Displaying publications 61 - 70 of 70 in total

Abstract:
Sort:
  1. Vijay R, Lenin Singaravelu D, Vinod A, Sanjay MR, Siengchin S, Jawaid M, et al.
    Int J Biol Macromol, 2019 Mar 15;125:99-108.
    PMID: 30528990 DOI: 10.1016/j.ijbiomac.2018.12.056
    The aim of this study is to investigate natural cellulosic fibers extracted from Tridax procumbens plants. The obtained fibers were alkali treated for their effective usage as reinforcement in composites. The physical, chemical, crystallinity, thermal, wettability and surface characteristics were analyzed for raw, and alkali treated Tridax procumbens fibers (TPFs). The test results conclude that there was an increase in cellulose content with a reduction in hemicellulose, lignin, and wax upon alkali treatment. This enhanced the thermal stability, tensile strength, crystallinity, and surface roughness characteristics. The contact angle was also lesser for treated TPFs which prove its better wettability with the liquid phase. The Weibull distribution analysis was adopted for the analysis of the fiber diameter and tensile properties. Thus the considerable improvement in the properties of alkali treated TPFs would be worth for developing high-performance polymer composites.
    Matched MeSH terms: Alkalies/chemistry*
  2. Wan Saidatul Syida, W.K., Normah, I., Noriham, A., Mohd Yusuf, M.
    MyJurnal
    Processing of soybeans to other products and consumption of soy products is increasing worldwide mainly due to acclaimed health benefits. Processing can alter soybean sensory appeal, nutritive value and potentially affect consumer health. Rhizopus oligosporus was used to ferment soybean for 3 days. The tempeh flour (TF) was produced form tempeh while defatted tempeh flour (DTF) was then produced from TF by immersing in hexane solvent while soy protein isolate (SPI) was prepared from DTF by using alkali and acid followed by neutralization treatment. In this study, nutritional properties and amino acid content of tempeh, TF, DTF and SPI were determined. Therefore, the objective of this study is was to evaluate the effect of each treatment on the chemical composition and amino acid content for all the samples. The results showed that the nutritional properties (total ash, moisture, crude fat, total carbohydrate and crude fibre) were reduced significantly (p < 0.05) except for protein content. Protein content was significantly (p < 0.05) increased by 50.5% in SPI. For amino acid content, the results obtained showed that SPI contain highest amount of essential and non-essential amino acid followed by DTF, Tempeh and TF. Glutamic acid was found to be the highest amino acid component in all samples. The evaluation from the results showed that SPI can be considered as potential functional food ingredients.
    Matched MeSH terms: Alkalies
  3. Wong SK, Chin KY, Ima-Nirwana S
    Front Pharmacol, 2020;11:430.
    PMID: 32317977 DOI: 10.3389/fphar.2020.00430
    Lithium, the lightest natural-occurring alkali metal with an atomic number of three, stabilizes the mood to prevent episodes of acute manic and depression. Multiple lines of evidence point to lithium as an anti-suicidal, anti-viral, anti-cancer, immunomodulatory, neuroprotective and osteoprotective agent. This review article provides a comprehensive review of studies investigating the bone-enhancing effects of lithium and its possible underlying molecular mechanisms. Most of the animal experimental studies reported the beneficial effects of lithium in defective bones but not in healthy bones. In humans, the effects of lithium on bones remain heterogeneous. Mechanistically, lithium promotes osteoblastic activities by activating canonical Wingless (Wnt)/beta (β)-catenin, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) and bone morphogenetic protein-2 (BMP-2) transduction pathways but suppresses osteoclastic activities by inhibiting the receptor activator of nuclear factor-kappa B (RANK)/receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin (OPG) system, nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and calcium signaling cascades. In conclusion, lithium confers protection to the skeleton but its clinical utility awaits further validation from human clinical trials.
    Matched MeSH terms: Alkalies
  4. Yin CY, Mahmud HB, Shaaban MG
    J Hazard Mater, 2006 Oct 11;137(3):1758-64.
