Displaying publications 61 - 80 of 382 in total

Abstract:
Sort:
  1. Kahar UM, Ng CL, Chan KG, Goh KM
    Appl Microbiol Biotechnol, 2016 Jul;100(14):6291-307.
    PMID: 27000839 DOI: 10.1007/s00253-016-7451-6
    Type I pullulanases are enzymes that specifically hydrolyse α-1,6 linkages in polysaccharides. This study reports the analyses of a novel type I pullulanase (PulASK) from Anoxybacillus sp. SK3-4. Purified PulASK (molecular mass of 80 kDa) was stable at pH 5.0-6.0 and was most active at pH 6.0. The optimum temperature for PulASK was 60 °C, and the enzyme was reasonably stable at this temperature. Pullulan was the preferred substrate for PulASK, with 89.90 % adsorbance efficiency (various other starches, 56.26-72.93 % efficiency). Similar to other type I pullulanases, maltotriose was formed on digestion of pullulan by PulASK. PulASK also reacted with β-limit dextrin, a sugar rich in short branches, and formed maltotriose, maltotetraose and maltopentaose. Nevertheless, PulASK was found to preferably debranch long branches at α-1,6 glycosidic bonds of starch, producing amylose, linear or branched oligosaccharides, but was nonreactive against short branches; thus, no reducing sugars were detected. This is surprising as all currently known type I pullulanases produce reducing sugars (predominantly maltotriose) on digesting starch. The closest homologue of PulASK (95 % identity) is a type I pullulanase from Anoxybacillus sp. LM14-2 (Pul-LM14-2), which is capable of forming reducing sugars from starch. With rational design, amino acids 362-370 of PulASK were replaced with the corresponding sequence of Pul-LM14-2. The mutant enzyme formed reducing sugars on digesting starch. Thus, we identified a novel motif involved in substrate specificity in type I pullulanases. Our characterization may pave the way for the industrial application of this unique enzyme.
    Matched MeSH terms: Culture Media/chemistry*
  2. Adila A Hamid, Satish Vaarman Jeyabalan, Aleza Omar, Nik Zattil Hanan Mohd Yasin, Wong TL, Liau LL, et al.
    Sains Malaysiana, 2018;47:2369-2379.
    Currently, fetal bovine serum (FBS) have been widely use in culture media to promote human cell proliferation. However,
    the usage of FBS for cell therapy in clinical application was associated with the risk of viral and prion transmission as
    well as immune rejection. To provide an option for this risk, this study was conducted to determine the effect of adipose
    derived stem cells (ADSCs) co-culture with chondrocyte in promoting cell proliferation and chondrogenesis toward
    FBS free condition. ADSCs co-cultured with chondrocyte at the ratio of 1:1, 2:1 and 1:2 were tested. Cell morphology
    changes, cell proliferation and gene expression level of stemness (Oct4, FGF-4, Nanog) and chondrogenic (Collagen
    Type II, ACP) were assessed. The results showed ADSCs in all co-culture groups changed morphology from fibroblastic
    spindle to polygonal shape which resembled chondrocytes. The morphological changes were accompanied with increased
    expression of chondrogenic genes; denoted chondrogenesis process. While maintaining expression of stemness genes
    indicated continuation of cell proliferation. From the three co-culture groups tested; ADSCs and chondrocytes (1:1 ratio)
    have been shown to exert better effects in promoting cell proliferation and chondrogenesis. In conclusion, ADSCs could
    replace FBS to grow sufficient number of chondrogenic cells to repair cartilage injury in the near future. Further in vivo
    study should be performed to test the effectiveness of this co-culture technique in cartilage injury repair.
    Matched MeSH terms: Culture Media
  3. Lau YL, Hasan MT, Thiruvengadam G, Idris MM, Init I
    Trop Biomed, 2010 Dec;27(3):525-33.
