Displaying publications 61 - 80 of 106 in total

Abstract:
Sort:
  1. Chong YM, Tan XH, Hooi PS, Lee LM, Sam IC, Chan YF
    J Med Virol, 2019 08;91(8):1562-1565.
    PMID: 31032971 DOI: 10.1002/jmv.25495
    Rapid diagnosis of influenza is important for early treatment and institution of control measures. In developing tropical countries such as Malaysia, influenza occurs all year round, but molecular assays and conventional techniques (such as immunofluorescence and culture) for diagnosis are not widely available. Rapid influenza diagnostic tests (RIDTs) may be useful in this setting. A total of 552 fresh respiratory specimens were assessed from patients with respiratory symptoms at a teaching hospital in Kuala Lumpur, Malaysia from November 2017 to March 2018. Two digital immunoassays (DIAs), STANDARD F Influenza A/B Fluorescence Immunoassay (STANDARD F) and Sofia Influenza A + B Fluorescence Immunoassay (Sofia) and one conventional RIDT (immunochromatographic assay), SD Bioline Influenza Ag A/B/A(H1N1) Pandemic rapid test kit (SD Bioline) were evaluated in comparison with a WHO-recommended reverse transcription quantitative PCR (RT-qPCR). Of the 552 samples, influenza A virus was detected in 47 (8.5%) and influenza B virus in 7 (1.3%). The digital immunoassays STANDARD F and Sofia had significantly higher overall sensitivity rates (71.7% and 70.6%, respectively) than the conventional RIDT SD Bioline and immunofluorescence/viral culture (55.8% and 52.8%, respectively). Sensitivity rates were higher for influenza A than influenza B, and specificity rates were uniformly high, ranging from 98% to 100%. Digital readout RIDTs can be used in tropical settings with year-round influenza if PCR is unavailable.
  2. Sam IC, Shaw R, Chan YF, Hooi PS, Hurt AC, Barr IG
    J Med Virol, 2013 Aug;85(8):1420-5.
    PMID: 23765779 DOI: 10.1002/jmv.23622
    Relatively little is known about the burden of influenza in tropical countries. The seroprevalence of pandemic influenza A (H1N1) 2009, seasonal H1N1 and H3N2 was determined in Kuala Lumpur, Malaysia. Pre- and post-pandemic residual laboratory sera were tested by hemagglutination-inhibition. The seroprevalence of A(H1N1)pdm09 increased from 3.7% pre-pandemic to 21.9% post-pandemic, giving an overall cumulative incidence of 18.1% (95% CI, 13.8-22.5%), mainly due to increases in those <5, 5-17, and 18-29 years old. In contrast with findings from USA, Europe, and Australia, pre-existing seroprevalence to A(H1N1)pdm09 was low at 5.6% in the elderly age group of >55 years. A(H1N1)pdm09 affected almost a third of those <30 years in Kuala Lumpur. Pre-pandemic seroprevalence was 14.7% for seasonal H1N1 and 21.0% for H3N2, and these rates did not change significantly after the pandemic. Seasonal and pandemic influenza cause a considerable burden in tropical Malaysia, particularly in children and young adults.
  3. Chan YF, Sam IC, Nayan E, Tan XH, Yogarajah T
    J Med Virol, 2021 Oct 07.
    PMID: 34617599 DOI: 10.1002/jmv.27381
    Enterovirus D68 (EV-D68) is an emerging respiratory pathogen since the 2014 outbreak in USA. A low level of virus circulation has been reported in Kuala Lumpur, Malaysia in the past. However, the extent of the infection in Malaysia is not known. In the present study, we determine the seroepidemiology of EV-D68 in Kuala Lumpur, Malaysia before and after the USA outbreak in Aug 2014. A luciferase-based seroneutralization test was developed using a clone-derived prototype Fermon strain carrying a nanoluciferase marker. We screened the neutralization capacity of 450 serum samples from children and adults (1-89 years old) collected between 2013 to 2015. EV-D68 seropositivity increased with age, with children aged 1-3 showing significantly lower seroprevalence compared to adults. Multivariate analysis showed that older age groups 13-49 years (odds ratio [OR] 4.78 [95% CI 2.69-8.49], p<0.0001) and >50 years (OR 3.83 [95% CI 2.19-6.68], p<0.0001) were more likely to be EV-D68 seropositive than children <13 years. Sampling post-Sept 2014 compared to pre-Sept 2014 also predicted seropositivity (OR 1.66 [95% CI 1.04-2.65]). Presence of neutralizing antibodies against EV-D68 in the study population suggests that EV-D68 was circulating prior to 2014. A higher seropositivity post-Sept 2014 suggests that Malaysia also experienced an upsurge in EV-D68 infections after the USA outbreaks in Aug 2014. A low seropositivity rate observed in children, especially those aged 1-3 years old, suggests that they are at risk and should be prioritized for future vaccination. This article is protected by copyright. All rights reserved.
