Displaying publications 61 - 80 of 432 in total

Abstract:
Sort:
  1. Siriwardena BSMS, Karunathilaka HDNU, Kumarasiri PVR, Tilakaratne WM
    Biomed Res Int, 2020;2020:2059240.
    PMID: 33123565 DOI: 10.1155/2020/2059240
    Background: Nodal metastasis is a critical factor in predicting the prognosis of oral squamous cell carcinoma (OSCC). When patients present with a clinically positive neck, the treatment of choice is radical neck dissection. However, management of a clinically negative neck is still a subject of significant controversy.

    Aim: This study was carried out in order to propose a model to predict regional lymph node metastasis of OSCC using histological parameters such as tumour stage, tumour size, pattern of invasion (POI), differentiation of tumour, and host immune response, together with the expression levels of six biomarkers (periostin, HIF-1α, MMP-9, β-catenin, VEGF-C, and EGFR), and, furthermore, to compare the impact of all these parameters on recurrence and 3 yr and 5 yr survival rates. Materials and Method. Histological materials collected from the archives were used to evaluate histological parameters and immunohistochemical profiles. Standard methods were used for immunohistochemistry and for evaluation of results. Data related to recurrence and survival (3 and 5 years) was also recorded. Clinical data was collected from patients' records.

    Results: Male to female ratio was 3 : 1. The commonest site of OSCC was the buccal mucosa, and majority of them were T3 or T4 tumours presented at stage 4. 62.5% of the tumours were well differentiated. Three-year and 5-year survival rates were significantly associated with lymph node metastasis and recurrence. POI was significantly correlated with tumour size, stage, 3-year survival, EGFR, HIF-1α, periostin, and MMP-9 (p < 0.05). Expression of EGFR showed a direct association with metastasis (p < 0.05).

    Conclusion: POI, level of differentiation, and expression of EGFR are independent prognostic markers for lymph node metastasis. Therefore, these parameters may help in treatment planning of a clinically negative neck.

  2. Maran S, Faten SA, Lim SE, Lai KS, Ibrahim WPW, Ankathil R, et al.
    Biomed Res Int, 2020;2020:6945730.
    PMID: 33062692 DOI: 10.1155/2020/6945730
    Background: The 22q11.2 deletion syndrome (22q11.2DS) is the most common form of deletion disorder in humans. Low copy repeats flanking the 22q11.2 region confers a substrate for nonallelic homologous recombination (NAHR) events leading to rearrangements which have been reported to be associated with highly variable and expansive phenotypes. The 22q11.2DS is reported as the most common genetic cause of congenital heart defects (CHDs).

    Methods: A total of 42 patients with congenital heart defects, as confirmed by echocardiography, were recruited. Genetic molecular analysis using a fluorescence in situ hybridization (FISH) technique was conducted as part of routine 22q11.2DS screening, followed by multiplex ligation-dependent probe amplification (MLPA), which serves as a confirmatory test.

    Results: Two of the 42 CHD cases (4.76%) indicated the presence of 22q11.2DS, and interestingly, both cases have conotruncal heart defects. In terms of concordance of techniques used, MLPA is superior since it can detect deletions within the 22q11.2 locus and outside of the typically deleted region (TDR) as well as duplications.

    Conclusion: The incidence of 22q11.2DS among patients with CHD in the east coast of Malaysia is 0.047. MLPA is a scalable and affordable alternative molecular diagnostic method in the screening of 22q11.2DS and can be routinely applied for the diagnosis of deletion syndromes.

