Displaying publications 61 - 80 of 365 in total

Abstract:
Sort:
  1. Mohamad Nor N, Ridhuan NS, Abdul Razak K
    Biosensors (Basel), 2022 Dec 06;12(12).
    PMID: 36551103 DOI: 10.3390/bios12121136
    This review covers the progress of nanomaterial-modified electrodes for enzymatic and non-enzymatic glucose biosensors. Fundamental insights into glucose biosensor components and the crucial factors controlling the electrochemical performance of glucose biosensors are discussed in detail. The metal, metal oxide, and hybrid/composite nanomaterial fabrication strategies for the modification of electrodes, mechanism of detection, and significance of the nanomaterials toward the electrochemical performance of enzymatic and non-enzymatic glucose biosensors are compared and comprehensively reviewed. This review aims to provide readers with an overview and underlying concept of producing a reliable, stable, cost-effective, and excellent electrochemical performance of a glucose biosensor.
    Matched MeSH terms: Biosensing Techniques*
  2. Rahman MS, Naima RL, Shetu KJ, Hossain MM, Kaiser MS, Hosen ASMS, et al.
    Biosensors (Basel), 2021 Jun 01;11(6).
    PMID: 34205927 DOI: 10.3390/bios11060178
    The use of deoxyribonucleic acid (DNA) hybridization to detect disease-related gene expression is a valuable diagnostic tool. An ion-sensitive field-effect transistor (ISFET) with a graphene layer has been utilized for detecting DNA hybridization. Silicene is a two-dimensional silicon allotrope with structural properties similar to graphene. Thus, it has recently experienced intensive scientific research interest due to its unique electrical, mechanical, and sensing characteristics. In this paper, we proposed an ISFET structure with silicene and electrolyte layers for the label-free detection of DNA hybridization. When DNA hybridization occurs, it changes the ion concentration in the surface layer of the silicene and the pH level of the electrolyte solution. The process also changes the quantum capacitance of the silicene layer and the electrical properties of the ISFET device. The quantum capacitance and the corresponding resonant frequency readout of the silicene and graphene are compared. The performance evaluation found that the changes in quantum capacitance, resonant frequency, and tuning ratio indicate that the sensitivity of silicene is much more effective than graphene.
    Matched MeSH terms: Biosensing Techniques
  3. Białobrzeska W, Dziąbowska K, Lisowska M, Mohtar MA, Muller P, Vojtesek B, et al.
    Biosensors (Basel), 2021 Jun 07;11(6).
    PMID: 34200338 DOI: 10.3390/bios11060184
    The detection of cancer antigens is a major aim of cancer research in order to develop better patient management through early disease detection. Many cancers including prostate, lung, and ovarian secrete a protein disulfide isomerase protein named AGR2 that has been previously detected in urine and plasma using mass spectrometry. Here we determine whether a previously developed monoclonal antibody targeting AGR2 can be adapted from an indirect two-site ELISA format into a direct detector using solid-phase printed gold electrodes. The screen-printed gold electrode was surface functionalized with the anti-AGR2 specific monoclonal antibody. The interaction of the recombinant AGR2 protein and the anti-AGR2 monoclonal antibody functionalized electrode changed its electrochemical impedance spectra. Nyquist diagrams were obtained after incubation in an increasing concentration of purified AGR2 protein with a range of concentrations from 0.01 fg/mL to 10 fg/mL. In addition, detection of the AGR2 antigen can be achieved from cell lysates in medium or artificial buffer. These data highlight the utility of an AGR2-specific monoclonal antibody that can be functionalized onto a gold printed electrode for a one-step capture and quantitation of the target antigen. These platforms have the potential for supporting methodologies using more complex bodily fluids including plasma and urine for improved cancer diagnostics.
    Matched MeSH terms: Biosensing Techniques*
  4. Yunos MFAM, Manczak R, Guines C, Mansor AFM, Mak WC, Khan S, et al.
    Biosensors (Basel), 2021 Dec 03;11(12).