    PMID: 21399595
    GRA4 of Toxoplasma gondii has been shown to prompt IgG, IgM and IgA responses in previous studies and is thus considered one of the major immunogenic proteins from T. gondii that can be used for both diagnostics purposes and vaccine development. This study seeks to clone and express the GRA4 in Pichia pastoris, which has numerous advantages over other systems for expression of eukaryotic proteins. In order to achieve this, the gene was cloned into the pPICZα A expression vector, which was then incorporated into the P. pastoris genome via insertional integration for expression of the recombinant protein, under the AOX1 promoter. The antigen was expressed along with the prepro sequence of the α-factor of yeast so that it could be excreted out of the P. pastoris cells and obtained from the medium. Upon SDS-PAGE analysis it was found that the recombinant protein was expressed optimally as a 40 kDa protein after 96 hours of induction with 0.75% of methanol. The expressed GRA4 protein showed discrepancy in size with the calculated molecular mass. This may be attributed to the various posttranslational modifications including glycosylation and phosphorylation. Despite the difference in molecular weight, the recombinant protein was able to detect toxoplasmosis in Western blot format. The recombinant GRA4 was expressed with an intact polyhistidine-tag, which could be used for future purification of the antigen.
    Matched MeSH terms: Culture Media/chemistry
  4. Kok WL, Yusoff K, Nathan S, Tan WS
    J. Biochem. Mol. Biol. Biophys., 2002 Feb;6(1):55-8.
    PMID: 12186783
    The PreS domain of hepatitis B virus (HBV) is believed to be involved in virion assembly and attachment to a hepatocyte receptor during infection. In order to study the functions of this region, we fused it to the g3p protein of bacteriophage M13 that allows the fusion protein to be displayed at the tip of the filament. The fusion protein was detected by the anti-E tag antibody on a Western blot. The polypeptide in a soluble form was produced by transfecting a non-suppressor E. coli host cell with the recombinant phagemid. The soluble protein was detected in cytoplasm, in the periplasmic space and also in the medium. The functional display of the PreS domain would provide an alternative means to study its interactions with the nuleocapsid and hepatocytes.
    Matched MeSH terms: Culture Media
  5. Arzmi MH, Dashper S, Catmull D, Cirillo N, Reynolds EC, McCullough M
    FEMS Yeast Res., 2015 Aug;15(5):fov038.
    PMID: 26054855 DOI: 10.1093/femsyr/fov038
    Microbial interactions are necessarily associated with the development of polymicrobial oral biofilms. The objective of this study was to determine the coaggregation of eight strains of Candida albicans with Actinomyces naeslundii and Streptococcus mutans. In autoaggregation assays, C. albicans strains were grown in RPMI-1640 and artificial saliva medium (ASM) whereas bacteria were grown in heart infusion broth. C. albicans, A. naeslundii and S. mutans were suspended to give 10(6), 10(7) and 10(8) cells mL(-1) respectively, in coaggregation buffer followed by a 1 h incubation. The absorbance difference at 620 nm (ΔAbs) between 0 h and 1 h was recorded. To study coaggregation, the same protocol was used, except combinations of microorganisms were incubated together. The mean ΔAbs% of autoaggregation of the majority of RPMI-1640-grown C. albicans was higher than in ASM grown. Coaggregation of C. albicans with A. naeslundii and/or S. mutans was variable among C. albicans strains. Scanning electron microscopy images showed that A. naeslundii and S. mutans coaggregated with C. albicans in dual- and triculture. In conclusion, the coaggregation of C. albicans, A. naeslundii and S. mutans is C. albicans strain dependent.
    Matched MeSH terms: Culture Media
  6. Akhir HM, Teoh PL
    Biosci Rep, 2020 12 23;40(12).
    PMID: 33245097 DOI: 10.1042/BSR20201325
    Collagen has been widely shown to promote osteogenesis of bone marrow mesenchymal stromal cells (BM-MSCs). Due to the invasive procedure of obtaining BM-MSCs, MSCs from other tissues have emerged as a promising alternative for regenerative therapy. MSCs originated from different sources, exhibiting different differentiation potentials. Therefore, the applicability of collagen type I (COL), combining with amniotic membrane (AM)-MSCs was examined through proliferation and differentiation assays together with the expression of surface markers and genes associated with stemness and differentiation under basal or induction conditions. No increase in cell growth was observed because AM-MSCs might be directed toward spontaneous osteogenesis. This was evidenced by the calcium deposition and elevated expression of osteogenic genes when AM-MSCs were cultured in collagen plate with basal media. Under the osteogenic condition, reciprocal expression of OCN and CEBPA suggested a shift toward adipogenesis. Surprisingly, adipogenic genes were not elevated upon adipogenic induction, although oil droplets deposition was observed. In conclusion, our findings demonstrated that collagen causes spontaneous osteogenesis in AM-MSCs. However, the presence of exogenous inductors could shift the direction of adipo-osteogenic gene regulatory network modulated by collagen.