  3. Wiraagni IA, Mohd MA, Rashid RA, Haron DEBM
    Biomed Res Int, 2020;2020:2581287.
    PMID: 32420332 DOI: 10.1155/2020/2581287
    In this study, a novel LC-MS/MS method was designed using a simple extraction procedure that was scientifically developed to capture the most relevant bisphenol A (BPA) analogues (BPB, BPF, BPS, and BPAF) and parabens (propylparaben, ethylparaben, butylparaben, and methylparaben) in human plasma. The LC-MS/MS method was validated using US FDA guidelines, and all validation requirements were satisfactory. This is the method that allows for the detection of plasma bisphenols and parabens in one run and is also the fastest BPA analogue and paraben detection technique for human plasma. The method was used to analyze samples from 150 healthy volunteers from Malaysia who enrolled in the study. No BPB was detected in any of the volunteers; however, 99.3% were positive for BPF. Only 24% and 10.7% of volunteers were positive for BPAF and BPS, respectively. A high percentage of volunteers were negative for propylparaben, ethylparaben, butylparaben, and methylparaben (56%, 68%, 86.7%, and 83.3%, respectively). These results suggest that persons in Malaysia are exposed to different BPA analogues and parabens, from both the daily use of products (cosmetic and plastic products) and the environment.
  4. Rebitanim NA, Hanafi MM, Idris AS, Abdullah SNA, Mohidin H, Rebitanim NZ
    Biomed Res Int, 2020;2020:3063710.
    PMID: 32420335 DOI: 10.1155/2020/3063710
    Basal stem rot (BSR) caused by Ganoderma boninense is a major threat to sustainable oil palm production especially in Southeast Asia and has brought economic losses to the oil palm industry around the world. With no definitive cure at present, this study introduces a new fertilizer technology called GanoCare®, as an effort to suppress BSR incidence in oil palm. Experiments were carried out to evaluate the effect of GanoCare® on growth, physiology, and BSR disease suppression using sitting technique in the oil palm nursery stage. A follow-up using similar treatments was carried out in the field to test on severity of Ganoderma using baiting technique under natural condition. Treatments tested were 10 g/month and 30 g/three months given as pretreatment only or continuous treatment. Results showed that GanoCare® increased the height, bulb diameter, leaf area, chlorophyll content, photosynthesis rate, and fresh and dry weight of the leaf, bole, and root of oil palm seedlings in the nursery trial. Seedlings treated with GanoCare® exhibited reduced percentage of disease severity, incidence, and dead seedlings, compared to the control. In nursery and field, lowest percentage of dead seedlings due to Ganoderma was found in seedlings given combination of pretreatment and continuous treatment of 30 g/three months (T4) with 5.56 and 6.67%, while control seedlings significantly marked the maximum percentage of 94.45 and 93.33%. The most successful treatment in both nursery and field was T4 with disease reductions of 77.78 and 82.36%, respectively, proving that nutrients contained in GanoCare® are essential in allowing better development of a strong defense system in the seedlings.
  5. Perumal K, Mun KS, Yap NY, Razack AHA, Gobe GC, Ong TA, et al.
    Biomed Res Int, 2020;2020:3682086.
    PMID: 32802842 DOI: 10.1155/2020/3682086
    Background: The mechanisms that link obesity and cancer development are not well-defined. Investigation of leptin and leptin receptor expressions may help define some of the mechanisms. These proteins are known for associating with the immune response, angiogenesis and, signalling pathways such as JAK2/STAT3, PI3K, and AKT pathways. Tissue proteins can be easily detected with immunohistochemistry (IHC), a technique widely used both in diagnostic and research laboratories. The identification of altered levels of leptin and leptin receptor proteins in tumour tissues may lead to targeted treatment for cancer.

    Objective: The objective of this study was to use IHC to compare leptin and leptin receptor expressions in clear cell renal cell carcinomas (ccRCC) in non-obese and obese patients to determine the association between these proteins with the clinicopathological features and prognosis of ccRCC. Patients and Methods. The study involved 60 patients who underwent nephrectomy of which 34 were obese, as assessed using body mass index (BMI). Nephrectomy samples provided tissues of ccRCC and adjacent non-cancerous kidney. The intensity and localization of leptin and leptin receptor protein expressions were evaluated using IHC and correlated with clinicopathological features and clinical outcomes. Aperio ImageScope morphometry and digital pathology were applied to assess the IHC results. The chi-square test was used to determine if there was any significant association between the proteins and the clinicopathological features. The Kaplan-Meier test was used to determine the overall survival, disease-free survival, and recurrence-free survival. A value of p < 0.05 was considered significant.

    Results: There was neither significant difference in the overall cellular and nuclear expressions of leptin and leptin receptor between non-cancerous kidney and ccRCC tissues nor in non-obese and obese individuals with ccRCC.

    Conclusion: In this present study, it was revealed that leptin and leptin receptor were not associated with tumour characteristics and progression of ccRCC patients. Interestingly, nuclear expression of leptin was significantly associated with overall survival. However, the significance of these proteins as biomarkers in other RCC histotypes is still unclear.