    PMID: 34940251 DOI: 10.3390/bios11120494
    Diabetes has become a major health problem in society. Invasive glucometers, although precise, only provide discrete measurements at specific times and are unsuitable for long-term monitoring due to the injuries caused on skin and the prohibitive cost of disposables. Remote, continuous, self-monitoring of blood sugar levels allows for active and better management of diabetics. In this work, we present a radio frequency (RF) sensor based on a stepped impedance resonator for remote blood glucose monitoring. When placed on top of a human hand, this RF interdigital sensor allows detection of variation in blood sugar levels by monitoring the changes in the dielectric constant of the material underneath. The designed stepped impedance resonator operates at 3.528 GHz with a Q factor of 1455. A microfluidic device structure that imitates the blood veins in the human hand was fabricated in PDMS to validate that the sensor can measure changes in glucose concentrations. To test the RF sensor, glucose solutions with concentrations ranging from 0 to 240 mg/dL were injected into the fluidic channels and placed underneath the RF sensor. The shifts in the resonance frequencies of the RF sensor were measured using a network analyzer via its S11 parameters. Based on the change in resonance frequencies, the sensitivity of the biosensor was found to be 264.2 kHz/mg·dL-1 and its LOD was calculated to be 29.89 mg/dL.
    Matched MeSH terms: Biosensing Techniques*
  5. Lee SX, Lim HN, Ibrahim I, Jamil A, Pandikumar A, Huang NM
    Biosens Bioelectron, 2017 Mar 15;89(Pt 1):673-680.
    PMID: 26718548 DOI: 10.1016/j.bios.2015.12.030
    In this study, a disposable and simple electrochemical immunosensor was fabricated for the detection of carcinoembryonic antigen. In this method, silver nanoparticles (AgNPs) were mixed with reduced graphene oxide (rGO) to modify the surface of screen-printed carbon electrode (SPE). Initially, AgNPs-rGO modified-SPEs were fabricated by using simple electrochemical deposition method. Then the carcinoembryonic antigen (CEA) was immobilized between the primary antibody and horseradish peroxidase (HRP)-conjugated secondary antibody onto AgNPs-rGO modified-SPEs to fabricate a sandwich-type electrochemical immunosensor. The proposed method could detect the CEA with a linear range of 0.05-0.50µgmL-1 and a detection limit down to 0.035µgmL-1 as compared to its non-sandwich counterpart, which yielded a linear range of 0.05-0.40µgmL-1, with a detection limit of 0.042µgmL-1. The immunosensor showed good performance in the detection of carcinoembryonic antigen, exhibiting a simple, rapid and low-cost. The immunosensor showed a higher sensitivity than an enzymeless sensor.
    Matched MeSH terms: Biosensing Techniques/economics; Biosensing Techniques/instrumentation*
  6. Hosseini S, Azari P, Farahmand E, Gan SN, Rothan HA, Yusof R, et al.
    Biosens Bioelectron, 2015 Jul 15;69:257-64.
    PMID: 25765434 DOI: 10.1016/j.bios.2015.02.034
    Electrospun polyhydroxybutyrate (PHB) fibers were dip-coated by polymethyl methacrylate-co-methacrylic acid, poly(MMA-co-MAA), which was synthesized in different molar ratios of the monomers via free-radical polymerization. Fabricated platfrom was employed for immobilization of the dengue antibody and subsequent detection of dengue enveloped virus in enzyme-linked immunosorbent assay (ELISA). There is a major advantage for combination of electrospun fibers and copolymers. Fiber structre of electrospun PHB provides large specific surface area available for biomolecular interaction. In addition, polymer coated parts of the platform inherited the premanent presence of surface carboxyl (-COOH) groups from MAA segments of the copolymer which can be effectively used for covalent and physical protein immobilization. By tuning the concentration of MAA monomers in polymerization reaction the concentration of surface -COOH groups can be carefully controlled. Therefore two different techniques have been used for immobilization of the dengue antibody aimed for dengue detection: physical attachment of dengue antibodies to the surface and covalent immobilization of antibodies through carbodiimide chemistry. In that perspective, several different characterization techniques were employed to investigate the new polymeric fiber platform such as scanning electron microscopy (SEM), atomic force microscopy (AFM), water contact angle (WCA) measurement and UV-vis titration. Regardless of the immobilization techniques, substantially higher signal intensity was recorded from developed platform in comparison to the conventional ELISA assay.
    Matched MeSH terms: Biosensing Techniques/instrumentation*
  7. Adam T, Hashim U
    Biosens Bioelectron, 2015 May 15;67:656-61.
