Brassica juncea leaf extract and assess its anti-inflammatory properties using an in silico study. The anti-inflammatory activity has been compared with Diclofenac molecules in PDB id: 4Z69. Further, the Absorption, Distribution, Metabolism, Excretion, and Toxicity analysis has been performed to ensure the therapeutic potential and safety of the drug development process. The Quality by Design tool has been applied to optimize formulation development.

    METHODS: The extracted gel is characterized by performing Fourier transformer infrared, zeta potential, particle size, Scanning Electron Microscope, and entrapment efficiency. Further, the formulation is evaluated by examining its viscosity, spreadability, and pH measurement. An In vitro study of all nine extract suspensions was conducted to determine the drug contents at 276 nm.

    RESULTS: The optimized suspension has shown the maximum percentage of drug release (82%) in 10 hours of study. Animal study for anti-inflammatory activity was performed, and results of all five groups of animals compared the % inhibition of paw edema at three hours; gel (56.70%), standard (47.86%), and (39.72%) were found.

    CONCLUSION: The research could conclude that the anti-inflammatory activity of gel formulation is high compared to extract, and a molecular docking study validates the anti-inflammatory therapeutic effects. ADMET analysis ensures the therapeutic effects and their safety.

    Matched MeSH terms: Molecular Docking Simulation*
  11. Musfiroh I, Ifaya M, Sahidin I, Herawati DMD, Tjitraresmi A, Abdurrahman S, et al.
    J Biomol Struct Dyn, 2024;42(21):11415-11424.
    PMID: 37776010 DOI: 10.1080/07391102.2023.2262595
    High blood sugar is a defining feature of chronic disease, diabetes mellitus (DM). There are numerous commercially available medications for the treatment of DM. However, managing the patient's glucose levels remain a challenge because of the gradual reduction in beta-cell function and some side effects from the long-term use of various medications. Previous research has shown that the phenolic compound of henna plant (Lawsonia inermis L.) has the potential as anti-diabetic agent since it is able to suppress the digesting of α-amylase enzyme. In these studies, the plant' phenolic compounds have been isolated and characterized using UV, IR, NMR and LC-MS methods. Furthermore, the compound interaction into the active site of the α-amylase enzyme has been analyzed using molecular docking and molecular dynamics, as well as into α-glucosidase enzyme for predicting of the affinities. The results showed that isolated compound has the molecular formula of C15H10O6 with eleven degrees of unsaturation (DBE; double bond equivalence). The DBE value corresponds to the structure of the luteolin compound having an aromatic ring (8), a carbonyl group on the side chain (1) and a ketone ring with (2). The interaction study of the isolated compound with α-amylase and α-glucosidase enzyme using molecular docking compared to the positive control (acarbose) gave binding energy of -8.03 and -8.95 kcal/mol, respectively. The molecular dynamics simulation using the MM-PBSA method, complex stability based on solvent accessible surface area (SASA), root mean square deviation (RMSD), and root mean square fluctuation (RMSF) revealed that the compound has a high affinity for receptors. The characteristics of skin permeability, absorption, and distribution using ADME-Tox model were also well predicted. The results indicate that the phenolic compound isolated from L. inermis leaf was luteolin and it has the potential as an anti-diabetic agent.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Molecular Docking Simulation*
  12. Ahmad S, Bano N, Khanna K, Gupta D, Raza K
    Int J Biol Macromol, 2024 Sep;276(Pt 1):133872.
    PMID: 39019378 DOI: 10.1016/j.ijbiomac.2024.133872
    Lung Cancer (LC) is among the most death-causing cancers, has caused the most destruction and is a gender-neutral cancer, and WHO has kept this cancer on its priority list to find the cure. We have used high-throughput virtual screening, standard precision docking, and extra precise docking for extensive screening of Drug Bank compounds, and the uniqueness of this study is that it considers multiple protein targets of prognosis and metastasis of LC. The docking and MM\GBSA calculation scores for the Tiaprofenic acid (DB01600) against all ten proteins range from -8.422 to -5.727 kcal/mol and - 47.43 to -25.72 kcal/mol, respectively. Also, molecular fingerprinting helped us to understand the interaction pattern of Tiaprofenic acid among all the proteins. Further, we extended our analysis to the molecular dynamic simulation in a neutralised SPC water medium for 100 ns. We