Displaying publications 61 - 80 of 112 in total

Abstract:
Sort:
  1. Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Asfaliza R, et al.
    Mol Biol Rep, 2013 Mar;40(3):2369-88.
    PMID: 23184051 DOI: 10.1007/s11033-012-2318-0
    Blast disease caused by the fungal pathogen Magnaporthe oryzae is the most severe diseases of rice. Using classical plant breeding techniques, breeders have developed a number of blast resistant cultivars adapted to different rice growing regions worldwide. However, the rice industry remains threatened by blast disease due to the instability of blast fungus. Recent advances in rice genomics provide additional tools for plant breeders to improve rice production systems that would be environmentally friendly. This article outlines the application of conventional breeding, tissue culture and DNA-based markers that are used for accelerating the development of blast resistant rice cultivars. The best way for controlling the disease is to incorporate both qualitative and quantitative genes in resistant variety. Through conventional and molecular breeding many blast-resistant varieties have been developed. Conventional breeding for disease resistance is tedious, time consuming and mostly dependent on environment as compare to molecular breeding particularly marker assisted selection, which is easier, highly efficient and precise. For effective management of blast disease, breeding work should be focused on utilizing the broad spectrum of resistance genes and pyramiding genes and quantitative trait loci. Marker assisted selection provides potential solution to some of the problems that conventional breeding cannot resolve. In recent years, blast resistant genes have introgressed into Luhui 17, G46B, Zhenshan 97B, Jin 23B, CO39, IR50, Pusa1602 and Pusa1603 lines through marker assisted selection. Introduction of exotic genes for resistance induced the occurrence of new races of blast fungus, therefore breeding work should be concentrated in local resistance genes. This review focuses on the conventional breeding to the latest molecular progress in blast disease resistance in rice. This update information will be helpful guidance for rice breeders to develop durable blast resistant rice variety through marker assisted selection.
  2. Ahmad F, Hanafi MM, Hakim MA, Rafii MY, Arolu IW, Akmar Abdullah SN
    PLoS One, 2015;10(9):e0138246.
    PMID: 26393807 DOI: 10.1371/journal.pone.0138246
    Coloured rice genotypes have greater nutritious value and consumer demand for these varieties is now greater than ever. The documentation of these genotypes is important for the improvement of the rice plant. In this study, 42 coloured rice genotypes were selected for determination of their genetic divergence using 25 simple sequence repeat (SSR) primers and 15 agro-morphological traits. Twenty-one out of the 25 SSR primers showed distinct, reproducible polymorphism. A dendrogram constructed using the SSR primers clustered the 42 coloured rice genotypes into 7 groups. Further, principle component analysis showed 75.28% of total variations were explained by the first-three components. All agro-morphological traits showed significant difference at the (p≤0.05) and (p≤0.01) levels. From the dendrogram constructed using the agro-morphological traits, all the genotypes were clustered into four distinct groups. Pearson's correlation coefficient showed that among the 15 agro-morphological traits, the yield contributing factor had positive correlation with the number of tillers, number of panicles, and panicle length. The heritability of the 15 traits ranged from 17.68 to 99.69%. Yield per plant and harvest index showed the highest value for both heritability and genetic advance. The information on the molecular and agro-morphological traits can be used in rice breeding programmes to improve nutritional value and produce higher yields.