  6. Khan MMH, Rafii MY, Ramlee SI, Jusoh M, Mamun A
    Biomed Res Int, 2020;2020:2195797.
    PMID: 33415143 DOI: 10.1155/2020/2195797
    Bambara groundnut (Vigna subterranea L. Verdc.) is considered an emerging crop for the future and known as a crop for the new millennium. The core intention of this research work was to estimate the variation of landraces of Bambara groundnut considering their 14 qualitative and 27 numerical traits, to discover the best genotype fitted in Malaysia. The findings of the ANOVA observed a highly significant variation (p ≤ 0.01) for all the traits evaluated. There was a substantial variation (7.27 to 41.21%) coefficient value, and 14 out of the 27 numerical traits noted coefficient of variation (CV) ≥ 20%. Yield (kg/ha) disclosed positively strong to perfect high significant correlation (r = 0.75 to 1.00; p ≤ 0.001) with traits like fresh pod weight, dry pod weight, and dry seed weight. The topmost PCV and GCV values were estimated for biomass dry (41.09%) and fresh (40.53%) weight with high heritability (Hb) and genetic advance (GA) Hb = 95.19%, GA = 80.57% and Hb = 98.52%, GA = 82.86%, respectively. The topmost heritability was recorded for fresh pod weight (99.89%) followed by yield (99.75%) with genetic advance 67.95% and 62.03%, respectively. The traits with Hb ≥ 60% and GA ≥ 20% suggested the least influenced by the environment as well as governed by the additive genes and direct selection for improvement of such traits can be beneficial. To estimate the genetic variability among accessions, the valuation of variance components, coefficients of variation, heritability, and genetic advance were calculated. To authenticate the genetic inequality, an unweighted pair group produced with arithmetic mean (UPGMA) and principal component analysis was executed based on their measurable traits that could be a steadfast method for judging the degree of diversity. Based on the UPGMA cluster analysis, constructed five distinct clusters and 44 accessions from clusters II and IV consider an elite type of genotypes that produce more than one ton yield per hectare land with desirable traits. This study exposed an extensive disparity among the landraces and the evidence on genetic relatives will be imperative in using the existing germplasm for Bambara groundnut varietal improvement. Moreover, this finding will be beneficial for breeders to choose the desirable numerical traits of V. subterranea in their future breeding program.
  7. Zin KM, Effendi Halmi MI, Abd Gani SS, Zaidan UH, Samsuri AW, Abd Shukor MY
    Biomed Res Int, 2020;2020:2734135.
    PMID: 32149095 DOI: 10.1155/2020/2734135
    The release of wastewater from textile dyeing industrial sectors is a huge concern with regard to pollution as the treatment of these waters is truly a challenging process. Hence, this study investigates the triazo bond Direct Blue 71 (DB71) dye decolorization and degradation dye by a mixed bacterial culture in the deficiency source of carbon and nitrogen. The metagenomics analysis found that the microbial community consists of a major bacterial group of Acinetobacter (30%), Comamonas (11%), Aeromonadaceae (10%), Pseudomonas (10%), Flavobacterium (8%), Porphyromonadaceae (6%), and Enterobacteriaceae (4%). The richest phylum includes Proteobacteria (78.61%), followed by Bacteroidetes (14.48%) and Firmicutes (3.08%). The decolorization process optimization was effectively done by using response surface methodology (RSM) and artificial neural network (ANN). The experimental variables of dye concentration, yeast extract, and pH show a significant effect on DB71 dye decolorization percentage. Over a comparative scale, the ANN model has higher prediction and accuracy in the fitness compared to the RSM model proven by approximated R2 and AAD values. The results acquired signify an efficient decolorization of DB71 dye by a mixed bacterial culture.
  8. Isha ASN, Javaid MU, Zaib Abbasi A, Bano S, Zahid M, Memon MA, et al.
    Biomed Res Int, 2020;2020:7680960.
    PMID: 32090111 DOI: 10.1155/2020/7680960
    Psychosocial hazards present in workplaces are being actively investigated by researchers from multiple domains. More research and resources are required to investigate the debilitating consequences of these hazards in the developing and underdeveloped countries where this issue remains one of grave concern. This study aims at investigating the psychometric properties of Malaysian version of Copenhagen Psychosocial Questionnaire for reliability and validity purpose. The Malaysian version of COPSOQ is a multidimensional questionnaire; it comprises of 7 major formative constructs and 28 variables with an additional inclusion of two variables which are organizational loyalty and physiological health biomarkers (blood pressure and body mass index) that explicate a reflective construct which has 93 items all catering to assess psychosocial determinants present in workplace environments. Each formative second-order construct is further categorized into different reflective first-order constructs. The focus of this study was only on first-order reflective constructs. Probability sampling was used for data collection from 300 respondents working in industries with a response rate of 100%; structural equation modeling technique was applied for data analysis. All psychometric analysis performed on reflective constructs gave reliable results which demonstrate the validity of Bahasa Melayu (BM-COPSOQ) and its comprehensiveness of including relevant dimensions particularly in context to Asian region. The BM-COPSOQ will fill up the knowledge gap and provide a bridge between researchers, work professionals and practitioners, and many other workplaces for the best understanding of psychosocial work environment.
  9. Alsemiry RD, Sarifuddin, Mandal PK, Sayed HM, Amin N
    Biomed Res Int, 2020;2020:7609562.
    PMID: 32090110 DOI: 10.1155/2020/7609562
    The simultaneous effect of flexible wall and multiple stenoses on the flow and mass transfer of blood is investigated through numerical computation and simulations. The solution is obtained using the Marker and Cell technique on an axisymmetric model of Newtonian blood flow. The results compare favorably with physical observations where the pulsatile boundary condition and double stenoses result in a higher pressure drop across the stenoses. The streamlines, the iso-concentration lines, the Sherwood number, and the mass concentration variations along the entire wall segment provide a comprehensive analysis of the mass transport characteristics. The double stenoses and pulsatile inlet conditions increase the number of recirculation regions and effect a higher mass transfer rate at the throat, whereby more mass is expected to accumulate and cause further stenosis.
  10. Albitar O, Harun SN, Zainal H, Ibrahim B, Sheikh Ghadzi SM
    Biomed Res Int, 2020;2020:9872936.
    PMID: 31998804 DOI: 10.1155/2020/9872936
    Background and Objective: Clozapine is a second-generation antipsychotic drug that is considered the most effective treatment for refractory schizophrenia. Several clozapine population pharmacokinetic models have been introduced in the last decades. Thus, a systematic review was performed (i) to compare published pharmacokinetics models and (ii) to summarize and explore identified covariates influencing the clozapine pharmacokinetics models.