    PMID: 25453738 DOI: 10.1016/j.bios.2014.10.005
    The study demonstrates the development of a liquid-based gate-control silicon nanowire biosensor for detection of specific single-stranded DNA (ssDNA) molecules. The sensor was fabricated using conventional photolithography coupled with an inductively coupled plasma dry etching process. Prior to the application of DNA to the device, its linear response to pH was confirmed by serial dilution from pH 2 to pH 14. Then, the sensor surface was silanized and directly aminated with (3-aminopropyl) triethoxysilane to create a molecular binding chemistry for biofunctionalization. The resulting Si‒O‒Si‒ components were functionalized with receptor ssDNA, which interacted with the targeted ssDNA to create a field across the silicon nanowire and increase the current. The sensor shows selectivity for the target ssDNA in a linear range from target ssDNA concentrations of 100 pM to 25 nM. With its excellent detection capabilities, this sensor platform is promising for detection of specific biomarkers and other targeted proteins.
    Matched MeSH terms: Biosensing Techniques*
  8. Aeinehvand MM, Ibrahim F, Harun SW, Djordjevic I, Hosseini S, Rothan HA, et al.
    Biosens Bioelectron, 2015 May 15;67:424-30.
    PMID: 25220800 DOI: 10.1016/j.bios.2014.08.076
    Dengue is the current leading cause of death among children in several Latin American and Asian countries. Due to poverty in areas where the disease is prevalent and the high cost of conventional diagnostic systems, low cost devices are needed to reduce the burden caused by dengue infection. Centrifugal microfluidic platforms are an alternative solution to reduce costs and increase the availability of a rapid diagnostic system. The rate of chemical reactions in such devices often depends on the efficiency of the mixing techniques employed in their microfluidic networks. This paper introduces a micromixer that operates by the expansion and contraction of a microballoon to produce a consistent periodical 3D reciprocating flow. We established that microballoons reduced mixing time of 12 μl liquids from 170 min, for diffusional mixing, to less than 23 s. We have also tested the effect of the microballoon mixers on the detection of the dengue virus. The results indicate that employing a microballoon mixer enhances the detection sensitivity of the dengue virus by nearly one order of magnitude compared to the conventional ELISA method.
    Matched MeSH terms: Biosensing Techniques*
  9. Afreen S, Muthoosamy K, Manickam S, Hashim U
    Biosens Bioelectron, 2015 Jan 15;63:354-364.
    PMID: 25125029 DOI: 10.1016/j.bios.2014.07.044
    Designing a biosensor for versatile biomedical applications is a sophisticated task and how dedicatedly functionalized fullerene (C60) can perform on this stage is a challenge for today and tomorrow's nanoscience and nanotechnology. Since the invention of biosensor, many ideas and methods have been invested to upgrade the functionality of biosensors. Due to special physicochemical characteristics, the novel carbon material "fullerene" adds a new dimension to the construction of highly sensitive biosensors. The prominent aspects of fullerene explain its outstanding performance in biosensing devices as a mediator, e.g. fullerene in organic solvents exhibits five stages of reversible oxidation/reduction, and hence fullerene can work either as an electrophile or nucleophile. Fullerene is stable and its spherical structure produces an angle strain which allows it to undergo characteristic reactions of addition to double bonds (hybridization which turns from sp(2) to sp(3)). Research activities are being conducted worldwide to invent a variety of methods of fullerene functionalization with a purpose of incorporating it effectively in biosensor devices. The different types of functionalization methods include modification of fullerene into water soluble derivatives and conjugation with enzymes and/or other biomolecules, e.g. urease, glucose oxidase, hemoglobin, myoglobin (Mb), conjugation with metals e.g. gold (Au), chitosan (CS), ferrocene (Fc), etc. to enhance the sensitivity of biosensors. The state-of-the-art research on fullerene functionalization and its application in sensor devices has proven that fullerene can be implemented successfully in preparing biosensors to detect glucose level in blood serum, urea level in urine solution, hemoglobin, immunoglobulin, glutathione in real sample for pathological purpose, to identify doping abuse, to analyze pharmaceutical preparation and even to detect cancer and tumor cells at an earlier stage. Employing fullerene-metal matrix for the detection of tumor and cancer cells is also possible by the inclusion of fullerene in single-walled carbon nanotubes (SWCNTs) known as peapods as well as in double-walled carbon nanotubes (DWCNTs), to augment the effectiveness of biosensors. This review discusses various approaches that have been reported for functionalizing fullerene (C60) derivatives and their application in different types of biosensor fabrication.