  3. Azizi P, Rafii MY, Mahmood M, Hanafi MM, Abdullah SN, Abiri R, et al.
    C. R. Biol., 2015 Jul;338(7):463-70.
    PMID: 26050100 DOI: 10.1016/j.crvi.2015.04.004
    In the present study, we have reported a simple, fast and efficient regeneration protocol using mature embryos as explants, and discovered its effective applicability to a range of Indica rice genotypes. We have considered the response of six varieties in the steps of the regeneration procedure. The results showed that calli were variably developed from the scutellar region of seeds and visible within 6-20 days. The highest and lowest calli induction frequency (70% and 51.66%) and number of induced calli from seeds (14 and 10.33) were observed in MR269 and MRQ74, respectively. The maximum and minimum number (7.66 and 4) and frequency of embryogenic calli (38.33% and 20%) were recorded in MR219 and MRQ74, respectively. However, the highest browning rate was observed in MR84 (87%) and the lowest rate in MRQ50 (46%). The majority of plants regenerated from embryogenic calli were obtained from MRQ50 (54%) and the minimum number of plants from MR84. In this study, the maximum numbers of plantlets were regenerated from the varieties with highest rate of embryogenic calli. Also, various varieties, including MRQ50, MR269, MR276 and MR219, were satisfactorily responding, while MRQ74 and MR84 weakly responded to the procedure. Such a simple, successful and generalized method possesses the potential to become an important tool for crop improvement and functional studies of genes in rice as a model monocot plant.
  4. Ramli AB, Rafii MY, Latif MA, Saleh GB, Omar OB, Puteh AB
    J Sci Food Agric, 2016 Mar;96(5):1593-600.
    PMID: 25982124 DOI: 10.1002/jsfa.7260
    Genetic analysis using generation mean analysis is a tool for designing the most appropriate breeding approaches to developing varieties of rice. It estimates the gene actions that control quantitative traits, as well as the additive, dominance and epistatic effects. This study was conducted using three rice populations that were derived from parental lines with different amylose content. The aim was to partition the gene actions using generation mean analysis for the selected populations.
  5. Golestan Hashemi FS, Rafii MY, Razi Ismail M, Mohamed MT, Rahim HA, Latif MA, et al.
    Plant Biol (Stuttg), 2015 Sep;17(5):953-61.
    PMID: 25865409 DOI: 10.1111/plb.12335
    Developing fragrant rice through marker-assisted/aided selection (MAS) is an economical and profitable approach worldwide for the enrichment of an elite genetic background with a pleasant aroma. The PCR-based DNA markers that distinguish the alleles of major fragrance genes in rice have been synthesised to develop rice scent biofortification through MAS. Thus, the present study examined the aroma biofortification potential of these co-dominant markers in a germplasm panel of 189 F2 progeny developed from crosses between a non-aromatic variety (MR84) and a highly aromatic but low-yielding variety (MRQ74) to determine the most influential diagnostic markers for fragrance biofortification. The SSRs and functional DNA markers RM5633 (on chromosome 4), RM515, RM223, L06, NKSbad2, FMbadh2-E7, BADEX7-5, Aro7 and SCU015RM (on chromosome 8) were highly associated with the 2AP (2-acetyl-1-pyrroline) content across the population. The alleles traced via these markers were also in high linkage disequilibrium (R(2) > 0.70) and explained approximately 12.1, 27.05, 27.05, 27.05, 25.42, 25.42, 20.53, 20.43 and 20.18% of the total phenotypic variation observed for these biomarkers, respectively. F2 plants harbouring the favourable alleles of these effective markers produced higher levels of fragrance. Hence, these rice plants can be used as donor parents to increase the development of fragrance-biofortified tropical rice varieties adapted to growing conditions and consumer preferences, thus contributing to the global rice market.
  6. Tanweer FA, Rafii MY, Sijam K, Rahim HA, Ahmed F, Latif MA
    C. R. Biol., 2015 May;338(5):321-34.
    PMID: 25843222 DOI: 10.1016/j.crvi.2015.03.001
    Rice blast caused by Magnaporthe oryzae is one of the most devastating diseases of rice around the world and crop losses due to blast are considerably high. Many blast resistant rice varieties have been developed by classical plant breeding and adopted by farmers in various rice-growing countries. However, the variability in the pathogenicity of the blast fungus according to environment made blast disease a major concern for farmers, which remains a threat to the rice industry. With the utilization of molecular techniques, plant breeders have improved rice production systems and minimized yield losses. In this article, we have summarized the current advanced molecular techniques used for controlling blast disease. With the advent of new technologies like marker-assisted selection, molecular mapping, map-based cloning, marker-assisted backcrossing and allele mining, breeders have identified more than 100 Pi loci and 350 QTL in rice genome responsible for blast disease. These Pi genes and QTLs can be introgressed into a blast-susceptible cultivar through marker-assisted backcross breeding. These molecular techniques provide timesaving, environment friendly and labour-cost-saving ways to control blast disease. The knowledge of host-plant interactions in the frame of blast disease will lead to develop resistant varieties in the future.