    Methods: A search of publications for population pharmacokinetic analyses of clozapine either in healthy volunteers or patients from inception to April 2019 was conducted in PubMed and SCOPUS databases. Reviews, methodology articles, in vitro and animal studies, and noncompartmental analysis were excluded.

    Results: Twelve studies were included in this review. Clozapine pharmacokinetics was described as one-compartment with first-order absorption and elimination in most of the studies. Significant interindividual variations of clozapine pharmacokinetic parameters were found in most of the included studies. Age, sex, smoking status, and cytochrome P450 1A2 were found to be the most common identified covariates affecting these parameters. External validation was only performed in one study to determine the predictive performance of the models.

    Conclusions: Large pharmacokinetic variability remains despite the inclusion of several covariates. This can be improved by including other potential factors such as genetic polymorphisms, metabolic factors, and significant drug-drug interactions in a well-designed population pharmacokinetic model in the future, taking into account the incorporation of larger sample size and more stringent sampling strategy. External validation should also be performed to the previously published models to compare their predictive performances.

  11. Shah N, Khan A, Ali R, Marimuthu K, Uddin MN, Rizwan M, et al.
    Biomed Res Int, 2020;2020:6185231.
    PMID: 32382561 DOI: 10.1155/2020/6185231
    Health and environmental problems arising from metals present in the aquatic ecosystem are very well known. The present study investigated toxicological effects of LC15 of metals such as copper, chromium, and lead for 24, 48, 72, and 96 h on hematological indices, RBC nucleus and cell morphology, and gill and muscle tissues of grass carp (Ctenopharyngodon idella). Experimental dose concentrations of copper were 1.5, 1.4, 1.2, and 1 mgL-1. Similarly, dose concentrations of chromium were 25.5, 22.5, 20, and 18 mgL-1 while those of lead were 250, 235, 225, and 216 mgL-1, respectively. Maximum decrease in the concentration of Hb, RBCs, and monocytes was observed against chromium, while maximum increase in the concentration of lymphocytes was reported against lead. Abnormalities such as single and double micronuclei, deformed nucleus, nuclear shift, irregular nucleus, deformed cells, microcyte cells, and vacuolated and swollen cells were observed. Gill tissues absorbed maximum concentration of lead followed by chromium and copper. Muscle tissues also absorbed maximum concentration of lead followed by chromium and copper, respectively. Histological alterations such as epithelial lifting, interlamellar spaces, club gill filaments, gill bridging, curling filaments, swelling and fusion of cells, irregular cells, destruction of epithelial cells, cellular necrosis, and inflammatory cells were observed in gill tissues while inflammation and necrosis of muscle fibers, degeneration of muscle fibers, edema of muscle bundles, zig-zag of muscle fibers, and lesions were observed in muscle tissues of fish exposed with different doses of these heavy metals, indicating the toxicity of metals to aquatic fauna as well as to human being via food chain.
  12. Tan WS, Arulselvan P, Ng SF, Taib CNM, Sarian MN, Fakurazi S
    Biomed Res Int, 2020;2020:4730858.
    PMID: 32382552 DOI: 10.1155/2020/4730858
    Chronic wounds represent serious globally health care and economic issues especially for patients with hyperglycemic condition. Wound dressings have a predominant function in wound treatment; however, the dressings for the long-lasting and non-healing wounds are still a significant challenge in the wound care management market. Astonishingly, advanced wound dressing which is embedded with a synthetic drug compound in a natural polymer compound that acts as drug release carrier has brought about promising treatment effect toward injured wound. In the current study, results have shown that Vicenin-2 (VCN-2) compound in low concentration significantly enhanced cell proliferation and migration of HDF. It also regulated the production of pro-inflammatory cytokines such as IL-6, IL-1β, and TNF-α from HDF in wound repair. Treatment of VCN-2 also has facilitated the expression of TGF-1β and VEGF wound healing maker in a dose-dependent manner. A hydrocolloid film based on sodium alginate (SA) incorporated with VCN-2 synthetic compound which targets to promote wound healing particularly in diabetic condition was successfully developed and optimized for its physico-chemical properties. It was discovered that all the fabricated film formulations prepared were smooth, translucent, and good with flexibility. The thickness and weight of the formulations were also found to be uniform. The hydrophilic polymer comprised of VCN-2 were shown to possess desirable wound dressing properties and superior mechanical characteristics. The drug release profiles have revealed hydrocolloid film, which is able to control and sustain the VCN-2 released to wound area. In short, hydrocolloid films consisting of VCN-2 formulations are suitably used as a potential wound dressing to promote restoration of wound injury.
