Displaying publications 61 - 80 of 105 in total

Abstract:
Sort:
  1. Hameed BH, Tan IA, Ahmad AL
    J Hazard Mater, 2008 Oct 30;158(2-3):324-32.
    PMID: 18329169 DOI: 10.1016/j.jhazmat.2008.01.088
    Oil palm fibre was used to prepare activated carbon using physiochemical activation method which consisted of potassium hydroxide (KOH) treatment and carbon dioxide (CO(2)) gasification. The effects of three preparation variables: the activation temperature, activation time and chemical impregnation (KOH:char) ratio on methylene blue (MB) uptake from aqueous solutions and activated carbon yield were investigated. Based on the central composite design (CCD), a quadratic model and a two factor interaction (2FI) model were respectively developed to correlate the preparation variables to the MB uptake and carbon yield. From the analysis of variance (ANOVA), the significant factors on each experimental design response were identified. The optimum activated carbon prepared from oil palm fibre was obtained by using activation temperature of 862 degrees C, activation time of 1h and chemical impregnation ratio of 3.1. The optimum activated carbon showed MB uptake of 203.83 mg/g and activated carbon yield of 16.50%. The equilibrium data for adsorption of MB on the optimum activated carbon were well represented by the Langmuir isotherm, giving maximum monolayer adsorption capacity as high as 400mg/g at 30 degrees C.
  2. Akpan UG, Hameed BH
    J Hazard Mater, 2009 Oct 30;170(2-3):520-9.
    PMID: 19505759 DOI: 10.1016/j.jhazmat.2009.05.039
    This paper presents the review of the effects of operating parameters on the photocatalytic degradation of textile dyes using TiO2-based photocatalysts. It further examines various methods used in the preparations of the considered photocatalysts. The findings revealed that various parameters, such as the initial pH of the solution to be degraded, oxidizing agents, temperature at which the catalysts must be calcined, dopant(s) content and catalyst loading exert their individual influence on the photocatalytic degradation of any dye in wastewaters. It was also found out that sol-gel method is widely used in the production of TiO2-based photocatalysts because of the advantage derived from its ability to synthesize nanosized crystallized powder of the photocatalysts of high purity at relatively low temperature.
  3. Foo KY, Hameed BH
    Bioresour Technol, 2012 May;112:143-50.
    PMID: 22414577 DOI: 10.1016/j.biortech.2012.01.178
    The feasibility of preparing activated carbon (JPAC) from jackfruit peel, an industrial residue abundantly available from food manufacturing plants via microwave-assisted NaOH activation was explored. The influences of chemical impregnation ratio, microwave power and radiation time on the properties of activated carbon were investigated. JPAC was examined by pore structural analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, nitrogen adsorption isotherm, elemental analysis, surface acidity/basicity and zeta potential measurements. The adsorptive behavior of JPAC was quantified using methylene blue as model dye compound. The best conditions resulted in JPAC with a monolayer adsorption capacity of 400.06 mg/g and carbon yield of 80.82%. The adsorption data was best fitted to the pseudo-second-order equation, while the adsorption mechanism was well described by the intraparticle diffusion model. The findings revealed the versatility of jackfruit peels as good precursor for preparation of high quality activated carbon.
  4. Foo KY, Hameed BH
    Bioresour Technol, 2011 Oct;102(20):9794-9.
    PMID: 21875789 DOI: 10.1016/j.biortech.2011.08.007
    Sunflower seed oil residue, a by-product of sunflower seed oil refining, was utilized as a feedstock for preparation of activated carbon (SSHAC) via microwave induced K(2)CO(3) chemical activation. SSHAC was characterized by Fourier transform infrared spectroscopy, nitrogen adsorption-desorption and elemental analysis. Surface acidity/basicity was examined with acid-base titration, while the adsorptive properties of SSHAC were quantified using methylene blue (MB) and acid blue 15 (AB). The monolayer adsorption capacities of MB and AB were 473.44 and 430.37 mg/g, while the Brunauer-Emmett-Teller surface area, Langmuir surface area and total pore volume were 1411.55 m(2)/g, 2137.72 m(2)/g and 0.836 cm(3)/g, respectively. The findings revealed the potential to prepare high surface area activated carbon from sunflower seed oil residue by microwave irradiation.
  5. Foo KY, Hameed BH
    Bioresour Technol, 2012 Jul;116:522-5.