    Matched MeSH terms: Culture Media/metabolism*
  7. Koh SF, Tay ST, Puthucheary SD
    Trop Biomed, 2013 Sep;30(3):428-33.
    PMID: 24189672 MyJurnal
    Burkholderia pseudomallei the causative agent of melioidosis, is being increasingly recognized as an important cause of morbidity and mortality in South East Asia. Biofilm formation of B. pseudomallei may be responsible for dormancy, latency and relapse of melioidosis. Based on the colonial morphology of the bacteria on B. pseudomallei selective agar medium, seven distinct morphotypes were identified. This study was conducted to assess the in vitro biofilm produced by B. pseudomallei and to investigate possible correlation between B. pseudomallei morphotypes with biofilm forming abilities of the isolates. Using a standard biofilm crystal violet staining assay, comparison was made between the biofilm forming ability of 76 isolates of B. pseudomallei and Burkholderia thailandensis ATCC 700388. Amongst the blood isolates, 30.2% were considered as high biofilm producers and 27.9% were low producers, 33.3% of the pus isolates were considered as high and 16% low biofilm producers. Most of the isolates were identified as morphotype group 1 which displayed a rough centre with irregular circumference on the agar medium. However, we did not find any correlation of B. pseudomallei morphotypes with biofilm forming abilities (p > 0.05). Additional studies are needed to identify internal and external factors which contribute to the high and low biofilm formation of B. pseudomallei.
    Matched MeSH terms: Culture Media/chemistry
  8. Nik-Pa NIM, Sobri MFM, Abd-Aziz S, Ibrahim MF, Kamal Bahrin E, Mohammed Alitheen NB, et al.
    Int J Mol Sci, 2020 May 30;21(11).
    PMID: 32486212 DOI: 10.3390/ijms21113919
    Two optimization strategies, codon usage modification and glycine supplementation, were adopted to improve the extracellular production of Bacillus sp. NR5 UPM β-cyclodextrin glycosyltransferase (CGT-BS) in recombinant Escherichia coli. Several rare codons were eliminated and replaced with the ones favored by E. coli cells, resulting in an increased codon adaptation index (CAI) from 0.67 to 0.78. The cultivation of the codon modified recombinant E. coli following optimization of glycine supplementation enhanced the secretion of β-CGTase activity up to 2.2-fold at 12 h of cultivation as compared to the control. β-CGTase secreted into the culture medium by the transformant reached 65.524 U/mL at post-induction temperature of 37 °C with addition of 1.2 mM glycine and induced at 2 h of cultivation. A 20.1-fold purity of the recombinant β-CGTase was obtained when purified through a combination of diafiltration and nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography. This combined strategy doubled the extracellular β-CGTase production when compared to the single approach, hence offering the potential of enhancing the expression of extracellular enzymes, particularly β-CGTase by the recombinant E. coli.
    Matched MeSH terms: Culture Media/chemistry
  9. Mohamed MS, Tan JS, Mohamad R, Mokhtar MN, Ariff AB
    ScientificWorldJournal, 2013;2013:948940.
    PMID: 24109209 DOI: 10.1155/2013/948940
    Mixotrophic metabolism was evaluated as an option to augment the growth and lipid production of marine microalga Tetraselmis sp. FTC 209. In this study, a five-level three-factor central composite design (CCD) was implemented in order to enrich the W-30 algal growth medium. Response surface methodology (RSM) was employed to model the effect of three medium variables, that is, glucose (organic C source), NaNO3 (primary N source), and yeast extract (supplementary N, amino acids, and vitamins) on biomass concentration, X(max), and lipid yield, P(max)/X(max). RSM capability was also weighed against an artificial neural network (ANN) approach for predicting a composition that would result in maximum lipid productivity, Pr(lipid). A quadratic regression from RSM and a Levenberg-Marquardt trained ANN network composed of 10 hidden neurons eventually produced comparable results, albeit ANN formulation was observed to yield higher values of response outputs. Finalized glucose (24.05 g/L), NaNO3 (4.70 g/L), and yeast extract (0.93 g/L) concentration, affected an increase of X(max) to 12.38 g/L and lipid a accumulation of 195.77 mg/g dcw. This contributed to a lipid productivity of 173.11 mg/L per day in the course of two-week cultivation.