  7. Harighi MF, Wahid H, Thomson PC, Rafii MY, Jesse FFA
    Anim. Reprod. Sci., 2019 Sep;208:106113.
    PMID: 31405472 DOI: 10.1016/j.anireprosci.2019.106113
    Testicular volume (TV) is one of the most important traits used in evaluation of the reproductive capacity of male animals. The levelled-container used in the present study was found to be reliable instrument to measure TV, based on a water displacement method. Sperm-associated antigen 11 (SPAG11) is an important gene that affects male reproductive performance. An objective of the present study, therefore, was to determine if single nucleotide polymorphisms (SNPs) in a fragment of the SPAG11 gene could be used to determine associations with values of testicular biometric variables in Boer goats. Primers were designed to amplify the full length of the first two exons of SPAG11. The targeted fragment was generated using a molecular cloning technique. As the result, four SNPs, [g.1256A > G(ss19199134542), g.1270C > T(ss19199134541), g.1325A > G(ss19199134540) and g.1327 G > A (ss19199134543)], were detected using a single-base extension (SBE) method. Two of these SNPs were synonymous (ss19199134540 and ss19199134542). The other two SNPs were nonsynonymous, thus, there were changes in amino acid in the resulting protein: threonine to isoleucine (for ss19199134541) and arginine to glutamine (for ss19199134543). The SNP ss19199134543 was the only locus detected that was associated with TV (P = 0.002). None of the testes dimensions nor TW were associated with detected SPAG11 gene SNPs. Most likely, the ss19199134543 locus affects tissue structures adjacent to the testes, causing the change in TV. In conclusion, among the studied testicular biometric variables, TV had the greatest potential for preselecting of bucks with desirable semen quality. The use of the levelled-container as a TV measurement approach was an accurate and reliable method.
  8. Peter Mshelia L, Selamat J, Iskandar Putra Samsudin N, Rafii MY, Abdul Mutalib NA, Nordin N, et al.
    Toxins (Basel), 2020 07 28;12(8).
    PMID: 32731333 DOI: 10.3390/toxins12080478
    Climate change is primarily manifested by elevated temperature and carbon dioxide (CO2) levels and is projected to provide suitable cultivation grounds for pests and pathogens in the otherwise unsuitable regions. The impacts of climate change have been predicted in many parts of the world, which could threaten global food safety and food security. The aim of the present work was therefore to examine the interacting effects of water activity (aw) (0.92, 0.95, 0.98 aw), CO2 (400, 800, 1200 ppm) and temperature (30, 35 °C and 30, 33 °C for Fusarium verticillioides and F. graminearum, respectively) on fungal growth and mycotoxin production of acclimatised isolates of F. verticillioides and F. graminearum isolated from maize. To determine fungal growth, the colony diameters were measured on days 1, 3, 5, and 7. The mycotoxins produced were quantified using a quadrupole-time-of-flight mass spectrometer (QTOF-MS) combined with ultra-high-performance liquid chromatography (UHPLC) system. For F. verticillioides, the optimum conditions for growth of fumonisin B1 (FB1), and fumonisin B2 (FB2) were 30 °C + 0.98 aw + 400 ppm CO2. These conditions were also optimum for F. graminearum growth, and zearalenone (ZEA) and deoxynivalenol (DON) production. Since 30 °C and 400 ppm CO2 were the baseline treatments, it was hence concluded that the elevated temperature and CO2 levels tested did not seem to significantly impact fungal growth and mycotoxin production of acclimatised Fusarium isolates. To the best of our knowledge thus far, the present work described for the first time the effects of simulated climate change conditions on fungal growth and mycotoxin production of acclimatised isolates of F. verticillioides and F. graminearum.
  9. Usman MG, Rafii MY, Martini MY, Yusuff OA, Ismail MR, Miah G
    Biotechnol Genet Eng Rev, 2017 Apr;33(1):26-39.