    PMID: 22595094 DOI: 10.1016/j.biortech.2012.03.123
    The feasibility of langsat empty fruit bunch waste for preparation of activated carbon (EFBLAC) by microwave-induced activation was explored. Activation with NaOH at the IR ratio of 1.25, microwave power of 600 W for 6 min produced EFBLAC with a carbon yield of 81.31% and adsorption uptake for MB of 302.48 mg/g. Pore structural analysis, scanning electron microscopy and Fourier transform infrared spectroscopy demonstrated the physical and chemical characteristics of EFBLAC. Equilibrium data were best described by the Langmuir isotherm, with a monolayer adsorption capacity of 402.06 mg/g, and the adsorption kinetics was well fitted to the pseudo-second-order equation. The findings revealed the potential to prepare high quality activated carbon from langsat empty fruit bunch waste by microwave irradiation.
  6. Tan IA, Ahmad AL, Hameed BH
    J Hazard Mater, 2008 May 1;153(1-2):709-17.
    PMID: 17935879
    Activated carbon was prepared from coconut husk using physicochemical activation method which consisted of potassium hydroxide (KOH) treatment and carbon dioxide (CO(2)) gasification. The effects of three preparation variables (CO(2) activation temperature, CO(2) activation time and KOH:char impregnation ratio) on the 2,4,6-trichlorophenol (2,4,6-TCP) uptake and activated carbon yield were investigated. Based on the central composite design, two quadratic models were developed to correlate the preparation variables to the two responses. From the analysis of variance (ANOVA), the most influential factor on each experimental design response was identified. The activated carbon preparation conditions were optimized by maximizing both the 2,4,6-TCP uptake and activated carbon yield. The predicted 2,4,6-TCP uptake and carbon yield from the models agreed satisfactorily with the experimental values. The optimum conditions for preparing activated carbon from coconut husk for adsorption of 2,4,6-TCP were found as follow: CO(2) activation temperature of 750 degrees C, CO(2) activation time of 2.29 h and KOH:char impregnation ratio of 2.91, which resulted in 191.73 mg/g of 2,4,6-TCP uptake and 20.16 % of activated carbon yield.
  7. Foo KY, Lee LK, Hameed BH
    Bioresour Technol, 2013 Apr;134:166-72.
    PMID: 23500574 DOI: 10.1016/j.biortech.2013.01.139
    This study evaluates the sugarcane bagasse derived activated carbon (SBAC) prepared by microwave heating for the adsorptive removal of ammonical nitrogen and orthophosphate from the semi-aerobic landfill leachate. The physical and chemical properties of SBAC were examined by pore structural analysis, scanning electron microscopy, Fourier transform infrared spectroscopy and elemental analysis. The effects of adsorbent dosage, contact time and solution pH on the adsorption performance were investigated in a batch mode study at 30°C. Equilibrium data were favorably described by the Langmuir isotherm model, with a maximum monolayer adsorption capacity for ammonical nitrogen and orthophosphate of 138.46 and 12.81 mg/g, respectively, while the adsorption kinetic was best fitted to the pseudo-second-order kinetic model. The results illustrated the potential of sugarcane bagasse derived activated carbon for the adsorptive treatment of semi-aerobic landfill leachate.
  8. Hameed BH, Tan IA, Ahmad AL
    J Hazard Mater, 2009 May 30;164(2-3):1316-24.
    PMID: 18977086 DOI: 10.1016/j.jhazmat.2008.09.042
    The effects of three preparation variables: CO(2) activation temperature, CO(2) activation time and KOH:char impregnation ratio (IR) on the 2,4,6-trichlorophenol (2,4,6-TCP) uptake and carbon yield of the activated carbon prepared from oil palm empty fruit bunch (EFB) were investigated. Based on the central composite design, two quadratic models were developed to correlate the three preparation variables to the two responses. The activated carbon preparation conditions were optimized using response surface methodology by maximizing both the 2,4,6-TCP uptake and activated carbon yield within the ranges studied. The optimum conditions for preparing activated carbon from EFB for adsorption of 2,4,6-TCP were found as follows: CO(2) activation temperature of 814 degrees C, CO(2) activation time of 1.9h and IR of 2.8, which resulted in 168.89 mg/g of 2,4,6-TCP uptake and 17.96% of activated carbon yield. The experimental results obtained agreed satisfactorily with the model predictions. The activated carbon prepared under optimum conditions was mesoporous with BET surface area of 1141 m(2)/g, total pore volume of 0.6 cm(3)/g and average pore diameter of 2.5 nm. The surface morphology and functional groups of the activated carbon were respectively determined from the scanning electron microscopy and Fourier transform infrared analysis.