  4. Chan YF, Jafar FL, Nathan AM, de Bruyne JA, Hassan A, Nor'e SS, et al.
    J Infect, 2012 Jun;64(6):633-6.
    PMID: 22425558 DOI: 10.1016/j.jinf.2012.03.011
  5. Sam IC, Chan YF, Chan SY, Loong SK, Chin HK, Hooi PS, et al.
    J Clin Virol, 2009 Oct;46(2):180-3.
    PMID: 19683467 DOI: 10.1016/j.jcv.2009.07.016
    BACKGROUND: Chikungunya virus (CHIKV) of the Central/East African genotype has caused large outbreaks worldwide in recent years. In Malaysia, limited CHIKV outbreaks of the endemic Asian and imported Central/East African genotypes were reported in 1998 and 2006. Since April 2008, an unprecedented nationwide outbreak has affected Malaysia.
    OBJECTIVE: To study the molecular epidemiology of the current Malaysian CHIKV outbreak, and to evaluate cross-neutralisation activity of serum from infected patients against isolates of Asian and Central/East African genotypes.
    STUDY DESIGN: Serum samples were collected from 83 patients presenting in 2008, and tested with PCR for the E1 gene, virus isolation, and for IgM. Phylogenetic analysis was performed on partial E1 gene sequences of 837bp length. Convalescent serum from the current outbreak and Bagan Panchor outbreak (Asian genotype, 2006) were tested for cross-neutralising activity against representative strains from each outbreak.
    RESULTS: CHIKV was confirmed in 34 patients (41.0%). The current outbreak strain has the A226V mutation in the E1 structural protein, and grouped with Central/East African isolates from recent global outbreaks. Serum cross-neutralisation activity against both Central/East African and Asian genotypes was observed at titres from 40 to 1280.
    CONCLUSIONS: The CHIKV strain causing the largest Malaysian outbreak is of the Central/East African genotype. The presence of the A226V mutation, which enhances transmissibility of CHIKV by Aedes albopictus, may explain the extensive spread especially in rural areas. Serum cross-neutralisation of different genotypes may aid potential vaccines and limit the effect of future outbreaks.
  6. NikNadia N, Sam IC, Rampal S, WanNorAmalina W, NurAtifah G, Verasahib K, et al.
    PLoS Negl Trop Dis, 2016 Mar;10(3):e0004562.
    PMID: 27010319 DOI: 10.1371/journal.pntd.0004562
    Enterovirus A71 (EV-A71) is an important emerging pathogen causing large epidemics of hand, foot and mouth disease (HFMD) in children. In Malaysia, since the first EV-A71 epidemic in 1997, recurrent cyclical epidemics have occurred every 2-3 years for reasons that remain unclear. We hypothesize that this cyclical pattern is due to changes in population immunity in children (measured as seroprevalence). Neutralizing antibody titers against EV-A71 were measured in 2,141 residual serum samples collected from children ≤12 years old between 1995 and 2012 to determine the seroprevalence of EV-A71. Reported national HFMD incidence was highest in children <2 years, and decreased with age; in support of this, EV-A71 seroprevalence was significantly associated with age, indicating greater susceptibility in younger children. EV-A71 epidemics are also characterized by peaks of increased genetic diversity, often with genotype changes. Cross-sectional time series analysis was used to model the association between EV-A71 epidemic periods and EV-A71 seroprevalence adjusting for age and climatic variables (temperature, rainfall, rain days and ultraviolet radiance). A 10% increase in absolute monthly EV-A71 seroprevalence was associated with a 45% higher odds of an epidemic (adjusted odds ratio, aOR1.45; 95% CI 1.24-1.69; P<0.001). Every 10% decrease in seroprevalence between preceding and current months was associated with a 16% higher odds of an epidemic (aOR = 1.16; CI 1.01-1.34 P<0.034). In summary, the 2-3 year cyclical pattern of EV-A71 epidemics in Malaysia is mainly due to the fall of population immunity accompanying the accumulation of susceptible children between epidemics. This study will impact the future planning, timing and target populations for vaccine programs.