    PMID: 28649918 DOI: 10.1080/02648725.2017.1340546
    Studying the strategies of improving abiotic stress tolerance is quite imperative and research under this field will increase our understanding of response mechanisms to abiotic stress such as heat. The Hsp70 is an essential regulator of protein having the tendency to maintain internal cell stability like proper folding protein and breakdown of unfolded proteins. Hsp70 holds together protein substrates to help in movement, regulation, and prevent aggregation under physical and or chemical pressure. However, this review reports the molecular mechanism of heat shock protein 70 kDa (Hsp70) action and its structural and functional analysis, research progress on the interaction of Hsp70 with other proteins and their interaction mechanisms as well as the involvement of Hsp70 in abiotic stress responses as an adaptive defense mechanism.
  10. Tanweer FA, Rafii MY, Sijam K, Rahim HA, Ahmed F, Ashkani S, et al.
    Front Plant Sci, 2015;6:1002.
    PMID: 26734013 DOI: 10.3389/fpls.2015.01002
    Blast is the most common biotic stress leading to the reduction of rice yield in many rice-growing areas of the world, including Malaysia. Improvement of blast resistance of rice varieties cultivated in blast endemic areas is one of the most important objectives of rice breeding programs. In this study, the marker-assisted backcrossing strategy was applied to improve the blast resistance of the most popular Malaysian rice variety MR219 by introgressing blast resistance genes from the Pongsu Seribu 2 variety. Two blast resistance genes, Pi-b and Pi-kh, were pyramided into MR219. Foreground selection coupled with stringent phenotypic selection identified 15 plants homozygous for the Pi-b and Pi-kh genes, and background selection revealed more than 95% genome recovery of MR219 in advanced blast resistant lines. Phenotypic screening against blast disease indicated that advanced homozygous blast resistant lines were strongly resistant against pathotype P7.2 in the blast disease endemic areas. The morphological, yield, grain quality, and yield-contributing characteristics were significantly similar to those of MR219. The newly developed blast resistant improved lines will retain the high adoptability of MR219 by farmers. The present results will also play an important role in sustaining the rice production of Malaysia.
  11. Lau WC, Rafii MY, Ismail MR, Puteh A, Latif MA, Ramli A
    Front Plant Sci, 2015;6:832.
    PMID: 26528304 DOI: 10.3389/fpls.2015.00832
    After yield, quality is one of the most important aspects of rice breeding. Preference for rice quality varies among cultures and regions; therefore, rice breeders have to tailor the quality according to the preferences of local consumers. Rice quality assessment requires routine chemical analysis procedures. The advancement of molecular marker technology has revolutionized the strategy in breeding programs. The availability of rice genome sequences and the use of forward and reverse genetics approaches facilitate gene discovery and the deciphering of gene functions. A well-characterized gene is the basis for the development of functional markers, which play an important role in plant genotyping and, in particular, marker-assisted breeding. In addition, functional markers offer advantages that counteract the limitations of random DNA markers. Some functional markers have been applied in marker-assisted breeding programs and have successfully improved rice quality to meet local consumers' preferences. Although functional markers offer a plethora of advantages over random genetic markers, the development and application of functional markers should be conducted with care. The decreasing cost of sequencing will enable more functional markers for rice quality improvement to be developed, and application of these markers in rice quality breeding programs is highly anticipated.
  12. Khan MMH, Rafii MY, Ramlee SI, Jusoh M, Mamun A
    Biomed Res Int, 2020;2020:2195797.