    Matched MeSH terms: Biosensing Techniques/methods*
  10. Toh SY, Citartan M, Gopinath SC, Tang TH
    Biosens Bioelectron, 2015 Feb 15;64:392-403.
    PMID: 25278480 DOI: 10.1016/j.bios.2014.09.026
    The application of antibodies in enzyme-linked immunosorbent assay (ELISA) is the basis of this diagnostic technique which is designed to detect a potpourri of complex target molecules such as cell surface antigens, allergens, and food contaminants. However, development of the systematic evolution of Ligands by Exponential Enrichment (SELEX) method, which can generate a nucleic acid-based probe (aptamer) that possess numerous advantages compared to antibodies, offers the possibility of using aptamers as an alternative molecular recognition element in ELISA. Compared to antibodies, aptamers are smaller in size, can be easily modified, are cheaper to produce, and can be generated against a wide array of target molecules. The application of aptamers in ELISA gives rise to an ELISA-derived assay called enzyme-linked apta-sorbent assay (ELASA). As with the ELISA method, ELASA can be used in several different configurations, including direct, indirect, and sandwich assays. This review provides an overview of the strategies involved in aptamer-based ELASA.
    Matched MeSH terms: Biosensing Techniques*
  11. Azmi NE, Ramli NI, Abdullah J, Abdul Hamid MA, Sidek H, Abd Rahman S, et al.
    Biosens Bioelectron, 2015 May 15;67:129-33.
    PMID: 25113659 DOI: 10.1016/j.bios.2014.07.056
    A novel optical detection system consisting of combination of uricase/HRP-CdS quantum dots (QDs) for the determination of uric acid in urine sample is described. The QDs was used as an indicator to reveal fluorescence property of the system resulting from enzymatic reaction of uricase and HRP (horseradish peroxidase), which is involved in oxidizing uric acid to allaintoin and hydrogen peroxide. The hydrogen peroxide produced was able to quench the QDs fluorescence, which was proportional to uric acid concentration. The system demonstrated sufficient activity of uricase and HRP at a ratio of 5U:5U and pH 7.0. The linearity of the system toward uric acid was in the concentration range of 125-1000 µM with detection limit of 125 µM.
    Matched MeSH terms: Biosensing Techniques*
  12. Citartan M, Gopinath SCB, Chen Y, Lakshmipriya T, Tang TH
    Biosens Bioelectron, 2015 Jan 15;63:86-98.
    PMID: 25058943 DOI: 10.1016/j.bios.2014.06.068
    The illegal administration of recombinant human erythropoietin (rHuEPO) among athletes is largely preferred over blood doping to enhance stamina. The advent of recombinant DNA technology allowed the expression of EPO-encoding genes in several eukaryotic hosts to produce rHuEPO, and today these performance-enhancing drugs are readily available. As a mimetic of endogenous EPO (eEPO), rHuEPO augments the oxygen carrying capacity of blood. Thus, monitoring the illicit use of rHuEPO among athletes is crucial in ensuring an even playing field and maintaining the welfare of athletes. A number of rHuEPO detection methods currently exist, including measurement of hematologic parameters, gene-based detection methods, glycomics, use of peptide markers, electrophoresis, isoelectric focusing (IEF)-double immunoblotting, aptamer/antibody-based methods, and lateral flow tests. This review gleans these different strategies and highlights the leading molecular recognition elements that have potential roles in rHuEPO doping detection.
    Matched MeSH terms: Biosensing Techniques/methods*
  13. Gopinath SC, Tang TH, Chen Y, Citartan M, Tominaga J, Lakshmipriya T
    Biosens Bioelectron, 2014 Nov 15;61:357-69.
    PMID: 24912036 DOI: 10.1016/j.bios.2014.05.024
    Influenza viruses, which are RNA viruses belonging to the family Orthomyxoviridae, cause respiratory diseases in birds and mammals. With seasonal epidemics, influenza spreads all over the world, resulting in pandemics that cause millions of deaths. Emergence of various types and subtypes of influenza, such as H1N1 and H7N9, requires effective surveillance to prevent their spread and to develop appropriate anti-influenza vaccines. Diagnostic probes such as glycans, aptamers, and antibodies now allow discrimination among the influenza strains, including new subtypes. Several sensors have been developed based on these probes, efforts made to augment influenza detection. Herein, we review the currently available sensing strategies to detect influenza viruses.