    PMID: 16784809
    This paper presents the findings of a study on solidification/stabilization (S/S) of lead-contaminated soil using ordinary Portland cement (OPC) and rice husk ash (RHA). The effects of varying lead concentrations (in the form of nitrates) in soil samples on the physical properties of their stabilized forms, namely unconfined compressive strength (UCS), setting times of early mixtures and changes in crystalline phases as well as chemical properties such as leachability of lead, pH and alkalinity of leachates are studied. Results have indicated that usage of OPC with RHA as an overall binder system for S/S of lead-contaminated soils is more favorable in reducing the leachability of lead from the treated samples than a binder system with standalone OPC. On the other hand, partial replacement of OPC with RHA in the binder system has reduced the UCS of solidified samples.
    Matched MeSH terms: Alkalies/chemistry
  5. Yoon LW, Ngoh GC, Chua AS
    Enzyme Microb Technol, 2013 Sep 10;53(4):250-6.
    PMID: 23931690 DOI: 10.1016/j.enzmictec.2013.05.005
    This study examined the potential of untreated and alkali-pretreated sugarcane bagasse (SCB) in cellulase, reducing sugar (RS) and fungal biomass production via solid state fermentation (SSF) using Pycnoporus sanguineus. The impact of the composition, structure and cellulase adsorption ability of SCB on the production of cellulase, RS and fungal biomass was investigated. From the morphological and compositional analyses, untreated SCB has relatively more structural changes with a higher percentage of depolymerisation on the cellulose, hemicellulose and lignin content compared to alkali-pretreated SCB. Thus, untreated SCB favoured the production of cellulase and fungal biomass whereas alkali-pretreated SCB yielded a higher amount of RS. The composition and morphology of untreated SCB did not encourage RS production and this suggested that RS produced during SSF might be consumed in a faster rate by the more abundantly grown fungus. Besides that, alkali-pretreated SCB with higher cellulase adsorption ability could have adsorbed the cellulase produced and resulted in a lower cellulase titre. In short, the production of specific bioproducts via SSF is dependent on the structure and composition of the substrate applied.
    Matched MeSH terms: Alkalies
  6. Zhang, Q., Ismail, N., Cheng, L.H.
    MyJurnal
    Chicken breast muscle powder (CBMP) was treated as a function of heating temperature, heating time and amount of alkali added. The pre-treated CBMP was then blended with modified waxy corn starch (MWCS) and characterized by flow analysis and temperature sweep. Flow analysis revealed that the blend behaved as a shear thickening and time dependent fluid with a yield stress. Statistical analysis showed that only linear and quadratic effects of heating temperature and heating time caused significant effects on flow behaviour index, consistency index and yield stress (p
    Matched MeSH terms: Alkalies
  7. Zhao P, Wang Y, Zhang Y, Guo T, Zhang Z, Zhang WJ, et al.
    Saudi J Biol Sci, 2016 May;23(3):353-7.
    PMID: 27081360 DOI: 10.1016/j.sjbs.2015.08.007
    In this study, the selenium enriched peanuts and the different solubility proteins extracted from them were investigated. The dried defatted selenium enriched peanuts (SeP) powder (0.3147 μg/g) had a 2.5-fold higher mean total selenium concentration than general peanuts (GP) power (0.1233 μg/g). The SeP had higher concentration of selenium, manganese and zinc than that of GP, but less calcium. The rate of extraction of protein was 23.39% for peanuts and alkali soluble protein was the main component of protein in SeP, which accounted for 92.82% of total soluble protein and combined selenium was 77.33% of total selenium protein. In different forms of proteins from SeP, the WSePr due to higher concentration of selenium had higher DPPH free-radical scavenging activity, higher reducing activity and longer induction time than other proteins.
    Matched MeSH terms: Alkalies
  8. Zhao XF, Huang J, Li W, Wang SY, Liang LQ, Zhang LM, et al.
    Ecotoxicol Environ Saf, 2024 Mar 15;273:116160.