    PMID: 33415143 DOI: 10.1155/2020/2195797
    Bambara groundnut (Vigna subterranea L. Verdc.) is considered an emerging crop for the future and known as a crop for the new millennium. The core intention of this research work was to estimate the variation of landraces of Bambara groundnut considering their 14 qualitative and 27 numerical traits, to discover the best genotype fitted in Malaysia. The findings of the ANOVA observed a highly significant variation (p ≤ 0.01) for all the traits evaluated. There was a substantial variation (7.27 to 41.21%) coefficient value, and 14 out of the 27 numerical traits noted coefficient of variation (CV) ≥ 20%. Yield (kg/ha) disclosed positively strong to perfect high significant correlation (r = 0.75 to 1.00; p ≤ 0.001) with traits like fresh pod weight, dry pod weight, and dry seed weight. The topmost PCV and GCV values were estimated for biomass dry (41.09%) and fresh (40.53%) weight with high heritability (Hb) and genetic advance (GA) Hb = 95.19%, GA = 80.57% and Hb = 98.52%, GA = 82.86%, respectively. The topmost heritability was recorded for fresh pod weight (99.89%) followed by yield (99.75%) with genetic advance 67.95% and 62.03%, respectively. The traits with Hb ≥ 60% and GA ≥ 20% suggested the least influenced by the environment as well as governed by the additive genes and direct selection for improvement of such traits can be beneficial. To estimate the genetic variability among accessions, the valuation of variance components, coefficients of variation, heritability, and genetic advance were calculated. To authenticate the genetic inequality, an unweighted pair group produced with arithmetic mean (UPGMA) and principal component analysis was executed based on their measurable traits that could be a steadfast method for judging the degree of diversity. Based on the UPGMA cluster analysis, constructed five distinct clusters and 44 accessions from clusters II and IV consider an elite type of genotypes that produce more than one ton yield per hectare land with desirable traits. This study exposed an extensive disparity among the landraces and the evidence on genetic relatives will be imperative in using the existing germplasm for Bambara groundnut varietal improvement. Moreover, this finding will be beneficial for breeders to choose the desirable numerical traits of V. subterranea in their future breeding program.
  13. Ab Halim AAB, Rafii MY, Osman MB, Oladosu Y, Chukwu SC
    Biomed Res Int, 2021;2021:8350136.
    PMID: 34095311 DOI: 10.1155/2021/8350136
    High kernel elongation (HKE) is one of the high-quality characteristics in rice. The objectives of this study were to determine the effects of ageing treatments, gene actions, and inheritance pattern of kernel elongation on cooking quality in two populations of rice and determine the path of influence and contribution of other traits to kernel elongation in rice. Two rice populations derived from crosses between MR219 × Mahsuri Mutan and MR219 × Basmati 370 were used. The breeding materials included two F1 progenies from the two populations, and their respective parents were grown in four different batches at a week interval to synchronize the flowering between the female and male plants. Scaling tests and generation means analysis were carried out to determine ageing effects and estimate additive-dominance gene action and epistasis. The estimation of gene interaction was based on quantitative traits. Path coefficient analysis was done using SAS software version 9.4 to determine the path of influence (direct or indirect) of six quantitative traits on HKE. Results obtained showed that nonallelic gene interaction was observed in all traits. The results before ageing and after ageing showed significant differences in all traits, while the gene interaction changed after ageing. The HKE value improved after ageing, suggesting that ageing is an external factor that could influence gene expression. The epistasis effect for HKE obtained from the cross Mahsuri Mutan × MR219 showed duplicate epistasis while that obtained from a cross between Basmati 370 × MR219 showed complimentary epistasis. Besides, the heritability of HKE was higher in Basmati 370 × MR219 compared to that obtained in Mahsuri Mutan × MR219. The path analysis showed that the cooked grain length and length-width ratio positively significantly affected HKE. It was concluded that ageing treatment is an external factor that could improve the expression of HKE. The findings from this study would be useful to breeders in the selection and development of new specialty (HKE) rice varieties.
  14. Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Latif MA
    J Sci Food Agric, 2017 Jul;97(9):2810-2818.
    PMID: 27778337 DOI: 10.1002/jsfa.8109
    BACKGROUND: The rice cultivar MR219 is famous for its better yield and long and fine grain quality; however, it is susceptible to blast disease. The main objective of this study was to introgress blast resistance genes into MR219 through marker-assisted selection (MAS). The rice cultivar MR219 was used as the recurrent parent, and Pongsu Seribu 1 was used as the donor.