    Matched MeSH terms: Culture Media/chemistry
  10. Mamidi MK, Nathan KG, Singh G, Thrichelvam ST, Mohd Yusof NA, Fakharuzi NA, et al.
    J Cell Biochem, 2012 Oct;113(10):3153-64.
    PMID: 22615164 DOI: 10.1002/jcb.24193
    The clinical application of human bone marrow derived multipotent mesenchymal stromal cells (MSC) requires expansion, cryopreservation, and transportation from the laboratory to the site of cell implantation. The cryopreservation and thawing process of MSCs may have important effects on the viability, growth characteristics and functionality of these cells both in vitro and in vivo. More importantly, MSCs after two rounds of cryopreservation have not been as well characterized as fresh MSCs from the transplantation perspective. The objective of this study was to determine if the effect of successive cryopreservation of pooled MSCs during the exponential growth phase could impair their morphology, phenotype, gene expression, and differentiation capabilities. MSCs cryopreserved at passage 3 (cell bank) were thawed and expanded up to passage 4 and cryopreserved for the second time. These cells (passive) were then thawed and cultured up to passage 6, and, at each passage MSCs were characterized. As control, pooled passage 3 cells (active) after one round of cryopreservation were taken all the way to passage 6 without cryopreservation. We determined the growth rate of MSCs for both culture conditions in terms of population doubling number (PDN) and population doubling time (PDT). Gene expression profiles for pluripotency markers and tissue specific markers corresponding to neuroectoderm, mesoderm and endoderm lineages were also analyzed for active and passive cultures of MSC. The results show that in both culture conditions, MSCs exhibited similar growth properties, phenotypes and gene expression patterns as well as similar differentiation potential to osteo-, chondro-, and adipo-lineages in vitro. To conclude, it appears that successive or multiple rounds of cryopreservation of MSCs did not alter the fundamental characteristics of these cells and may be used for clinical therapy.
    Matched MeSH terms: Culture Media/metabolism
  11. Ling AP, Tan KP, Hussein S
    J Zhejiang Univ Sci B, 2013 Jul;14(7):621-31.
    PMID: 23825148 DOI: 10.1631/jzus.B1200135
    OBJECTIVE: Labisia pumila var. alata, commonly known as 'Kacip Fatimah' or 'Selusuh Fatimah' in Southeast Asia, is traditionally used by members of the Malay community because of its post-partum medicinal properties. Its various pharmaceutical applications cause an excessive harvesting and lead to serious shortage in natural habitat. Thus, this in vitro propagation study investigated the effects of different plant growth regulators (PGRs) on in vitro leaf and stem explants of L. pumila.

    METHODS: The capabilities of callus, shoot, and root formation were evaluated by culturing both explants on Murashige and Skoog (MS) medium supplemented with various PGRs at the concentrations of 0, 1, 3, 5, and 7 mg/L.

    RESULTS: Medium supplemented with 3 mg/L indole-3-butyric acid (IBA) showed the optimal callogenesis from both leaf and stem explants with (72.34 ± 19.55)% and (70.40 ± 14.14)% efficacy, respectively. IBA was also found to be the most efficient PGR for root induction. A total of (50.00 ± 7.07)% and (77.78 ± 16.47)% of root formation were obtained from the in vitro stem and leaf explants after being cultured for (26.5 ± 5.0) and (30.0 ± 8.5) d in the medium supplemented with 1 and 3 mg/L of IBA, respectively. Shoot formation was only observed in stem explant, with the maximum percentage of formation ((100.00 ± 0.00)%) that was obtained in 1 mg/L zeatin after (11.0 ± 2.8) d of culture.

    CONCLUSIONS: Callus, roots, and shoots can be induced from in vitro leaf and stem explants of L. pumila through the manipulation of types and concentrations of PGRs.

    Matched MeSH terms: Culture Media/chemistry
  12. Al-Talib H, Yean CY, Al-khateeb A, Singh KK, Hasan H, Al-Jashamy K, et al.
    Curr Microbiol, 2010 Jul;61(1):1-6.