  7. NikNadia N, Sam IC, Khaidir N, Ngui R, Lim YA, Goh XT, et al.
    PLoS One, 2016;11(2):e0148767.
    PMID: 26866912 DOI: 10.1371/journal.pone.0148767
    Enterovirus A71 (EV-A71), which is transmitted by the fecal-oral route, causes hand, foot and mouth disease and, rarely, severe neurological complications. In Malaysia, the indigenous rural community (Orang Asli) has a high prevalence of parasitic diseases due to poor sanitation, water supply and hygiene practices. This cross-sectional study compared the seroepidemiology of EV-A71 among rural Orang Asli and urban Kuala Lumpur populations in West Malaysia, and determined the risk factors associated with EV-A71 seropositivity in rural Orang Asli. Seropositive rates were determined by neutralization assay. EV-A71 seropositivity was strongly associated with increasing age in both populations. Rural Orang Asli children ≤12 years had significantly higher EV-A71 seropositivity rates than urban Kuala Lumpur children (95.5% vs 57.6%, P < 0.001), and also higher rates in the age groups of 1-3, 4-6 and 7-12 years. Multivariate analysis confirmed that age ≤12 years (adjusted OR 8.1, 95% CI 3.2-20.7, P < 0.001) and using untreated water (adjusted OR 6.2, 95% CI 2.3-16.6, P < 0.001) were independently associated with EV-A71 seropositivity in the Orang Asli population. Supply of clean drinking water may reduce the risk of EV-A71 infection. With significantly higher EV-A71 seropositive rates, younger rural children should be a priority target for future vaccination programs in Malaysia.
  8. Subakir H, Chong YM, Chan YF, Hasan MS, Jamaluddin MFH, Pang YK, et al.
    J Med Microbiol, 2020 Jan;69(1):49-51.
    PMID: 31750812 DOI: 10.1099/jmm.0.001108
    Introduction.Burkholderia pseudomallei (melioidosis) is an important cause of community-acquired pneumonia (CAP) in the tropics. Selective medium is recommended for laboratory diagnosis with non-sterile respiratory samples, while PCR is not routinely used due to variable reported performance. The effectiveness of these diagnostic modalities varies by site.Aim. To compare selective media and real-time PCR (qPCR) with routine media in detecting B. pseudomallei in CAP respiratory samples in a low-incidence setting in Kuala Lumpur, Malaysia.Methodology. Respiratory samples were routinely cultured on blood, chocolate and MacConkey agar (RESP-ROUTINE), and compared to culture on selective Ashdown medium (RESP-SELECTIVE) and qPCR. The gold standard was routine culture of B. pseudomallei from any site (ALL-ROUTINE).Results.B. pseudomallei was detected in 8/204 (3.9 %) samples. Overall sensitivity rates differed (P=0.03) for qPCR (100%), RESP-SELECTIVE (87.5%) and RESP-ROUTINE (50%). There was a trend towards lower median days to positive culture for RESP-SELECTIVE (1 day) compared to RESP-ROUTINE (2 days, P=0.08) and ALL-ROUTINE (2 days, P=0.06). Reagent costs for each additional detection were USD59 for RESP-SELECTIVE and USD354 for PCR.Conclusions. In a low-incidence setting, selective culture of respiratory samples on Ashdown was more sensitive and allowed quicker identification than routine media, at reasonable cost. Blood cultures are critical, confirming four cases missed by routine respiratory culture. Selective medium is useful in early pneumonia (pre-sepsis) and resource-limited settings where blood cultures are infrequently done. Real-time PCR is costly, but highly sensitive and useful for high-risk patients with diabetes, cancer or immunosuppressants, or requiring ventilation or intensive care.