  9. Foo KY, Lee LK, Hameed BH
    Bioresour Technol, 2013 Apr;133:599-605.
    PMID: 23501142 DOI: 10.1016/j.biortech.2013.01.097
    The preparation of tamarind fruit seed granular activated carbon (TSAC) by microwave induced chemical activation for the adsorptive treatment of semi-aerobic landfill leachate has been attempted. The chemical and physical properties of TSAC were examined. A series of column tests were performed to determine the breakthrough characteristics, by varying the operational parameters, hydraulic loading rate (5-20 mL/min) and adsorbent bed height (15-21 cm). Ammonical nitrogen and chemical oxygen demand (COD), which provide a prerequisite insight into the prediction of leachate quality was quantified. Results illustrated an encouraging performance for the adsorptive removal of ammonical nitrogen and COD, with the highest bed capacity of 84.69 and 55.09 mg/g respectively, at the hydraulic loading rate of 5 mL/min and adsorbent bed height of 21 cm. The dynamic adsorption behavior was satisfactory described by the Thomas and Yoon-Nelson models. The findings demonstrated the applicability of TSAC for the adsorptive treatment of landfill leachate.
  10. Foo KY, Hameed BH
    Bioresour Technol, 2012 Jan;104:679-86.
    PMID: 22101073 DOI: 10.1016/j.biortech.2011.10.005
    This work explores the feasibility of orange peel, a citrus processing biomass as an alternative precursor for preparation of activated carbon (OPAC) via microwave assisted K(2)CO(3) activation. The operational parameters, chemical impregnation ratio, microwave power and irradiation time on the carbon yield and adsorption capability were investigated. The virgin characteristics of OPAC were examined by pore structural analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, nitrogen adsorption isotherm, elemental analysis, surface acidity/basicity and zeta potential measurement. The optimum conditions resulted in OPAC with a monolayer adsorption capacity of 382.75 mg/g for methylene blue and carbon yield of 80.99%. The BET surface area, Langmuir surface area and total pore volume were identified to be 1104.45 m(2)/g, 1661.04 m(2)/g and 0.615 m(3)/g, respectively. Equilibrium data were simulated using the Langmuir, Freundlich, Dubinin-Radushkevich, Redlich-Peterson, and Toth isotherms, and kinetic data were fitted to the pseudo-first-order, pseudo-second-order and Elovich kinetic models.
  11. Olutoye MA, Hameed BH
    Bioresour Technol, 2013 Mar;132:103-8.
    PMID: 23395762 DOI: 10.1016/j.biortech.2012.12.171
    An active heterogeneous Al2O3 modified MgZnO (MgZnAlO) catalyst was prepared and the catalytic activity was investigated for the transesterification of different vegetable oils (refined palm oil, waste cooking palm oil, palm kernel oil and coconut oil) with methanol to produce biodiesel. The catalyst was characterized by using X-ray diffraction, Fourier transform infrared spectra, thermo gravimetric and differential thermal analysis to ascertain its versatility. Effects of important reaction parameters such as methanol to oil molar ratio, catalyst dosage, reaction temperature and reaction time on oil conversion were examined. Within the range of studied variability, the suitable transesterification conditions (methanol/oil ratio 16:1, catalyst loading 3.32 wt.%, reaction time 6h, temperature 182°C), the oil conversion of 98% could be achieved with reference to coconut oil in a single stage. The catalyst can be easily recovered and reused for five cycles without significant deactivation.
  12. Islam MA, Asif M, Hameed BH
    Bioresour Technol, 2015 Mar;179:227-233.
    PMID: 25545092 DOI: 10.1016/j.biortech.2014.11.115
    The pyrolysis of karanj fruit hulls (KFH) and karanj fruit hull hydrothermal carbonization (KFH-HTC) hydrochar was thermogravimetrically investigated under a nitrogen environment at 5 °C/min, 10 °C/min, and 20 °C/min. The pyrolysis decomposition of KFH biomass was faster than that of KFH-HTC hydrochar because of the high volatility and fixed carbon of KFH biomass. Weight loss percentage was also affected by the heating rates. The kinetic data were evaluated with the Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa methods. The activation energy values obtained with these two methods were 61.06 and 68.53 kJ/mol for KFH biomass and 130.49 and 135.87 kJ/mol for KFH-HTC hydrochar, respectively. The analysis of kinetic process mechanisms was verified with the Coats-Redfern method. KFH-HTC hydrochar may play a potential role in transforming biomass to energy-rich feedstock for thermochemical applications because of its high heating value, high fixed carbon, and low ash and sulfur contents.