  13. Rahman HS, Tan BL, Othman HH, Chartrand MS, Pathak Y, Mohan S, et al.
    Biomed Res Int, 2020;2020:8857428.
    PMID: 33381591 DOI: 10.1155/2020/8857428
    Angiogenesis is a crucial area in scientific research because it involves many important physiological and pathological processes. Indeed, angiogenesis is critical for normal physiological processes, including wound healing and embryonic development, as well as being a component of many disorders, such as rheumatoid arthritis, obesity, and diabetic retinopathies. Investigations of angiogenic mechanisms require assays that can activate the critical steps of angiogenesis as well as provide a tool for assessing the efficacy of therapeutic agents. Thus, angiogenesis assays are key tools for studying the mechanisms of angiogenesis and identifying the potential therapeutic strategies to modulate neovascularization. However, the regulation of angiogenesis is highly complex and not fully understood. Difficulties in assessing the regulators of angiogenic response have necessitated the development of an alternative approach. In this paper, we review the standard models for the study of tumor angiogenesis on the macroscopic scale that include in vitro, in vivo, and computational models. We also highlight the differences in several modeling approaches and describe key advances in understanding the computational models that contributed to the knowledge base of the field.
  14. Khalifa M, Few LL, See Too WC
    Biomed Res Int, 2020;2020:1823485.
    PMID: 32695809 DOI: 10.1155/2020/1823485
    Novel antimicrobial agents are crucial to combat antibiotic resistance in pathogenic bacteria. Choline kinase (ChoK) in bacteria catalyzes the synthesis of phosphorylcholine, which is subsequently incorporated into the cell wall or outer membrane. In certain species of bacteria, phosphorylcholine is also used to synthesize membrane phosphatidylcholine. Numerous human ChoK inhibitors (ChoKIs) have been synthesized and tested for anticancer properties. Inhibition of S. pneumoniae ChoK by human ChoKIs showed a promising effect by distorting the cell wall and retarded the growth of this pathogen. Comparison of amino acid sequences at the catalytic sites of putative choline kinases from pathogenic bacteria and human enzymes revealed striking sequence conservation that supports the potential application of currently available ChoKIs for inhibiting bacterial enzymes. We also propose the combined use of ChoKIs and nanoparticles for targeted delivery to the pathogen while shielding the human host from any possible side effects of the inhibitors. More research should focus on the verification of putative bacterial ChoK activities and the characterization of ChoKIs with active enzymes. In conclusion, the presence of ChoK in a wide range of pathogenic bacteria and the distinct function of this enzyme has made it an attractive drug target. This review highlighted the possibility of "choking" bacterial ChoKs by using human ChoKIs.
  15. Zakaria NI, Ismail MR, Awang Y, Megat Wahab PE, Berahim Z
    Biomed Res Int, 2020;2020:2706937.
    PMID: 32090071 DOI: 10.1155/2020/2706937
    Chilli (Capsicum annum L.) plant is a high economic value vegetable in Malaysia, cultivated in soilless culture containers. In soilless culture, the adoption of small container sizes to optimize the volume of the growing substrate could potentially reduce the production cost, but will lead to a reduction of plant growth and yield. By understanding the physiological mechanism of the growth reduction, several potential measures could be adopted to improve yield under restricted root conditions. The mechanism of growth reduction of plants subjected to root restriction remains unclear. This study was conducted to determine the physiological mechanism of growth reduction of root-restricted chilli plants grown in polyvinyl-chloride (PVC) column of two different volumes, 2392 cm3(root-restricted) and 9570 cm3(control) in soilless culture. Root restriction affected plant growth, physiological process, and yield of chilli