analysed the root mean square deviation, fluctuations, and simulative interactions among the protein, ligand, water molecules, and protein-ligand complexes. Most complexes have shown a deviation of <2 Å as cumulative understanding. Also, the fluctuations were lesser, and only a few residues showed the fluctuation with a huge web of interaction between the protein and ligand, providing an edge that supports that the protein and ligand complexes were stable. In the MTT-based Cell Viability Assay, Tiaprofenic Acid exhibited concentration-dependent anti-cancer efficacy against A549 lung cancer cells, significantly reducing viability at 100 μg/mL. These findings highlight its potential as a therapeutic candidate, urging further exploration into the underlying molecular mechanisms for lung cancer treatment.
    Matched MeSH terms: Molecular Docking Simulation*
  13. Hossain MS, Roney M, Bin Mohd Yunus MY, Shariffuddin JH
    J Biomol Struct Dyn, 2024;42(24):13619-13634.
    PMID: 37916669 DOI: 10.1080/07391102.2023.2276889
    Diabetes affects millions globally and poses treatment challenges. Targeting the enzyme fructose-1,6-bisphosphatase (FBPase) in gluconeogenesis and exploring plant-based therapies offer potential solutions for improving diabetes management while supporting sustainability and medicinal advancements. Utilizing pineapple (Ananas comosus L. Merr.) waste as a source of drug precursors could be valuable for health and environmental care due to its medicinal benefits and abundant yearly biomass production. Therefore, this study conducted a virtual screening to identify potential natural compounds from pineapple that could inhibit FBPase activity. A total of 112 compounds were screened for drug-likeness and ADMET properties, and molecular docking simulations were performed on 20 selected compounds using blind docking. The lead compound, butane-2,3-diyl diacetate, was subjected to 100 ns MD simulations, revealing a binding energy of -5.4 kcal/mol comparable to metformin (-5.6 kcal/mol). The MD simulation also confirmed stable complexes with crucial hydrogen bonds. Glu20, Ala24, Thr27, Gly28, Glu29, Leu30, Val160, Met177, Asp178, and Cys179 were identified as key amino acids that stabilized the human liver FBPase-butane-2,3-diyl diacetate complex, while Tyr215 and Asp218 played a crucial role in the human liver FBPase-Metformin complex. Our study indicates that the lead compound has high intestinal solubility. Therefore, it would show rapid bloodstream distribution and effective action on the target protein, making butane-2,3-diyl diacetate a potential antidiabetic drug candidate. However, further investigations in vitro, preclinical, and clinical trials are required to thoroughly assess its efficacy and safety.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Molecular Docking Simulation*
  14. Roney M, Issahaku AR, Govinden U, Gazali AM, Aluwi MFFM, Zamri NB
    J Biomol Struct Dyn, 2024;42(24):13939-13952.
    PMID: 37942697 DOI: 10.1080/07391102.2023.2279280
    To restore the integrity of the skin and subcutaneous tissue, the wound healing process involves a complex series of well-orchestrated biochemical and cellular events. Due to the existence of various active components, accessibility and few side effects, some plant extracts and their phytoconstituents are recognised as viable options for wound healing agents. To find possible inhibitors of diabetic wound healing, four main constituents of aloe vera were identified from the literature. TGF-β1 and the compounds were studied using molecular docking to see how they interacted with the active site of target protein (PDB ID: 6B8Y). The pharmacokinetics investigation of the aloe emodin with the highest dock score complied with all the Lipinski's rule of five and pharmacokinetics criteria. Conformational change in the docked complex of Aloe emodin was investigated with the Amber simulation software, via a molecular dynamic (MD) simulation. The MD simulations of aloe emodin bound to TGF-β1 showed the significant structural rotations and twists occurring from 0 to 200 ns. The estimate of the aloe emodin-TGF-β1 complex's binding free energy has also been done using MM-PBSA/GBSA techniques. Additionally, aloe emodin has a wide range of enzymatic activities since their probability active (Pa) values is >0.700. 'Aloe emodin', an active extract of aloe vera, has been identified as the key chemical in the current investigation that can inhibit diabetic wound healing. Both in-vitro and in-vivo experiments will be used in a wet lab to confirm the current computational findings.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Molecular Docking Simulation*
  15. Rai PV, Ramu R, Akhileshwari P, Prabhu S, Prabhune NM, Deepthi PV, et al.