  13. Garba K, Mohammed IY, Isa YM, Abubakar LG, Abakr YA, Hameed BH
    Heliyon, 2023 Feb;9(2):e13234.
    PMID: 36785823 DOI: 10.1016/j.heliyon.2023.e13234
    Canarium schweinfurthii fruit used in food and cosmetics produces waste nuts with a hard shell (hard-shell) and kernel. The hard-shell contained lignin and holocellulose, besides 51.99 wt% carbon, 6.0 wt% hydrogen, 41.68 wt% oxygen, and 70.97 wt% volatile matter. Therefore, this study commenced thermochemical investigations on the hard-shell through extensive intermediate pyrolysis and kinetic studies. During the active stage of thermogravimetric pyrolysis, the hard-shell lost a maximum of 56.45 wt%, and the activation energies obtained by the Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa, and Starink methods were 223, 221 and 217 kJ/mol, respectively. The Flynn-Wall-Ozawa method depicted the degradation process accurately, where the Coat-Redfern method's contraction and diffusion mechanisms governed the pyrolysis reactions at activation energies of 16.62 kJ/mol and 38.83 kJ/mol, respectively. The pyrolysis process produced 25 wt% biochar and 25 wt% bio-oil under optimum conditions. The calorific values of the bio-oils with 6.81-7.11 wt% hydrogen and 68.01-71.12 wt% carbon was 26.32-27.83 MJ/kg, with phenolics and n-hexadecanoic and oleic acids as major compounds. Biochar, by contrast, has a high carbon content of 75.11-79.32 wt% and calorific values of 25.45-28.61 MJ/kg. These properties assert the biochar and bio-oils among viable bioenergy sources.
  14. Kabir G, Mohd Din AT, Hameed BH
    Bioresour Technol, 2017 Oct;241:563-572.
    PMID: 28601774 DOI: 10.1016/j.biortech.2017.05.180
    Oil palm mesocarp fiber (OPMF) and palm frond (PF) were respectively devolatilized by pyrolysis to OPMF-oil and PF-oil bio-oils and biochars, OPMF-char and PF-char in a slow-heating fixed-bed reactor. In particular, the OPMF-oil and PF-oil were produced to a maximum yield of 48wt% and 47wt% bio-oils at 550°C and 600°C, respectively. The high heating values (HHVs) of OPMF-oil and PF-oil were respectively found to be 23MJ/kg and 21MJ/kg, whereas 24.84MJ/kg and 24.15MJ/kg were for the corresponding biochar. The HHVs of the bio-oils and biochars are associated with low O/C ratios to be higher than those of the corresponding biomass. The Fourier transform infrared spectra and peak area ratios highlighted the effect of pyrolysis temperatures on the bio-oil compositions. The bio-oils are pervaded with numerous oxygenated carbonyl and aromatic compounds as suitable feedstocks for renewable fuels and chemicals.
  15. Kabir G, Mohd Din AT, Hameed BH
    Bioresour Technol, 2018 Feb;249:42-48.
    PMID: 29040858 DOI: 10.1016/j.biortech.2017.09.190
    The pyrolysis of oil palm mesocarp fiber (OPMF) was catalyzed with a steel slag-derived zeolite (FAU-SL) in a slow-heating fixed-bed reactor at 450 °C, 550 °C, and 600 °C. The catalytic pyrolysis of OPMF produced a maximum yield of 47 wt% bio-oil at 550 °C, and the crude pyrolysis vapor (CPV) of this process yielded crude pyrolysis oil with broad distribution of bulky oxygenated organic compounds. The bio-oil composition produced at 550 °C contained mainly light and stable acid-rich carbonyls at a relative abundance of 48.02% peak area and phenolic compounds at 12.03% peak area. The FAU-SL high mesoporosity and strong surface acidity caused the conversion of the bulky CPV molecules into mostly light acid-rich carbonyls and aromatics through secondary reactions. The secondary reactions mechanisms facilitated by FAU-SL reduced the distribution of the organic compounds in the bio-oil to mostly acid-rich carbonyls and aromatic in contrast to other common zeolite.
  16. Yuen FK, Hameed BH
    Adv Colloid Interface Sci, 2009 Jul 30;149(1-2):19-27.