plants. Root restriction reduced the photosynthesis rate and photochemical activity of PSII, and increased relative chlorophyll content. Limited root growth in root restriction caused an accumulation of high levels of sucrose in the stem and suggested a transition of the stem as a major sink organ for photoassimilate. Growth reduction in root restriction was not related to limited carbohydrate production, but due to the low sink demand from the roots. Reduction of the total yield per plant about, 23% in root restriction was concomitant, with a slightly increased harvest index which reflected an increased photoassimilate partitioning to the fruit production and suggested more efficient fruits production in the given small plant size of root restriction.
  16. Naz T, Nazir Y, Nosheen S, Ullah S, Halim H, Fazili ABA, et al.
    Biomed Res Int, 2020;2020:8890269.
    PMID: 33457420 DOI: 10.1155/2020/8890269
    Carotenoids produced by microbial sources are of industrial and medicinal importance due to their antioxidant and anticancer properties. In the current study, optimization of β-carotene production in M. circinelloides strain 277.49 was achieved using response surface methodology (RSM). Cerulenin and ketoconazole were used to inhibit fatty acids and the sterol biosynthesis pathway, respectively, in order to enhance β-carotene production by diverting metabolic pool towards the mevalonate pathway. All three variables used in screening experiments were found to be significant for the production of β-carotene. The synergistic effect of the C/N ratio, cerulenin, and ketoconazole was further evaluated and optimized for superior β-carotene production using central composite design of RSM. Our results found that the synergistic combination of C/N ratios, cerulenin, and ketoconazole at different concentrations affected the β-carotene productions significantly. The optimal production medium (std. order 11) composed of C/N 25, 10 μg/mL cerulenin, and 150 mg/L ketoconazole, producing maximum β-carotene of 4.26 mg/L (0.43 mg/g) which was 157% greater in comparison to unoptimized medium (1.68 mg/L, 0.17 mg/g). So, it was concluded that metabolic flux had been successfully redirected towards the mevalonate pathway for enhanced β-carotene production in CBS 277.49.
  17. Ram Talib NS, Halmi MIE, Abd Ghani SS, Zaidan UH, Shukor MYA
    Biomed Res Int, 2019;2019:5785387.
    PMID: 31240217 DOI: 10.1155/2019/5785387
    Numerous technologies and approaches have been used in the past few decades to remove hexavalent chromium (Cr[VI]) in wastewater and the environment. However, these conventional technologies are not economical and efficient in removing Cr(VI) at a very low concentration (1-100 ppm). As an alternative, the utilization of bioremediation techniques which uses the potential of microorganisms could represent an effective technique for the detoxification of Cr(VI). In this study, we reported a newly isolated bacterium identified as Acinetobacter radioresistens sp. NS-MIE from Malaysian agricultural soil. The chromate reduction potential of strain NS-MIE was optimized using RSM and ANN techniques. The optimum condition predicted by RSM for the bacterium to reduce hexavalent chromium occurred at pH 6, 10 g/L ppm of nutrient broth (NB) concentration and 100 ppm of chromate concentration while the optimum condition predicted by ANN is at pH 6 and 10 g/L of NB concentration and of 60 ppm of chromate concentration with chromate reduction (%) of 75.13 % and 96.27 %, respectively. The analysis by the ANN model shows better prediction data with a higher R2 value of 0.9991 and smaller average absolute deviation (AAD) and root mean square error (RMSE) of 0.33 % and 0.302 %, respectively. Validation analysis showed the predicted values by RSM and ANN were close to the validation values, whereas the ANN showed the lowest deviation, 2.57%, compared to the RSM. This finding suggests that the ANN showed a better prediction and fitting ability compared to the RSM for the nonlinear regression analysis. Based on this study, A. radioresistens sp. NS-MIE exhibits strong potential characteristics as a candidate for the bioremediation of hexavalent chromium in the environment.
  18. Abdul Kadir A, Abdul Kadir A, Abd Hamid R, Mat Jais AM, Omar J, Sadagatullah AN, et al.
    Biomed Res Int, 2019;2019:6979585.
    PMID: 31355276 DOI: 10.1155/2019/6979585
    Objectives: The objective of the study is to evaluate the chondroprotective activity of Channa striatus (Channa) and glucosamine sulphate (glucosamine) on histomorphometric examinations, serum biomarker, and inflammatory mediators in experimental osteoarthritis (OA) rabbit model.

