Displaying publications 61 - 70 of 70 in total

Abstract:
Sort:
  1. Beatson SA, Ben Zakour NL, Totsika M, Forde BM, Watts RE, Mabbett AN, et al.
    Infect Immun, 2015 May;83(5):1749-64.
    PMID: 25667270 DOI: 10.1128/IAI.02810-14
    Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli responsible for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. To understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50-pheV has a mosaic structure and contains genes encoding a number of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50-pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50afa and VR50afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50afa and VR50afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50-pheV mutant. Our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder.
    Matched MeSH terms: Bacterial Adhesion
  2. Atshan SS, Shamsudin MN, Karunanidhi A, van Belkum A, Lung LT, Sekawi Z, et al.
    Infect Genet Evol, 2013 Aug;18:106-12.
    PMID: 23669446 DOI: 10.1016/j.meegid.2013.05.002
    Staphylococcus aureus biofilm associated infections remains a major clinical concern in patients with indwelling devices. Quantitative real-time PCR (qPCR) can be used to investigate the pathogenic role of such biofilms. We describe qPCRs for 12 adhesion and biofilm-related genes of four S. aureus isolates which were applied during in vitro biofilm development. An endogenous control (16S rRNA) was used for signal normalization. We compared the qPCR results with structural analysis using scanning electron microscopy (SEM). The SEM studies showed different cellular products surrounding the aggregated cells at different times of biofilm formation. Using qPCR, we found that expression levels of the gene encoding fibronectin binding protein A and B and clumping factor B (fnbA/B and clfB), which involves in primary adherence of S. aureus, were significantly increased at 24h and decreased slightly and variably at 48 h when all 4 isolates were considered. The elastin binding protein (ebps) RNA expression level was significantly enhanced more than 6-fold at 24 and 48 h compared to 12h. Similar results were obtained for the intercellular adhesion biofilm required genes type C (icaC). In addition, qPCR revealed a fluctuation in expression levels at different time points of biofilm growth of other genes, indicating that different parameter modes of growth processes are operating at different times.
    Matched MeSH terms: Bacterial Adhesion/genetics
  3. Atshan SS, Shamsudin MN, Lung LT, Sekawi Z, Ghaznavi-Rad E, Pei CP
    J Biomed Biotechnol, 2012;2012:417247.
    PMID: 22529705 DOI: 10.1155/2012/417247
    The ability to adhere and produce biofilms is characteristic of enhanced virulence among isolates of methicillin-resistant Staphylococcus aureus (MRSA). The aim of the study is to find out whether these characteristics are consistently similar among isolates variations of MRSA. The study used 30 various isolates of MRSA belong to 13 spa types and 5 MLST types and determined the aggregation, the adherence, and the production of biofilms and slime for each isolate. The methods used to evaluate these characteristics were a modified Congo red agar assay (MCRA), a microtiter plate assay (MPA), high-magnification light microscopy, scanning electron microscopy (SEM), and PCR. The study found that isolates belonging to similar Spa, SCCmec, and ST types have similar abilities to produce biofilms; however, their ability to produce slime on CRA was found to be different. Moreover, isolates that have different Spa types showed high variation in their ability to produce biofilms. The results of light microscope revealed the isolates that produced strong and weak biofilms and formed similar aggregation on the glass surfaces. SEM results showed that all 30 MRSA isolates that were tested were 100% positive for biofilm formation, although to varying degrees. Further testing using PCR confirmed that 100% of the 30 isolates tested were positive for the presence of the icaADBC, fnbA, eno, ebps, clfA, and clfB genes. The prevalence of fib, cna, fnbB, and bbp in MRSA clones was 90, 93.33, 53.33, and 10%, respectively. This study indicate that differences in biofilm production capacities are caused by the differences in surface protein A (Spa) type and are not due to differences in MLST and SCCmec types.
    Matched MeSH terms: Bacterial Adhesion/genetics
  4. Al-Marzok MI, Al-Azzawi HJ
    J Contemp Dent Pract, 2009;10(6):E017-24.
    PMID: 20020077
    Dental plaque has a harmful influence on periodontal tissue. When a porcelain restoration is fabricated and refinishing of the glazed surface is inevitable, the increase in surface roughness facilitates the adhesion of plaque and its components. The aim of this in vitro study was to evaluate the effect of surface roughness of glazed or polished porcelain on the adhesion of oral Streptococcus mutans.
    Matched MeSH terms: Bacterial Adhesion/physiology*
  5. Al-Maleki AR, Mariappan V, Vellasamy KM, Shankar EM, Tay ST, Vadivelu J
    J Proteomics, 2014 Jun 25;106:205-20.
    PMID: 24742602 DOI: 10.1016/j.jprot.2014.04.005