    RESULTS: Marker-assisted foreground selection was performed using RM6836 and RM8225 to identify plants possessing blast resistance genes. Seventy microsatellite markers were used to estimate recurrent parent genome (RPG) recovery. Our analysis led to the development of 13 improved blast resistant lines with Piz, Pi2 and Pi9 broad-spectrum blast resistance genes and an MR219 genetic background. The RPG recovery of the selected improved lines was up to 97.70% with an average value of 95.98%. Selected improved lines showed a resistance response against the most virulent blast pathogen pathotype, P7.2. The selected improved lines did not express any negative effect on agronomic traits in comparison with MR219.

    CONCLUSION: The research findings of this study will be a conducive approach for the application of different molecular techniques that may result in accelerating the development of new disease-resistant rice varieties, which in turn will match rising demand and food security worldwide. © 2016 Society of Chemical Industry.

  15. Sahebi M, Hanafi MM, Rafii MY, Azizi P, Abiri R, Kalhori N, et al.
    Biomed Res Int, 2017;2017:9064129.
    PMID: 28191468 DOI: 10.1155/2017/9064129
    Silicon (Si) is one of the most prevalent elements in the soil. It is beneficial for plant growth and development, and it contributes to plant defense against different stresses. The Lsi1 gene encodes a Si transporter that was identified in a mutant Japonica rice variety. This gene was not identified in fourteen Malaysian rice varieties during screening. Then, a mutant version of Lsi1 was substituted for the native version in the three most common Malaysian rice varieties, MR219, MR220, and MR276, to evaluate the function of the transgene. Real-time PCR was used to explore the differential expression of Lsi1 in the three transgenic rice varieties. Silicon concentrations in the roots and leaves of transgenic plants were significantly higher than in wild-type plants. Transgenic varieties showed significant increases in the activities of the enzymes SOD, POD, APX, and CAT; photosynthesis; and chlorophyll content; however, the highest chlorophyll A and B levels were observed in transgenic MR276. Transgenic varieties have shown a stronger root and leaf structure, as well as hairier roots, compared to the wild-type plants. This suggests that Lsi1 plays a key role in rice, increasing the absorption and accumulation of Si, then alters antioxidant activities, and improves morphological properties.
  16. Jasim Aljumaili S, Rafii MY, Latif MA, Sakimin SZ, Arolu IW, Miah G
    Biomed Res Int, 2018;2018:7658032.
    PMID: 29736396 DOI: 10.1155/2018/7658032
    Aromatic rice cultivars constitute a small but special group of rice and are considered the best in terms of quality and aroma. Aroma is one of the most significant quality traits of rice, and variety with aroma has a higher price in the market. This research was carried out to study the genetic diversity among the 50 aromatic rice accessions from three regions (Peninsular Malaysia, Sabah, and Sarawak) with 3 released varieties as a control using the 32 simple sequence repeat (SSR) markers. The objectives of this research were to quantify the genetic divergence of aromatic rice accessions using SSR markers and to identify the potential accessions for introgression into the existing rice breeding program. Genetic diversity index among the three populations such as Shannon information index (I) ranged from 0.25 in control to 0.98 in Sabah population. The mean numbers of effective alleles and Shannon's information index were 0.36 and 64.90%, respectively. Similarly, the allelic diversity was very high with mean expected heterozygosity (H
    e
    ) of 0.60 and mean Nei's gene diversity index of 0.36. The dendrogram based on UPGMA and Nei's genetic distance classified the 53 rice accessions into 10 clusters. Analysis of molecular variance (AMOVA) revealed that 89% of the total variation observed in this germplasm came from within the populations, while 11% of the variation emanated among the populations. These results reflect the high genetic differentiation existing in this aromatic rice germplasm. Using all these criteria and indices, seven accessions (Acc9993, Acc6288, Acc6893, Acc7580, Acc6009, Acc9956, and Acc11816) from three populations have been identified and selected for further evaluation before introgression into the existing breeding program and for future aromatic rice varietal development.
  17. Ridzuan R, Rafii MY, Mohammad Yusoff M, Ismail SI, Miah G, Usman M
    J Sci Food Agric, 2019 Jan 15;99(1):269-280.