    Molecules, 2024 Nov 27;29(23).
    PMID: 39683757 DOI: 10.3390/molecules29235599
    In search of novel antidiabetic agents, we synthesized a new series of chalcones with benzimidazole scaffolds by an efficient 'one-pot' nitro reductive cyclization method and evaluated their α-glucosidase and α-amylase inhibition studies. The 'one-pot' nitro reductive cyclization method offered a simple route for the preparation of benzimidazoles with excellent yield and higher purity compared to the other conventional acid- or base-catalyzed cyclization methods. 1H, 13C NMR, IR, and mass spectrum data were used to characterize the compounds. Single-crystal XRD data confirmed the 3D structure of compound 7c, which was crystalized in the P1¯ space group of the triclinic crystal system. Hirshfeld surface analysis validates the presence of O-H..O, O-H…N, and C-H…O intermolecular hydrogen bonds. From the DFT calculations, the energy gap between the frontier molecular orbitals in 7c was found to be 3.791 eV. From the series, compound 7l emerged as a potent antidiabetic agent with IC50 = 22.45 ± 0.36 µg/mL and 20.47 ± 0.60 µg/mL against α-glucosidase and α-amylase enzymes, respectively. The in silico molecular docking studies revealed that compound 7l has strong binding interactions with α-glucosidase and α-amylase proteins. Molecular dynamics studies also revealed the stability of compound 7l with α-glucosidase and α-amylase proteins.
    Matched MeSH terms: Molecular Docking Simulation*
  16. Suwendar S, Jantan I, Fakih TM, Priani SE, Mulyanti D, Patricia VM, et al.
    J Biomol Struct Dyn, 2025 Feb;43(3):1539-1551.
    PMID: 38084758 DOI: 10.1080/07391102.2023.2292294
    This research is part of the research umbrella regarding the use of watery rose apple leaf [Eugenia aqueum (Burm. F) Alston] in the health sector. Infectious diseases of worms, are still a health problem with a high burden based on the incidence and mortality rates in Southeast Asian countries. Therefore, we tried to create a 3D structure of vital receptors of worms including Nicotinic Cholinergic Receptor (NCR), Acetylcholinesterase Enzymes (AE), and Phosphorylase Enzymes (PE) using homology modeling method through the SWISS-MODEL webserver, then conducted a molecular dynamics simulations using active metabolite of watery rose apple leaf i.e. 2',4'‑dihydroxy‑6'‑methoxy‑3',5'‑dimethylchalcone which was then compared with Piperazine Citrate and Pyrantel Pamoate which are anthelmintic drugs on the market. Based on the results of the study, the structure of the three receptors with high resolution was successfully obtained which was characterized by a good Ramachandran value, which was above 90%. Then the ligand structure was successfully modeled in a three-dimensional model and optimized geometrically using GaussView 5.0.8 and Gaussian09 software. In further, Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuation (RMSF) analysis of molecular dynamics simulations ligand against the three receptors, compound 2',4'‑dihydroxy‑6'‑methoxy‑3',5'‑dimethylchalcone showed better stability than Piperazine Citrate and Pyrantel Pamoate at 50 ns simulation, although from the calculation of binding free energy Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) is not better than the two comparisons. It can be concluded that the compound 2',4'‑dihydroxy‑6'‑methoxy‑3',5'‑dimethylchalcone from watery rose apple leaf showed potential as anthelmintic candidates.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Molecular Docking Simulation*
  17. Pan J, Ng CL, Lim TS, Choong YS
    J Mol Model, 2025 Feb 08;31(3):77.
    PMID: 39920469 DOI: 10.1007/s00894-025-06298-8
    CONTEXT: S100 calcium-binding protein A9 (S100A9) is easily assembled into amyloid aggregates in solution. These amyloid aggregates cause retinal toxicity and act as an attachment core for Aβ fibrillar plaques that contribute to Alzheimer's disease progression. The overexpression of S100A9 is also noticed in various malignancies. Therefore, the S100A9 amyloid formation inhibition is of significant interest. In comparison with small-molecule drugs, short peptides demonstrate higher specificity, potency, and biosafety. Hence, it could be beneficial to identify potential peptides to inhibit or disrupt S100A9 amyloid aggregation. Typical peptide design and identification via experimental means requires extensive preparation procedures and is limited to random selection of peptides. Virtual screening therefore offers an unbiased, higher throughput, and economically efficient approach in peptide drug development. Here, we reported in silico pentapeptide design against S100A9 and studied the interaction of pentapeptide with S100A9 that leads to the binding of the peptide with S100A9.