    PMID: 20033170 DOI: 10.1007/s00284-009-9567-8
    The emergence of methicillin-resistant Staphylococcus aureus (MRSA) is responsible for nosocomial and community-acquired infections. Hence, rapid and accurate laboratory diagnosis of MRSA is a vital constituent of control measures. The present study evaluated five different methods for the identification of MRSA. A total of 207 S. aureus clinical isolates that consisted of 89 MRSA and 118 methicillin-susceptible S. aureus (MSSA) strains confirmed by PCR were tested. MRSA strains were evaluated by five different methods: chromogenic MRSA agar (CMRSA), oxacillin resistance screening agar base (ORSAB), mannitol salt oxacillin agar (MSO), mannitol salt cefoxitin agar with two different concentrations of cefoxitin [4 microg/ml (MSC-4) and 6 microg/ml (MSC-6)]. The results of the different methods were compared to mecA PCR as the gold standard. MSC-6 showed only six false-positive MRSA in comparison with PCR. The sensitivities and specificities of MSC-6, MSC-4, MSO-4, ORSAB, and CMRSA were as follows: 98.9/94.9%, 100/83.1%, 89.9/87.3%, 97.8/96.6%, and 95.5/94.9%, respectively. In comparison with PCR, it was found that both MSC-6 and ORSAB were relatively the least expensive screening tests ($0.70 and $1.00, respectively). In conclusion, all methods were comparable, but MSC-6 was the least expensive medium for MRSA screening.
    Matched MeSH terms: Culture Media*
  13. Abd Razak DL, Abdullah N, Khir Johari NM, Sabaratnam V
    Appl Microbiol Biotechnol, 2013 Apr;97(7):3207-13.
    PMID: 22576946 DOI: 10.1007/s00253-012-4135-8
    The potential for using agricultural and industrial by-products as substrate for the production of the edible mushroom, Auricularia polytricha, was evaluated using several formulations of selected palm oil wastes mixed with sawdust and further supplemented with selected nitrogen sources. The best substrate formulations were sawdust (SD) mixed with oil palm frond (OPF; 90:10) added with 15% spent grain (SG) and sawdust mixed with empty fruit bunch (EFB; 50:50) added with 10% spent grain (SG) with mycelia growth rate of 8 mm/day and 7 mm/day respectively. These two substrate formulations were then subjected to different moisture content levels (65%, 75% and 85%). Highest total fresh sporophore yield at 0.43% was obtained on SD+OPF (90:10)+15% SG at 85% moisture content, followed closely by SD+EFB (50:50)+10% SG with 0.40% total yield, also at 85% moisture content. Each of the substrate formulations at 85% moisture content gave the highest biological efficiency (BE) at 288.9% and 260.7%, respectively. Both yield and biological efficiency of A. polytricha on these two formulations were almost three times higher when compared to sawdust substrate alone, thus proving the potential of these formulations to improve yield of this mushroom.
    Matched MeSH terms: Culture Media/chemistry
  14. Ganeswrie R, Chui CS, Balan S, Puthucheary SD
    Malays J Pathol, 2004 Dec;26(2):99-103.
    PMID: 16329561
    This study was carried out to compare the performance of BACTEC MGIT 960 with the BACTEC 460 TB for growth and detection of Mycobacteria from human clinical specimens. The BACTEC MGIT 960 instrument is a fully automated system that utilizes MGIT tubes containing an oxygen sensor embedded in silicon at the bottom and filled with 7 mL of modified Middlebrook 7H9 broth. Identical samples were inoculated into the two automated systems and incubated for six weeks. Over a period of three months, 279 specimens were decontaminated and processed according to the standard CDC NALC/NaOH method, using the commercial MycoPrep kit. Forty-two specimens (15%) yielded Mycobacterium tuberculosis; 37 (88%) were detected by the fluorescent BACTEC MGIT 960 and 35 (83%) detected by the radiometric BACTEC 460 TB. Fifteen specimens (5%) yielded Mycobacterium Other Than Tuberculosis (MOTT); 10 (66%) were detected by BACTEC MGIT 960 and 11 (73%) detected by BACTEC 460 TB. The average time to detection and contamination rates and the average time to obtain results of antimicrobial susceptibility tests between the two systems were compared. The performance of the BACTEC MGIT 960 was comparable to the BACTEC 460 TB system which has been the "Gold Standard" for automated detection of TB. The former was more rapid, as sensitive and less labour intensive than the BACTEC 460. Our data demonstrates that the BACTEC MGIT 960 system is an accurate, automated and a non-radioactive alternative to the BACTEC 460 TB for the culture and susceptibility testing of M. tuberculosis.