  9. Nor'e SS, Sam IC, Mohamad Fakri EF, Hooi PS, Nathan AM, de Bruyne JA, et al.
    Trop Biomed, 2014 Sep;31(3):562-6.
    PMID: 25382484 MyJurnal
    Human metapneumovirus (HMPV) is a recently discovered cause of viral respiratory infections. We describe clinical and molecular epidemiology of HMPV cases diagnosed in children with respiratory infection at University of Malaya Medical Centre, Kuala Lumpur, Malaysia. The prevalence rate of HMPV between 2010 and 2012 was 1.1%, and HMPV contributed 6.5% of confirmed viral respiratory infections. The HMPV patients had a median age of 1.6 years, and a median hospital admission of 4 days. The most common clinical presentations were fever, rhinitis, pneumonia, vomiting/diarrhoea, and bronchiolitis. Based on the partial sequences of F fusion gene from 26 HMPV strains, 14 (54%) were subgenotype A2b, which was predominant in 2010; 11 (42%) were subgenotype B1, which was predominant in 2012; and 1 (4%) was subgenotype A2a. Knowledge of the circulating subgenotypes in Malaysia, and the displacement of predominant subgenotypes within 3 years, is useful data for future vaccine planning.
  10. Chan YF, Wee KL, Chiam CW, Khor CS, Chan SY, Amalina W MZ, et al.
    Trop Biomed, 2012 Sep;29(3):451-66.
    PMID: 23018509 MyJurnal
    Three genomic regions, VP4 capsid, VP1 capsid and 3D RNA polymerase of human enterovirus 71 (EV-71) and coxsackievirus A16 (CV-A16) were sequenced to understand the evolution of these viruses in Malaysia. A total of 42 EV-71 and 36 CV-A16 isolates from 1997- 2008 were sequenced. Despite the presence of many EV-71 subgenotypes worldwide, only subgenotypes B3, B4, B5, C1 and C2 were present in Malaysia. Importation of other subgenotypes such as C3, C4/D and C5 from other countries was infrequent. For CV-A16, the earlier subgenotype B1 was replaced by subgenotypes B2a and the recent B2c. Subgenotype B2a was present throughout the study while B2c only emerged in 2005. No genetic signatures could be attributed to viral virulence suggesting that host factors have a major role in determining the outcome of infection. Only three EV-71 B3 isolates showed non-consistent phylogeny in the 3D RNA polymerase region which indicated occurrence of recombination in EV-71. High genetic diversity was observed in the Malaysian EV-71 but Malaysian CV-A16 showed low genetic diversity in the three genomic regions sequenced. EV-71 showed strong purifying selection, but that occurred to a lesser extent in CV-A16.
  11. Ng KT, Chook JB, Oong XY, Chan YF, Chan KG, Hanafi NS, et al.
    Sci Rep, 2016 10 10;6:34855.
    PMID: 27721388 DOI: 10.1038/srep34855
    Human rhinovirus (HRV) is the major aetiology of respiratory tract infections. HRV viral load assays are available but limitations that affect accurate quantification exist. We developed a one-step Taqman assay using oligonucleotides designed based on a comprehensive list of global HRV sequences. The new oligonucleotides targeting the 5'-UTR region showed high PCR efficiency (E = 99.6%, R2 = 0.996), with quantifiable viral load as low as 2 viral copies/μl. Assay evaluation using an External Quality Assessment (EQA) panel yielded a detection rate of 90%. When tested on 315 human enterovirus-positive specimens comprising at least 84 genetically distinct HRV types/serotypes (determined by the VP4/VP2 gene phylogenetic analysis), the assay detected all HRV species and types, as well as other non-polio enteroviruses. A commercial quantification kit, which failed to detect any of the EQA specimens, produced a detection rate of 13.3% (42/315) among the clinical specimens. Using the improved assay, we showed that HRV sheds in the upper respiratory tract for more than a week following acute infection. We also showed that HRV-C had a significantly higher viral load at 2-7 days after the onset of symptoms (p = 0.001). The availability of such assay is important to facilitate disease management, antiviral development, and infection control.