    METHOD: Docking simulation resulted in three top binding free energy tripeptides (WWF, WPW, and YWF) with comparable affinity towards a known S100A9 inhibitor (polyphenol oleuropein aglycone; OleA). Subsequently, pentapeptides that consist of the three core tripeptides were selected from a pre-constructed pentapeptide library for further evaluation with docking simulation. Based on best docked binding free energy, two pentapeptides (WWPWH and WPWYW) were selected and subjected to 500 ns molecular dynamics (MD) simulation to study the important features that lead to the binding with S100A9. MMGBSA binding free energy calculation estimated - 30.38, - 24.58, and - 30.31 kcal/mol for WWPWH, WPWYW, and OleA, respectively. The main driving force for pentapeptide-S100A9 recognition was contributed by the electrostatic interaction. The results demonstrate that at in silico level, this workflow is able to design potential pentapeptides that are comparable with OleA and might be the lead molecule for future use to disaggregate S100A9 fibrils.

    Matched MeSH terms: Molecular Docking Simulation*
  18. Hau EH, Chew LY, Yeo SK, Owatworakit A, Teh SS, Mah SH
    Int J Biol Macromol, 2025 Feb;291:138897.
    PMID: 39701231 DOI: 10.1016/j.ijbiomac.2024.138897
    Diabetes, particularly type II, is a global health concern, with current treatments like α-glucosidase inhibitors often causing gastrointestinal side effects. This study explored the antihyperglycemic potential of crude protein hydrolysate from oil palm leaves (OPL) as a plant-based α-glucosidase inhibitor. OPL protein hydrolysate was extracted under acidic, neutral, and alkaline conditions, and their α-glucosidase inhibitory activity was assessed. OPL hydrolysate obtained under neutral conditions for 2 h showed the highest inhibitory activity, comparable to the standard drug, acarbose. Bioassay-guided fractionation of the most potent extract revealed that peptides from sub-fractions C1 and C9 exhibited stronger inhibition, with IC50 values of 66.3 and 62.0 μg/mL, respectively. Seven novel peptides were identified from these fractions, and molecular docking confirmed stable interactions between these peptides and the α-glucosidase enzyme via hydrogen bonds and salt bridges. These findings suggest that OPL protein hydrolysate is a plant-based promising natural α-glucosidase inhibitor with potential as an antidiabetic agent. Future studies should focus on in vivo validation of its efficacy and safety for therapeutic use.
    Matched MeSH terms: Molecular Docking Simulation*
  19. Al Mashud MA, Devnath R, Anzuman M, Sumona MI, Hossain MS, Kumer A, et al.
    Med Chem, 2025;21(2):122-143.
    PMID: 40007184 DOI: 10.2174/0115734064315601240628115330
    BACKGROUND: Head and neck cancer (HNC) is on the rise worldwide, endangering lives and straining healthcare systems in both developing and developed nations. Despite the availability of a number of therapy options, the success rate for treating and controlling head and neck cancer remains dismal. To combat the aggressiveness and drug resistance of Epstein-Barr virus (EBV)-positive Head-Neck cancer cells, this study looks into the potential of Euphorbia tirucalli (pencil cactus) leaf extract.

    OBJECTIVES: The goal of this study is to identify prospective therapeutic candidates from the extract of Euphorbia tirucalli (pencil cactus) leaves, which have the ability to inhibit Epstein-Barr virus (EBV)-positive Head- Neck cancer cells.

    MATERIALS AND METHODS: The thirteen most important chemical components found in Euphorbia tirucalli (pencil cactus) leaves were analyzed by means of molecular modeling techniques such as Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET), Quantum Mechanics (QM) calculation, molecular docking, and molecular dynamics (MD) simulations. Using the Prediction of Activity Spectra for Substances (PASS) model, we assess the potency of these compounds. Important molecular properties such as chemical potential, electronegativity, hardness, and softness can be determined with the use of quantum chemical calculations employing HOMO-LUMO analysis. These drugs' safety and toxicological characteristics are better understood to assessments of their pharmacokinetics and ADMET. Finally, molecular dynamics simulations are employed to verify binding interactions and assess the stability of docked complexes.

    RESULTS: The molecular docking analysis identifies ligands (01), (02), and (10) as strong competitors, with strong binding affinity for the Epstein-Barr virus (EBV)-positive Head-Neck cancer cell line. Not only do the ligands (01), (02), and (10) match the criteria for a potential new inhibitor of head-neck cancer, but they also outperform the present FDA-approved treatment.

    CONCLUSION: Taraxerol, euphol, and ephorginol, three phytochemicals isolated from the leaves of the Euphorbia tirucalli (pencil cactus), have been identified as effective anti-cancer agents with the potential to serve as a foundation for novel head-neck cancer therapies, particularly those targeting the Epstein-Barr virus (EBV)-overexpressing subtype of this disease. An effective, individualized treatment plan for head-neck cancer is a long way off, but this study is a major step forward that could change the lives of patients and reduce the global burden of this disease.

    Matched MeSH terms: Molecular Docking Simulation*
  20. Yoon YK, Choon TS
    Arch Pharm (Weinheim), 2016 Jan;349(1):1-8.
    PMID: 26616218 DOI: 10.1002/ardp.201500337
    Benzimidazole derivatives have been shown to possess sirtuin-inhibitory activity. In the continuous search for potent sirtuin inhibitors, systematic changes on the terminal benzene ring were performed on previously identified benzimidazole-based sirtuin inhibitors, to further investigate their structure-activity relationships. It was demonstrated that the sirtuin activities of these novel compounds followed the trend where meta-substituted compounds possessed markedly weaker potency than ortho- and para-substituted compounds, with the exception of halogenated substituents. Molecular docking studies were carried out to rationalize these observations. Apart from this, the methods used to synthesize the interesting compounds are also discussed.
    Matched MeSH terms: Molecular Docking Simulation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links