    PMID: 19187928 DOI: 10.1016/j.cis.2008.12.005
    To date, microwave energy has been widely developed and applied to almost every field of chemistry. In many cases, microwave technology has proven to remarkably reducing costs, accelerating reaction rates, improving yields and selectively activating. This paper presents a state of art review of microwave technology, its background studies, fundamental chemistry and industrial applications. With the renaissance of activated carbon, there has been a steadily growing interest in this research field. The review provides a summary on recent development in preparation and regeneration of activated carbons. The key advance of introducing microwave energy has been highlighted relative to conventional methods. Moreover, the major drawbacks, challenges with its future expectation are presented and discussed. Conclusively, microwave energy is predicted to be a potentially viable and powerful replacement for fuel technology in various areas, while its progress represents an expanding field in the area of adsorption science.
  17. Hassan H, Lim JK, Hameed BH
    Bioresour Technol, 2016 Dec;221:645-655.
    PMID: 27671343 DOI: 10.1016/j.biortech.2016.09.026
    Co-pyrolysis of biomass with abundantly available materials could be an economical method for production of bio-fuels. However, elimination of oxygenated compounds poses a considerable challenge. Catalytic co-pyrolysis is another potential technique for upgrading bio-oils for application as liquid fuels in standard engines. This technique promotes the production of high-quality bio-oil through acid catalyzed reduction of oxygenated compounds and mutagenic polyaromatic hydrocarbons. This work aims to review and summarize research progress on co-pyrolysis and catalytic co-pyrolysis, as well as their benefits on enhancement of bio-oils derived from biomass. This review focuses on the potential of plastic wastes and coal materials as co-feed in co-pyrolysis to produce valuable liquid fuel. This paper also proposes future directions for using this technique to obtain high yields of bio-oils.
  18. Ahmad AA, Hameed BH
    J Hazard Mater, 2009 Dec 30;172(2-3):1538-43.
    PMID: 19740605 DOI: 10.1016/j.jhazmat.2009.08.025
    In this work, activated carbon was prepared from bamboo waste by chemical activation method using phosphoric acid as activating agent. The activated carbon was evaluated for chemical oxygen demand (COD) and color reduction of a real textile mill effluent. A maximum reduction in color and COD of 91.84% and 75.21%, respectively was achieved. As a result, the standard B discharge limit of color and COD under the Malaysian Environmental Quality act 1974 was met. The Freundlich isotherm model was found best to describe the obtained equilibrium adsorption data at 30 degrees C. The Brunauer-Emmett-Teller (BET) surface area, total pore volume and the average pore diameter were 988.23 m(2)/g, 0.69 cm(3)/g and 2.82 nm, respectively. Various functional groups on the prepared bamboo activated carbon (BAC) were determined from the FTIR results.
  19. Nasuha N, Hameed BH, Din AT
    J Hazard Mater, 2010 Mar 15;175(1-3):126-32.
    PMID: 19879046 DOI: 10.1016/j.jhazmat.2009.09.138
    The adsorption of methylene blue (MB) from aqueous solution using a low-cost adsorbent, rejected tea (RT), has been studied by batch adsorption technique. The adsorption experiments were carried out under different conditions of initial concentration (50-500 mg/L), solution pH 3-12, RT dose (0.05-1g) and temperature (30-50 degrees C). The equilibrium data were fitted to Langmuir and Freundlich isotherms and the equilibrium adsorption was best described by the Langmuir isotherm model with maximum monolayer adsorption capacities found to be 147, 154 and 156 mg/g at 30, 40 and 50 degrees C, respectively. Three kinetic models, pseudo-first-order, pseudo-second-order and intraparticle diffusion were employed to describe the adsorption mechanism. The experimental results showed that the pseudo-second-order equation is the best model that describes the adsorption behavior with the coefficient of correlation R(2)>or=0.99. The results suggested that RT has high potential to be used as effective adsorbent for MB removal.
  20. Hameed BH, El-Khaiary MI
    J Hazard Mater, 2008 Jul 15;155(3):601-9.
    PMID: 18178306 DOI: 10.1016/j.jhazmat.2007.11.102
    In this work, pumpkin seed hull (PSH), an agricultural solid waste, is proposed as a novel material for the removal of methylene blue (MB) from aqueous solutions. The effects of the initial concentration, agitation time and solution pH were studied in batch experiments at 30 degrees C. The equilibrium process was described well by the multilayer adsorption isotherm. The adsorption kinetics can be predicted by the pseudo-first-order and the modified pseudo-first-order models. The mechanism of adsorption was also studied. It was found that for a short time period the rate of adsorption is controlled by film diffusion. However, at longer adsorption times, pore-diffusion controls the rate of adsorption. Pore diffusion takes place in two distinct regimes, corresponding to diffusion in macro- and mesopores. The results demonstrate that the PSH is very effective in the removal of MB from aqueous solutions.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links