    Matched MeSH terms: Culture Media
  15. Voo WP, Ravindra P, Tey BT, Chan ES
    J Biosci Bioeng, 2011 Mar;111(3):294-9.
    PMID: 21216192 DOI: 10.1016/j.jbiosc.2010.11.010
    A comparative study on the stability and potential of alginate and pectin based beads for production of poultry probiotic cells using MRS medium in repeated batch fermentation was conducted. The bead cores, made of three types of materials, i.e., ca-alginate, ca-pectinate and ca-alginate/pectinate, were compared. The effect of single and double layer coatings using chitosan and core material, respectively, on the bead stability and cell production were also studied. The pectin based beads were found to be more stable than that of the alginate beads and their stability was further improved by coating with chitosan. The cell concentration in pectin based beads was comparable to that in the alginate beads. On the other hand, pectin based beads gave significantly lower cell concentration in the growth medium for the initial fermentation cycles when compared to the alginate beads. In conclusion, pectin was found to be potential encapsulation material for probiotic cell production owing to its stability and favourable microenvironment for cell growth.
    Matched MeSH terms: Culture Media
  16. Hamood Altowayti WA, Almoalemi H, Shahir S, Othman N
    Ecotoxicol Environ Saf, 2020 Dec 01;205:111267.
    PMID: 32992213 DOI: 10.1016/j.ecoenv.2020.111267
    Arsenic is a common contaminant in gold mine soil and tailings. Microbes present an opportunity for bio-treatment of arsenic, since it is a sustainable and cost-effective approach to remove arsenic from water. However, the development of existing bio-treatment approaches depends on isolation of arsenic-resistant microbes from arsenic contaminated samples. Microbial cultures are commonly used in bio-treatment; however, it is not established whether the structure of the cultured isolates resembles the native microbial community from arsenic-contaminated soil. In this milieu, a culture-independent approach using Illumina sequencing technology was used to profile the microbial community in situ. This was coupled with a culture-dependent technique, that is, isolation using two different growth media, to analyse the microbial population in arsenic laden tailing dam sludge based on the culture-independent sequencing approach, 4 phyla and 8 genera were identified in a sample from the arsenic-rich gold mine. Firmicutes (92.23%) was the dominant phylum, followed by Proteobacteria (3.21%), Actinobacteria (2.41%), and Bacteroidetes (1.49%). The identified genera included Staphylococcus (89.8%), Pseudomonas (1.25), Corynebacterium (0.82), Prevotella (0.54%), Megamonas (0.38%) and Sphingomonas (0.36%). The Shannon index value (3.05) and Simpson index value (0.1661) indicated low diversity in arsenic laden tailing. The culture dependent method exposed significant similarities with culture independent methods at the phylum level with Firmicutes, Proteobacteria and Actinobacteria, being common, and Firmicutes was the dominant phylum whereas, at the genus level, only Pseudomonas was presented by both methods. It showed high similarities between culture independent and dependent methods at the phylum level and large differences at the genus level, highlighting the complementarity between the two methods for identification of the native population bacteria in arsenic-rich mine. As a result, the present study can be a resource on microbes for bio-treatment of arsenic in mining waste.
    Matched MeSH terms: Culture Media/chemistry
  17. Wong WK, Tan ZN, Lim BH, Mohamed Z, Olivos-Garcia A, Noordin R
    Parasitol Res, 2011 Feb;108(2):425-30.