  12. Oong XY, Ng KT, Tan JL, Chan KG, Kamarulzaman A, Chan YF, et al.
    PLoS One, 2017;12(1):e0170610.
    PMID: 28129386 DOI: 10.1371/journal.pone.0170610
    Reassortment of genetic segments between and within influenza B lineages (Victoria and Yamagata) has been shown to generate novel reassortants with unique genetic characteristics. Based on hemagglutinin (HA) and neuraminidase (NA) genes, recent surveillance study has identified reassortment properties in B/Phuket/3073/2013-like virus, which is currently used in the WHO-recommended influenza vaccine. To understand the potential reassortment patterns for all gene segments, four B/Phuket/3073/2013-like viruses and two unique reassortants (one each from Yamagata and Victoria) detected in Malaysia from 2012-2014 were subjected to whole-genome sequencing. Each gene was phylogenetically classified into lineages, clades and sub-clades. Three B/Phuket/3073/2013-like viruses from Yamagata lineage were found to be intra-clade reassortants, possessing PA and NA genes derived from Stockholm/12-like sub-clade, while the remaining genes from Wisconsin/01-like sub-clade (both sub-clades were within Yamagata Clade 3/Yam-3). However, the other B/Phuket/3073/2013-like virus had NS gene that derived from Stockholm/12-like sub-clade instead of Wisconsin/01-like sub-clade. One inter-clade reassortant had Yamagata Clade 2/Yam-2-derived HA and NP, and its remaining genes were Yam-3-derived. Within Victoria Clade 1/Vic-1 in Victoria lineage, one virus had intra-clade reassortment properties: HA and PB2 from Vic-1B sub-clade, MP and NS from a unique sub-clade "Vic-1C", and the remaining genes from Vic-1A sub-clade. Although random reassortment event may generate unique reassortants, detailed phylogenetic classification of gene segments showed possible genetic linkage between PA and NA genes in B/Phuket/3073/2013-like viruses, which requires further investigation. Understanding on reassortment patterns in influenza B evolution may contribute to future vaccine design.
  13. Fu JYL, Chua CL, Vythilingam I, Sulaiman WYW, Wong HV, Chan YF, et al.
    J Gen Virol, 2019 11;100(11):1541-1553.
    PMID: 31613205 DOI: 10.1099/jgv.0.001338
    Chikungunya virus (CHIKV) has caused large-scale epidemics of fever, rash and arthritis since 2004. This unprecedented re-emergence has been associated with mutations in genes encoding structural envelope proteins, providing increased fitness in the secondary vector Aedes albopictus. In the 2008-2013 CHIKV outbreaks across Southeast Asia, an R82S mutation in non-structural protein 4 (nsP4) emerged early in Malaysia or Singapore and quickly became predominant. To determine whether this nsP4-R82S mutation provides a selective advantage in host cells, which may have contributed to the epidemic, the fitness of infectious clone-derived CHIKV with wild-type nsP4-82R and mutant nsP4-82S were compared in Ae. albopictus and human cell lines. Viral infectivity, dissemination and transmission in Ae. albopictus were not affected by the mutation when the two variants were tested separately. In competition, the nsP4-82R variant showed an advantage over nsP4-82S in dissemination to the salivary glands, but only in late infection (10 days). In human rhabdomyosarcoma (RD) and embryonic kidney (HEK-293T) cell lines coinfected at a 1 : 1 ratio, wild-type nsP4-82R virus was rapidly outcompeted by nsP4-82S virus as early as one passage (3 days). In conclusion, the nsP4-R82S mutation provides a greater selective advantage in human cells than in Ae. albopictus, which may explain its apparent natural selection during CHIKV spread in Southeast Asia. This is an unusual example of a naturally occurring mutation in a non-structural protein, which may have facilitated epidemic transmission of CHIKV.
  14. Ong NH, Chua CL, Liew JWK, Wan Sulaiman WY, Chan YF, Sam IC, et al.
    Acta Trop, 2020 Aug;208:105472.