    Colony morphology variation is a characteristic of Burkholderia pseudomallei primary clinical isolates, associated with variations in expression of virulence factors. Here, we performed comparative investigations on adhesion, invasion, plaque-forming abilities and protein profiles of B. pseudomallei wild-type (WT) and a small colony variant (SCV). The percentage of SCV adherence to A549 cells was significantly higher (2.73%) than WT (1.91%). In contrast, WT was significantly more efficient (0.63%) than SCV (0.31%) in invasiveness and in inducing cellular damage. Using 2-DE and MALDI TOF/TOF, 263 and 258 protein spots were detected in WT and SCV, respectively. Comparatively, 49 proteins were differentially expressed in SCV when compared with WT. Of these, 31 proteins were up-regulated, namely, nucleoside diphosphate kinase (Ndk), phosphoglycerate kinase (Pgk), thioredoxin (TrxA), putative ferritin DPS-family DNA-binding protein (DPS) and oxidoreductase (AhpC) that are known to be involved in adhesion, intracellular survival and persistence. However, among the 18 down-regulated proteins, enolase (Eno), elongation factor (EF-Tu) and universal stress-related proteins were associated with invasion and virulence. Differences observed in these protein profiles provide ample clues to their association with the morphotypic and phenotypic characteristics of colony variants, providing additional insights into the potential association of B. pseudomallei colony morphotypes with disease pathogenesis.
    Matched MeSH terms: Bacterial Adhesion
  6. Al-Haddawi MH, Jasni S, Zamri-Saad M, Mutalib AR, Zulkifli I, Son R, et al.
    Vet J, 2000 May;159(3):274-81.
    PMID: 10775473
    In vitro experiments were undertaken to study the adhesion and colonization to tracheal mucosa, lung and aorta explants from freshly killed rabbits of two different strains of Pasteurella multocida. Serotype A:3 (capsulated, fimbriae +, haemagglutination -, dermonecrotic toxin -) isolated from a rabbit with rhinitis, and serotype D:1 (non-capsulated, fimbriae +, haemagglutination +, dermonecrotic toxin +) isolated from a dead rabbit with septicaemia, were used. When the explants were observed under the scanning electron microscope, the type D strain was highly adherent to trachea and aorta explants compared to the type A strain. Adhesion to lung explants was best achieved by the type A strain after 45 min incubation, but after 2 h incubation no significant difference was observed between the strains. Our data indicate that the presence of fimbriae and the absence of capsule seem to enhance the adherence of P. multocida type D strain to tracheal tissue. The capsular material of P. multocida type A strain and the toxin of the type D strain seem to influence the adherence to lung tissue in rabbit. Adhesion of strain D to aorta may indicate the expression of receptors on the endothelium to that strain and may also explain the ability of certain strains to cause septicaemia.
    Matched MeSH terms: Bacterial Adhesion*
  7. Aishah Faiqah Mohd Yusof, Prabhakaran P, Nur Diyana Azli, Norrakiah Abdullah Sani, Wan Syaidatul Aqma
    Sains Malaysiana, 2017;46:903-908.
    Pacifier nipples are in permanent contact with saliva and with the oral microflora therefore, act as a favoured site for the growth of biofilms. This research was conducted to identify the bacterial biofilms that has been found on the pacifiers that collected from local child nursery and to analyse the formation of biofilms by Cronobacter sp. during growth in infant formula milk. Pacifiers collected were analysed to obtain colony forming unit (CFU) and isolated bacteria were identified using several biochemical tests according to Bergey's Manual. Biofilm assay of three Cronobacter sp. were conducted using 24 wells microtiter plate and stained with 1% of crystal violet solution at different time interval: 6, 12, 18 and 24 h. The hydrophobicity of the bacterial cell suspension was evaluated using bacterial adhesion to hydrocarbons (BATH) method. Extracellular polymeric substances (EPS) analysis was done to identify percentage of carbohydrate and protein content by using phenol sulphuric acid method and Bradford method, respectively. The results obtained showed that the normal microflora bacteria were the most abundant microorganisms that were found on the pacifier with the main genus isolated was Staphylococcus sp., Enterobacteriaceae sp. and Clostridium sp. Based on biofilm and EPS analysis, Cronobacter sakazakii formed a strong biofilms after 18 h, with carbohydrate was identified as main component of EPS.
    Matched MeSH terms: Bacterial Adhesion
  8. Abdulbaqi HR, Himratul-Aznita WH, Baharuddin NA
    Arch Oral Biol, 2016 Oct;70:117-124.
    PMID: 27343694 DOI: 10.1016/j.archoralbio.2016.06.011
    OBJECTIVE: Green tea (Gt), leafs of Camellia sinensis var. assamica, is widely consumed as healthy beverage since thousands of years in Asian countries. Chewing sticks (miswak) of Salvadora persica L. (Sp) are traditionally used as natural brush to ensure oral health in developing countries. Both Gt and Sp extracts were reported to have anti-bacterial activity against many dental plaque bacteria. However, their combination has never been tested to have anti-bacterial and anti-adherence effect against primary dental plaque colonizers, playing an initial role in the dental plaque development, which was investigated in this study.