    PMID: 38432157 DOI: 10.1016/j.ecoenv.2024.116160
    High alkaline environment can lead to respiratory alkalosis and ammonia toxification to freshwater fish. However, the Amur ide (Leuciscus waleckii), which inhabits an extremely alkaline lake in China with titratable alkalinity up to 53.57 mM (pH 9.6) has developed special physiological and molecular mechanisms to adapt to such an environment. Nevertheless, how the Amur ide can maintain acid-base balance and perform ammonia detoxification effectively remains unclear. Therefore, this study was designed to study the ammonia excretion rate (Tamm), total nitrogen accumulation in blood and tissues, including identification, expression, and localization of ammonia-related transporters in gills of both the alkali and freshwater forms of the Amur ide. The results showed that the freshwater form Amur ide does not have a perfect ammonia excretion mechanism exposed to high-alkaline condition. Nevertheless, the alkali form of Amur ide was able to excrete ammonia better than freshwater from Amur ide, which was facilitated by the ionocytes transporters (Rhbg, Rhcg1, Na+/H+ exchanger 2 (NHE2), and V-type H+ ATPase (VHA)) in the gills. Converting ammonia into urea served as an ammonia detoxication strategy to reduced endogenous ammonia accumulation under high-alkaline environment.
    Matched MeSH terms: Alkalies
  9. Zin, M.H., Abdan, K., Norizan, M.N., Mazlan, N.
    MyJurnal
    The main focus of this study was to obtain the optimum alkaline treatment for banana fibre and the its effect on the mechanical and chemical properties of banana fibre, its surface topography, its heat resistivity, as well as its interfacial bonding with epoxy matrix. Banana fibre was treated with sodium hydroxide (NaOH) under various treatment conditions. The treated fibres were characterised using FTIR spectroscopy. The morphology of a single fibre observed under a Digital Image Analyser indicated slight reduction in fibre diameter with increasing NaOH concentration. The Scanning Electron Microscope (SEM) results showed the deteriorating effect of alkali, which can be seen from the removal of impurities and increment in surface roughness. The mechanical analysis indicates that 6% NaOH treatment with a two-hour immersion time gave the highest tensile strength. The adhesion between single fibre and epoxy resin was analysed through the micro-droplet test. It was found that 6% NaOH treatment with a two-hour immersion yielded the highest interfacial shear stress of 3.96 MPa. The TGA analysis implies that alkaline treatment improved the thermal and heat resistivity of the fibre.
    Matched MeSH terms: Alkalies
  10. van der Ent A, Edraki M
    Environ Geochem Health, 2018 Feb;40(1):189-207.
    PMID: 27848090 DOI: 10.1007/s10653-016-9892-3
    The Mamut Copper Mine (MCM) located in Sabah (Malaysia) on Borneo Island was the only Cu-Au mine that operated in the country. During its operation (1975-1999), the mine produced 2.47 Mt of concentrate containing approximately 600,000 t of Cu, 45 t of Au and 294 t of Ag, and generated about 250 Mt of overburden and waste rocks and over 150 Mt of tailings, which were deposited at the 397 ha Lohan tailings storage facility, 15.8 km from the mine and 980 m lower in altitude. The MCM site presents challenges for environmental rehabilitation due to the presence of large volumes of sulphidic minerals wastes, the very high rainfall and the large volume of polluted mine pit water. This indicates that rehabilitation and treatment is costly, as for example, exceedingly large quantities of lime are needed for neutralisation of the acidic mine pit discharge. The MCM site has several unusual geochemical features on account of the concomitant occurrence of acid-forming sulphide porphyry rocks and alkaline serpentinite minerals, and unique biological features because of the very high plant diversity in its immediate surroundings. The site hence provides a valuable opportunity for researching natural acid neutralisation processes and mine rehabilitation in tropical areas. Today, the MCM site is surrounded by protected nature reserves (Kinabalu Park, a World Heritage Site, and Bukit Hampuan, a Class I Forest Reserve), and the environmental legacy prevents de-gazetting and inclusion in these protected area in the foreseeable future. This article presents a preliminary geochemical investigation of waste rocks, sediments, secondary precipitates, surface water chemistry and foliar elemental uptake in ferns, and discusses these results in light of their environmental significance for rehabilitation.
    Matched MeSH terms: Alkalies/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links