    Design: Anterior cruciate ligament transection (ACLT) was performed to induce OA in thirty-three male New Zealand white rabbits and were randomly divided into three groups: Channa, glucosamine, and control group. The control group received drinking water and the Channa and glucosamine groups were orally administered with 51.4 mg/kg of Channa extract and 77.5 mg/kg of glucosamine sulphate in drinking water, respectively, for eight weeks and then sacrificed. The articular cartilage was evaluated macroscopically and histologically using semiquantitative and quantitative methods. Serum cartilage oligomeric matric protein (COMP), cyclooxygenase 2 (COX-2) enzyme, and prostaglandin E2 (PGE2) were also determined.

    Results: Macroscopic analysis revealed that Channa group have a significantly lower severity grade of total macroscopic score compared to the control (p < 0.001) and glucosamine (p < 0.05) groups. Semiquantitative histology scoring showed that both Channa and glucosamine groups had lower severity grading of total histology score compared to the control group (p < 0.001). In comparison with the control, Channa group had lower histopathological changes in three compartments of the joint compared to glucosamine group which had lower histological scoring in two compartments only. The cartilage thickness, area, and roughness of both Channa (p < 0.05) and glucosamine (p < 0.05) groups were superior compared to the control group. However, the Channa group demonstrated significantly less cartilage roughness compared to the glucosamine group (p < 0.05). Serum COMP levels were lower in both Channa (p < 0.05) and glucosamine (p < 0.05) groups compared to the control group.

    Conclusion: Both oral administration of Channa extract and glucosamine exhibited chondroprotective action on an ACLT OA-induced rabbit model. However, Channa was superior to glucosamine in maintaining the structure of the cartilage.