    METHODS: Two-fold serial micro-dilution method was used to measure minimal inhibitory concentration (MIC) of aqueous extracts of Gt, Sp and their combinations. Adsorption to hexadecane was used to determine the cell surface hydrophobicity (CSH) of bacterial cells. Glass beads were used to mimic the hard tissue surfaces, and were coated with saliva to develop experimental pellicles for the adhesion of the primary colonizing bacteria.

    RESULTS: Gt aqueous extracts exhibited better anti-plaque effect than Sp aqueous extracts. Their combination, equivalent to 1/4 and 1/2 of MIC values of Gt and Sp extracts respectively, showed synergistic anti-plaque properties with fractional inhibitory concentration (FIC) equal to 0.75. This combination was found to significantly reduce CSH (p<0.05) and lower the adherence ability (p<0.003) towards experimental pellicles.

    CONCLUSION: Combination between Gt and Sp aqueous extracts exhibited synergistic anti-plaque activity, and could be used as a useful active agent to produce oral health care products.

    Matched MeSH terms: Bacterial Adhesion/drug effects
  9. Abdul Razak F, Baharuddin BA, Akbar EFM, Norizan AH, Ibrahim NF, Musa MY
    Arch Oral Biol, 2017 Aug;80:180-184.
    PMID: 28448807 DOI: 10.1016/j.archoralbio.2017.04.014
    OBJECTIVE: Compact-structured oral biofilm accumulates acids that upon prolonged exposure to tooth surface, causes demineralisation of enamel. This study aimed to assess the effect of alternative sweeteners Equal Stevia(®), Tropicana Slim(®), Pal Sweet(®) and xylitol on the matrix-forming activity of plaque biofilm at both the early and established stages of formation.

    METHODS: Saliva-coated glass beads (sGB) were used as substratum for the adhesion of a mixed-bacterial suspension of Streptococcus mutans, Streptococcus sanguinis and Streptococcus mitis. Biofilms formed on sGB at 3h and 24h represented the early and established-plaque models. The biofilms were exposed to three doses of the sweeteners (10%), introduced at three intervals to simulate the exposure of dental plaque to sugar during three consecutive food intakes. The treated sGB were (i) examined under the SEM and (ii) collected for turbidity reading. The absorbance indicated the amount of plaque mass produced. Analysis was performed comparative to sucrose as control.

    RESULTS: Higher rate of bacterial adherence was determined during the early compared to established phases of formation. Comparative to the sweeteners, sucrose showed a 40% increase in bacterial adherence and produced 70% more plaque-mass. Bacterial counts and SEM micrographs exhibited absence of matrix in all the sweetener-treated biofilms at the early phase of formation. At the established phase, presence of matrix was detected but at significantly lower degree compared to sucrose (p<0.05).

    CONCLUSION: Alternatives sweeteners promoted the formation of oral biofilm with lighter mass and lower bacterial adherence. Hence, suggesting alternative sweeteners as potential antiplaque agents.

    Matched MeSH terms: Bacterial Adhesion
  10. Abbasiliasi S, Tan JS, Bashokouh F, Ibrahim TAT, Mustafa S, Vakhshiteh F, et al.
    BMC Microbiol, 2017 May 23;17(1):121.
    PMID: 28535747 DOI: 10.1186/s12866-017-1000-z
    BACKGROUND: Selection of a microbial strain for the incorporation into food products requires in vitro and in vivo evaluations. A bacteriocin-producing lactic acid bacterium (LAB), Pediococcus acidilactici Kp10, isolated from a traditional dried curd was assessed in vitro for its beneficial properties as a potential probiotic and starter culture. The inhibitory spectra of the bacterial strain against different gram-positive and gram-negative bacteria, its cell surface hydrophobicity and resistance to phenol, its haemolytic, amylolytic and proteolytic activities, ability to produce acid and coagulate milk together with its enzymatic characteristics and adhesion property were all evaluated in vitro.

    RESULTS: P. acidilactici Kp10 was moderately tolerant to phenol and adhere to mammalian epithelial cells (Vero cells and ileal mucosal epithelium). The bacterium also exhibited antimicrobial activity against several gram-positive and gram-negative food-spoilage and food-borne pathogens such as Listeria monocytgenes ATCC 15313, Salmonella enterica ATCC 13311, Shigella sonnei ATCC 9290, Klebsiella oxytoca ATCC 13182, Enterobacter cloaca ATCC 35030 and Streptococcus pyogenes ATCC 12378. The absence of haemolytic activity and proteinase (trypsin) and the presence of a strong peptidase (leucine-arylamidase) and esterase-lipase (C4 and C8) were observed in this LAB strain. P. acidilactici Kp10 also produced acid, coagulated milk and has demonstrated proteolytic and amylolactic activities.

    CONCLUSION: The properties exhibited by P. acidilactici Kp10 suggested its potential application as probiotic and starter culture in the food industry.

    Matched MeSH terms: Bacterial Adhesion
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links