    Matched MeSH terms: Biosensing Techniques/instrumentation; Biosensing Techniques/methods*
  14. Gopinath SC, Tang TH, Chen Y, Citartan M, Lakshmipriya T
    Biosens Bioelectron, 2014 Oct 15;60:332-42.
    PMID: 24836016 DOI: 10.1016/j.bios.2014.04.014
    The ubiquitous nature of bacteria enables them to survive in a wide variety of environments. Hence, the rise of various pathogenic species that are harmful to human health raises the need for the development of accurate sensing systems. Sensing systems are necessary for diagnosis and epidemiological control of pathogenic organism, especially in the food-borne pathogen and sanitary water treatment facility' bacterial populations. Bacterial sensing for the purpose of diagnosis can function in three ways: bacterial morphological visualization, specific detection of bacterial component and whole cell detection. This paper provides an overview of the currently available bacterial detection systems that ranges from microscopic observation to state-of-the-art smartphone-based detection.
    Matched MeSH terms: Biosensing Techniques/instrumentation*
  15. Gopinath SC, Tang TH, Citartan M, Chen Y, Lakshmipriya T
    Biosens Bioelectron, 2014 Jul 15;57:292-302.
    PMID: 24607580 DOI: 10.1016/j.bios.2014.02.029
    Sensing applications can be used to report biomolecular interactions in order to elucidate the functions of molecules. The use of an analyte and a ligand is a common set-up in sensor development. For several decades, antibodies have been considered to be potential analytes or ligands for development of so-called "immunosensors." In an immunosensor, formation of the complex between antibody and antigen transduces the signal, which is measurable in various ways (e.g., both labeled and label-free based detection). Success of an immunosensor depends on various factors, including surface functionalization, antibody orientation, density of the antibody on the sensor platform, and configuration of the immunosensor. Careful optimization of these factors can generate clear-cut results for any immunosensor. Herein, current aspects, involved in the generated immunosensors, are discussed.
    Matched MeSH terms: Biosensing Techniques/instrumentation*; Biosensing Techniques/methods
  16. Thavanathan J, Huang NM, Thong KL
    Biosens Bioelectron, 2014 May 15;55:91-8.
    PMID: 24368225 DOI: 10.1016/j.bios.2013.11.072
    The unique property of gold nanoparticles (Au NP) to induce colour change and the versatility of graphene oxides (GO) in surface modification makes them ideal in the application of colorimetric biosensor. Thus we developed a label free optical method to detect DNA hybridization through a visually observed colour change. The Au NP is conjugated to a DNA probe and is allowed to hybridize with the DNA target to the GO thus causing a change in colour from pinkish-red to purplish blue. Spectrophometry analysis gave a wavelength shift of 22 nm with 1 µM of DNA target. Sensitivity testing using serially diluted DNA conjugated GO showed that the optimum detection was at 63 nM of DNA target with the limit at 8 nM. This proves the possibility for the detection of DNA hybridization through the use of dual nanoparticle system by visual observation.
    Matched MeSH terms: Biosensing Techniques/instrumentation*
  17. Hu J, Wang S, Wang L, Li F, Pingguan-Murphy B, Lu TJ, et al.
    Biosens Bioelectron, 2014 Apr 15;54:585-97.
    PMID: 24333570 DOI: 10.1016/j.bios.2013.10.075
    Advanced diagnostic technologies, such as polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA), have been widely used in well-equipped laboratories. However, they are not affordable or accessible in resource-limited settings due to the lack of basic infrastructure and/or trained operators. Paper-based diagnostic technologies are affordable, user-friendly, rapid, robust, and scalable for manufacturing, thus holding great potential to deliver point-of-care (POC) diagnostics to resource-limited settings. In this review, we present the working principles and reaction mechanism of paper-based diagnostics, including dipstick assays, lateral flow assays (LFAs), and microfluidic paper-based analytical devices (μPADs), as well as the selection of substrates and fabrication methods. Further, we report the advances in improving detection sensitivity, quantification readout, procedure simplification and multi-functionalization of paper-based diagnostics, and discuss the disadvantages of paper-based diagnostics. We envision that miniaturized and integrated paper-based diagnostic devices with the sample-in-answer-out capability will meet the diverse requirements for diagnosis and treatment monitoring at the POC.