    PMID: 32389451 DOI: 10.1016/j.actatropica.2020.105472
    Zika virus (ZIKV) is a mosquito-borne flavivirus with global impact since 2015. Although ZIKV was first isolated from Aedes aegypti in Malaysia in 1965, not much is known about the competency of Malaysian Ae. aegypti to ZIKV. To date only 9 cases of ZIKV have been reported in Malaysia despite the abundance of mosquito vectors. This study aimed to determine the susceptibility of Ae. aegypti to ZIKV, and the impact of sequential infections in Ae. aegypti mosquitoes with DENV serotype 2 (DENV-2) followed by ZIKV. Field-caught urban Ae. aegypti were orally challenged with a Martinique strain of ZIKV, and midgut, head/thorax and saliva were collected at 3, 7 and 14 days post-infection (dpi). At 14 dpi, ZIKV-exposed mosquitoes had infection and dissemination rates of 59% (n=10/17) and 90% (n=9/10), respectively. Average titres of 3.9 and 4.4 log pfu infectious ZIKV were recovered in midgut and head/thorax, respectively. In sequential infection, prior exposure of Ae. aegypti to DENV did not affect the subsequent ZIKV infection in head/thorax albeit with a low sample size. In conclusion, Malaysian urban Ae. aegypti is susceptible to the contemporary Asian lineage of ZIKV. The established and continuous DENV circulation in Ae. aegypti did not suppress ZIKV emergence in Malaysia. Other factors contributing to low level of ZIKV circulation in Malaysia remain to be explored.
  15. Teo FMS, Nyo M, Wong AA, Tan NWH, Koh MT, Chan YF, et al.
    Sci Rep, 2018 03 06;8(1):4087.
    PMID: 29511232 DOI: 10.1038/s41598-018-22379-6
    Hand, foot and mouth disease (HFMD) is a prevalent contagious childhood disease typically associated with fever, oral lesions and limb exanthema. While HFMD is caused by a plethora of serotypes of viruses under the genus Enterovirus within the Picornaviridae family, Coxsackievirus A16 (CV-A16) and Enterovirus 71 (EV-A71) are considered the main etiological agents. In recent years however, other viruses have also been isolated in considerable numbers from infected individuals in many regions, joining the legion commonly associated with HFMD. The present study investigated the cytokine and chemokine profiles of HFMD patients from Singapore and Malaysia for the first time. Comparative cohort studies of EV-A71-associated HFMD cases revealed that the Malaysia cohort had a distinct profile from the Singapore cohort, and this could be partly attributed by different EV-A71 genotypes. As the isolation of CV-A6, instead of CV-A16, had become prevalent in the Singapore cohort, it was also of particular interest to study the differential cytokine and chemokine profiles. Our data revealed that overlapping as well as unique profiles exist between the two major causative clinical isolates in the Singapore cohort. Having a better understanding of the respective immunological profiles could be useful for more accurate HFMD diagnosis, which is imperative for disease transmission control until multi-valent vaccines and/or broad-spectrum anti-viral drugs become available.
  16. Fu JYL, Chua CL, Abu Bakar AS, Vythilingam I, Wan Sulaiman WY, Alphey L, et al.
    PLoS Negl Trop Dis, 2023 Jun;17(6):e0011423.
    PMID: 37307291 DOI: 10.1371/journal.pntd.0011423
    BACKGROUND: Emerging arboviruses such as chikungunya and Zika viruses have unexpectedly caused widespread outbreaks in tropical and subtropical regions recently. Ross River virus (RRV) is endemic in Australia and has epidemic potential. In Malaysia, Aedes mosquitoes are abundant and drive dengue and chikungunya outbreaks. We assessed risk of an RRV outbreak in Kuala Lumpur, Malaysia by determining vector competence of local Aedes mosquitoes and local seroprevalence as a proxy of human population susceptibility.