  19. Yeo Y, Tan JBL, Lim LW, Tan KO, Heng BC, Lim WL
    Biomed Res Int, 2019;2019:3126376.
    PMID: 33204680 DOI: 10.1155/2019/3126376
    In the biomedical field, there is growing interest in using human stem cell-derived neurons as in vitro models for pharmacological and toxicological screening of bioactive compounds extracted from natural products. Lignosus rhinocerus (Tiger Milk Mushroom) is used by indigenous communities in Malaysia as a traditional medicine to treat various diseases. The sclerotium of L. rhinocerus has been reported to have medicinal properties, including various bioactivities such as neuritogenic, anti-inflammatory, and anticancer effects. This study aims to investigate the neuroprotective activities of L. rhinocerus sclerotial extracts. Human embryonic stem cell (hESC)-derived neural lineages exposed to the synthetic glucocorticoid, dexamethasone (DEX), were used as the in vitro models. Excess glucocorticoids have been shown to adversely affect fetal brain development and impair differentiation of neural progenitor cells. Screening of different L. rhinocerus sclerotial extracts and DEX on the hESC-derived neural lineages was conducted using cell viability and neurite outgrowth assays. The neuroprotective effects of L. rhinocerus sclerotial extracts against DEX were further evaluated using apoptosis assays and Western blot analysis. Hot aqueous and methanol extracts of L. rhinocerus sclerotium promoted neurite outgrowth of hESC-derived neural stem cells (NSCs) with negligible cytotoxicity. Treatment with DEX decreased viability of NSCs by inducing apoptosis. Coincubation of L. rhinocerus methanol extract with DEX attenuated the DEX-induced apoptosis and reduction in phospho-Akt (pAkt) level in NSCs. These results suggest the involvement of Akt signaling in the neuroprotection of L. rhinocerus methanol extract against DEX-induced apoptosis in NSCs. Methanol extract of L. rhinocerus sclerotium exhibited potential neuroprotective activities against DEX-induced toxicity in hESC-derived NSCs. This study thus validates the use of human stem cell-derived neural lineages as potential in vitro models for screening of natural products with neuroprotective properties.
  20. Abg Abd Wahab DY, Gau CH, Zakaria R, Muthu Karuppan MK, A-Rahbi BS, Abdullah Z, et al.
    Biomed Res Int, 2019;2019:1767203.
    PMID: 31815123 DOI: 10.1155/2019/1767203
    Neurological diseases particularly Alzheimer's disease (AD), Parkinson's disease (PD), stroke, and epilepsy are on the rise all around the world causing morbidity and mortality globally with a common symptom of gradual loss or impairment of motor behaviour. Striatum, which is a component of the basal ganglia, is involved in facilitating voluntary movement while the cerebellum is involved in the maintenance of balance and coordination of voluntary movements. Dopamine, serotonin, gamma-aminobutyric acid (GABA), and glutamate, to name a few, interact in regulating the excitation and inhibition of motor neurons. In another hand, interestingly, the motor loss associated with neurological diseases is possibly resulted from neuroinflammation induced by the neuroimmune system. Toll-like receptors (TLRs) are present in the central nervous system (CNS), specifically and primarily expressed in microglia and are also found on neurons and astrocytes, functioning mainly in the regulation of proinflammatory cytokine production. TLRs are always found to be associated or involved in the induction of neuroinflammation in neurodegenerative diseases. Activation of toll-like receptor 4 (TLR4) through TLR4 agonist, lipopolysaccharide (LPS), stimulation initiate a signaling cascade whereby the TLR4-LPS interaction has been found to result in physiological and behavioural changes including retardation of motor activity in the mouse model. TLR4 inhibitor TAK-242 was reflected in the reduction of the spinal cord pathology along with the motor improvement in ALS mouse. There is cross talk with neuroinflammation and neurochemicals. For example, TLR4 activation by LPS is noted to release proinflammatory cytokines, IL-1β, from microglia that subsequently suppresses GABA receptor activities at the postsynaptic site and reduces GABA synthesis at the presynaptic site. Glial glutamate transporter activities are also found to be suppressed, showing the association between TLR4 activation and the related neurotransmitters and corresponding receptors and transporters in the event of neuroinflammation. This review is helpful to understand the connection between neurotransmitter and neuroinflammation in striatum- and cerebellum-mediated motor behaviour.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links