    PMID: 29851100 DOI: 10.1002/jsfa.9169
    BACKGROUND: Assessment of the different desirable characters among chili genotypes has expanded the effective selection for crop improvement. Identification of genetically superior parents is important in assortment of the best parents to develop new chili hybrids.

    RESULTS: This study was done to assess the hereditary assorted variety of selected genotypes of Capsicum annuum based on their morphophysiological and yield traits in two planting seasons. The biochemical properties, capsaicinoid content (capsaicin and dihydrocapsaicin), total phenolics content and antioxidant action determination of unripe and ripe chili pepper fruits were carried out in dry fruits. AVPP9813 and Kulai 907 were observed to have high fruit yields, with 541.39 and 502.64 g per plant, respectively. The most increased genotypic coefficient of variation (GCV) and phenotypic coefficient of variation (PCV) were shown by the fruit number per plant (49.71% and 66.04%, respectively). High heritability was observed in yield characters viz-à-viz fruit weight, length and girth and indicated high genetic advance. Eight groups were obtained from the cluster analysis. For the biochemical analysis, the capsaicinoid content and total phenolic content were high in Chili Bangi 3 at unripe and ripe fruit stages, while for antioxidant activity SDP203 was the highest in ripe dry fruit.

    CONCLUSION: Higher GCV and PCV, combined with moderate to high heritability and high hereditary progress, were seen in number of fruit per plant, fruit yield per plant and fruit weight per fruit. These findings are beneficial for chili pepper breeders to select desirable quantitative characters in C. annuum in their breeding program. © 2018 Society of Chemical Industry.

  18. Ismail NA, Rafii MY, Mahmud TMM, Hanafi MM, Miah G
    Biomed Res Int, 2019;2019:5904804.
    PMID: 31198786 DOI: 10.1155/2019/5904804
    Fifty-seven accessions of torch ginger (Etlingera elatior) collected from seven states in Peninsular Malaysia were evaluated for their molecular characteristics using ISSR and SSR markers to assess the pattern of genetic diversity and association among the characteristics. Diversity study through molecular characterization showed that high variability existed among the 57 torch ginger accessions. ISSR and SSR molecular markers revealed the presence of high genetic variability among the torch ginger accessions. The combination of different molecular markers offered reliable and convincing information about the genetic diversity of torch ginger germplasm. This study found that SSR marker was more informative compared to ISSR marker in determination of gene diversity, polymorphic information content (PIC), and heterozygosity in this population. SSR also revealed high ability in evaluating diversity levels, genetic structure, and relationships of torch ginger due to their codominance and rich allelic diversity. High level of genetic diversity discovered by SSR markers showed the effectiveness of this marker to detect the polymorphism in this germplasm collection.
  19. Rahaman F, Juraimi AS, Rafii MY, Uddin MK, Hassan L, Chowdhury AK, et al.
    Plants (Basel), 2021 Sep 26;10(10).
    PMID: 34685826 DOI: 10.3390/plants10102017
    Rice has been subjected to a great deal of stress during its brief existence, but it nevertheless ranked first among cereal crops in terms of demand and productivity. Weeds are characterized as one of the major biotic stresses by many researchers. This research aims to determine the most potential allelopathic rice variety among selected rice accessions. For obtaining preeminent varieties, seventeen rice genotypes were collected from Bangladesh and Malaysia. Two prevalent procedures, relay seeding and the sandwich technique were employed to screen the seventeen rice (donor) accessions against barnyard grass (tested plant). In both approaches, only the BR17 variety demonstrated substantial inhibition of germination percentage, root length, and dry matter of barnyard grass. The rice variety BR17 exclusively took the zenith position, and it inhibited the development of barnyard grass by more than 40-41% on an average. BR17 is originated from KN-1B-361-1-8-6-10 (Indonesia) and developed by the Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh in 1985, having a high yielding capacity of more than 6 t/ha. Our study suggested that the usage of the allelopathy-weed inverse relationship to treat the weed problem can be a fantastic choice in the twenty-first century.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links