    METHODOLOGY/PRINCIPAL FINDINGS: We assessed oral susceptibility of Malaysian Ae. aegypti and Ae. albopictus by real-time PCR to an Australian RRV strain SW2089. Replication kinetics in midgut, head and saliva were determined at 3 and 10 days post-infection (dpi). With a 3 log10 PFU/ml blood meal, infection rate was higher in Ae. albopictus (60%) than Ae. aegypti (15%; p<0.05). Despite similar infection rates at 5 and 7 log10 PFU/ml blood meals, Ae. albopictus had significantly higher viral loads and required a significantly lower median oral infectious dose (2.7 log10 PFU/ml) than Ae. aegypti (4.2 log10 PFU/ml). Ae. albopictus showed higher vector competence, with higher viral loads in heads and saliva, and higher transmission rate (RRV present in saliva) of 100% at 10 dpi, than Ae. aegypti (41%). Ae. aegypti demonstrated greater barriers at either midgut escape or salivary gland infection, and salivary gland escape. We then assessed seropositivity against RRV among 240 Kuala Lumpur inpatients using plaque reduction neutralization, and found a low rate of 0.8%.

    CONCLUSIONS/SIGNIFICANCE: Both Ae. aegypti and Ae. albopictus are susceptible to RRV, but Ae. albopictus displays greater vector competence. Extensive travel links with Australia, abundant Aedes vectors, and low population immunity places Kuala Lumpur, Malaysia at risk of an imported RRV outbreak. Surveillance and increased diagnostic awareness and capacity are imperative to prevent establishment of new arboviruses in Malaysia.

  17. Chua CL, Chan YF, Andu ESGS, Rovie-Ryan JJ, Sitam FT, Verasahib K, et al.
    Emerg Infect Dis, 2019 02;25(2):374-376.
    PMID: 30666941 DOI: 10.3201/eid2502.180258
    We tested a sample of 234 wild long-tailed macaques (Macaca fascicularis) trapped in Peninsular Malaysia in 2009, 2010, and 2016 for Zika virus RNA and antibodies. None were positive for RNA, and only 1.3% were seropositive for neutralizing antibodies. Long-tailed macaques are unlikely to be reservoirs for Zika virus in Malaysia.
  18. Sam IC, Chua CL, Rovie-Ryan JJ, Fu JY, Tong C, Sitam FT, et al.
    Emerg Infect Dis, 2015 Sep;21(9):1683-5.
    PMID: 26291585 DOI: 10.3201/eid2109.150439
  19. Tan XH, Chong WL, Lee VS, Abdullah S, Jasni K, Suarni SQ, et al.
    Vaccines (Basel), 2023 Aug 14;11(8).
    PMID: 37631931 DOI: 10.3390/vaccines11081363
    Hand, foot and mouth disease (HFMD) is a childhood disease caused by enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16). Capsid loops are important epitopes for EV-A71 and CV-A16. Seven chimeric EV-A71 (ChiE71) involving VP1 BC (45.5% similarity), DE, EF, GH and HI loops, VP2 EF loop and VP3 GH loop (91.3% similarity) were substituted with corresponding CV-A16 loops. Only ChiE71-1-BC, ChiE71-1-EF, ChiE71-1-GH and ChiE71-3-GH were viable. EV-A71 and CV-A16 antiserum neutralized ChiE71-1-BC and ChiE71-1-EF. Mice immunized with inactivated ChiE71 elicited high IgG, IFN-γ, IL-2, IL-4 and IL-10. Neonatal mice receiving passive transfer of WT EV-A71, ChiE71-1-EF and ChiE71-1-BC immune sera had 100%, 80.0% and no survival, respectively, against lethal challenges with EV-A71, suggesting that the substituted CV-A16 loops disrupted EV-A71 immunogenicity. Passive transfer of CV-A16, ChiE71-1-EF and ChiE71-1-BC immune sera provided 40.0%, 20.0% and 42.9% survival, respectively, against CV-A16. One-day-old neonatal mice immunized with WT EV-A71, ChiE71-1-BC, ChiE71-1-EF and CV-A16 achieved 62.5%, 60.0%, 57.1%, and no survival, respectively, after the EV-A71 challenge. Active immunization using CV-A16 provided full protection while WT EV-A71, ChiE71-1-BC and ChiE71-1-EF immunization showed partial cross-protection in CV-A16 lethal challenge with survival rates of 50.0%, 20.0% and 40%, respectively. Disruption of a capsid loop could affect virus immunogenicity, and future vaccine design should include conservation of the enterovirus capsid loops.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links