    Matched MeSH terms: Biosensing Techniques/instrumentation*; Biosensing Techniques/methods
  18. Mohd Azmi MA, Tehrani Z, Lewis RP, Walker KA, Jones DR, Daniels DR, et al.
    Biosens Bioelectron, 2014 Feb 15;52:216-24.
    PMID: 24060972 DOI: 10.1016/j.bios.2013.08.030
    In this article we present ultra-sensitive, silicon nanowire (SiNW)-based biosensor devices for the detection of disease biomarkers. An electrochemically induced functionalisation method has been employed to graft antibodies targeted against the prostate cancer risk biomarker 8-hydroxydeoxyguanosine (8-OHdG) to SiNW surfaces. The antibody-functionalised SiNW sensor has been used to detect binding of the 8-OHdG biomarker to the SiNW surface within seconds of exposure. Detection of 8-OHdG concentrations as low as 1 ng/ml (3.5 nM) has been demonstrated. The active device has been bonded to a disposable printed circuit which can be inserted into an electronic readout system as part of an integrated Point of Care (POC) diagnostic. The speed, sensitivity and ease of detection of biomarkers using SiNW sensors render them ideal for eventual POC diagnostics.
    Matched MeSH terms: Biosensing Techniques/methods*
  19. Low KF, Karimah A, Yean CY
    Biosens Bioelectron, 2013 Sep 15;47:38-44.
    PMID: 23545172 DOI: 10.1016/j.bios.2013.03.004
    Vibrio cholerae is a human pathogen that causes mild to severe diarrheal illnesses and has major public health significance. Herein, we present a thermostabilized electrochemical genosensing assay combining the use of magnetic beads as a biorecognition platform and gold nanoparticles as a hybridization tag for the detection and quantification of V. cholerae lolB gene single-stranded asymmetric PCR amplicons as an alternative to the time-consuming classical isolation method. This thermostabilized, pre-mixed, pre-aliquoted and ready-to-use magnetogenosensing assay simplified the procedures and permitted the reaction to be conducted at room temperature. The asymmetric PCR amplicons were hybridized to a magnetic bead-functionalized capture probe and a fluorescein-labeled detection probe followed by tagging with gold nanoparticles. Electrochemical detection of the chemically dissolved gold nanoparticles was performed using the differential pulse anodic stripping voltammetry method. The real-time stability evaluation of thermostabilized assay was found to be stable for at least 180 days at room temperature (25-30°C). The analytical specificity of the assay was 100%, while its analytical sensitivity was linearly related to different concentrations of 200-mer synthetic target, purified genomic DNA, and bacterial culture with a limit of detection (LoD) of 3.9nM, 5pg/µl, and 10(3)CFU/ml, respectively. The clinical applicability of the assay was successfully validated using spiked stool samples with an average current signal-to-cut-off ratio of 10.8. Overall, the precision of the assay via relative standard deviation was <10%, demonstrating its reliability and accuracy.
    Matched MeSH terms: Biosensing Techniques*
  20. Citartan M, Gopinath SC, Tominaga J, Tan SC, Tang TH
    Biosens Bioelectron, 2012 Apr 15;34(1):1-11.
    PMID: 22326894 DOI: 10.1016/j.bios.2012.01.002
    Aptamers are single stranded DNA or RNA oligonucleotides that have high affinity and specificity towards a wide range of target molecules. Aptamers have low molecular weight, amenable to chemical modifications and exhibit stability undeterred by repetitive denaturation and renaturation. Owing to these indispensable advantages, aptamers have been implemented as molecular recognition element as alternative to antibodies in various assays for diagnostics. By amalgamating with a number of methods that can provide information on the aptamer-target complex formation, aptamers have become the elemental tool for numerous biosensor developments. In this review, administration of aptamers in applications involving assays of fluorescence, electrochemistry, nano-label and nano-constructs are discussed. Although detection strategies are different for various aptamer-based assays, the core of the design strategies is similar towards reporting the presence of specific target binding to the corresponding aptamers. It is prognosticated that aptamers will find even broader applications with the development of new methods of transducing aptamer target binding.
    Matched MeSH terms: Biosensing Techniques*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links