    PMID: 20922423 DOI: 10.1007/s00436-010-2083-8
    Entamoeba histolytica is the etiologic agent for amoebiasis. The excretory-secretory (ES) products of the trophozoites contain virulence factors and antigens useful for diagnostic applications. Contaminants from serum supplements and dead trophozoites impede analysis of ES. Therefore, a protein-free medium that can sustain maximum viability of E. histolytica trophozoites for the longest time duration will enable collection of contaminant-free and higher yield of ES products. In the present study, we compared the efficacy of four types of media in maintaining ≥ 95% trophozoite viability namely Roswell Memorial Park Institute (RPMI-1640), Dulbecco's Modified Eagle Medium (DMEM), phosphate-buffered saline for amoeba (PBS-A), and Hank's balanced salt solution (HBSS). Concurrently, the effect of adding L: -cysteine and ascorbic acid (C&A) to each medium on the parasite viability was also compared. DMEM and RPMI 1640 showed higher viabilities as compared to PBS-A and HBSS. Only RPMI 1640 showed no statistical difference with the control medium for the first 4 h, however the ≥ 95% viability was only maintained for the first 2 h. The other protein-free media showed differences from the serum- and vitamin-free TYI-S-33 control media even after 1 h of incubation. When supplemented with C&A, all media were found to sustain higher trophozoite viabilities than those without the supplements. HBSS-C&A, DMEM-C&A, and RPMI 1640-C&A demonstrated no difference (P>0.05) in parasite viabilities when compared with the control medium throughout the 8-h incubation period. DMEM-C&A showed an eightfold increment in time duration of sustaining ≥ 95% parasite viability, i.e. 8 h, as compared to DMEM alone. Both RPMI 1640-C&A and HBSS-C&A revealed fourfold and threefold increments (i.e., 8 and 6 h, respectively), whereas PBS-A-C&A showed only one fold improvement (i.e., 2 h) as compared to the respective media without C&A. Thus, C&A-supplemented DMEM or RPMI are recommended for collection of ES products.
    Matched MeSH terms: Culture Media/pharmacology*
  18. Tai WY, Tan JS, Lim V, Lee CK
    Biotechnol Prog, 2019 05;35(3):e2781.
    PMID: 30701709 DOI: 10.1002/btpr.2781
    The high cost of cellulases remains the most significant barrier to the economical production of bio-ethanol from lignocellulosic biomass. The goal of this study was to optimize cellulases and xylanase production by a local indigenous fungus strain (Aspergillus niger DWA8) using agricultural waste (oil palm frond [OPF]) as substrate. The enzyme production profile before optimization indicated that the highest carboxymethyl cellulose (CMCase), filter paper (FPase), and xylanase activities of 1.06 U/g, 2.55 U/g, and 2.93 U/g were obtained on day 5, day 4, and day 5 of fermentation, respectively. Response surface methodology was used to study the effects of several key process parameters in order to optimize cellulase production. Of the five physical and two chemical factors tested, only moisture content of 75% (w/w) and substrate amount of 2.5 g had statistically significant effect on enzymes production. Under optimized conditions of 2.5 g of substrate, 75% (w/w) moisture content, initial medium of pH 4.5, 1 × 106 spores/mL of inoculum, and incubation at ambient temperature (±30°C) without additional carbon and nitrogen, the highest CMCase, FPase, and xylanase activities obtained were 2.38 U/g, 2.47 U/g, and 5.23 U/g, respectively. Thus, the optimization process increased CMCase and xylanase production by 124.5 and 78.5%, respectively. Moreover, A. niger DWA8 produced reasonably good cellulase and xylanase titers using OPF as the substrate when compared with previous researcher finding. The enzymes produced by this process could be further use to hydrolyze biomass to generate reducing sugars, which are the feedstock for bioethanol production.
    Matched MeSH terms: Culture Media/analysis; Culture Media/metabolism
  19. Maarof M, Chowdhury SR, Saim A, Bt Hj Idrus R, Lokanathan Y
    Int J Mol Sci, 2020 Apr 22;21(8).
    PMID: 32331278 DOI: 10.3390/ijms21082929
    Fibroblasts secrete many essential factors that can be collected from fibroblast culture medium, which is termed dermal fibroblast conditioned medium (DFCM). Fibroblasts isolated from human skin samples were cultured in vitro using the serum-free keratinocyte-specific medium (Epilife (KM1), or define keratinocytes serum-free medium, DKSFM (KM2) and serum-free fibroblast-specific medium (FM) to collect DFCM-KM1, DFCM-KM2, and DFCM-FM, respectively). We characterised and evaluated the effects of 100-1600 µg/mL DFCM on keratinocytes based on attachment, proliferation, migration and gene expression. Supplementation with 200-400 µg/mL keratinocyte-specific DFCM-KM1 and DFCM-KM2 enhanced the attachment, proliferation and migration of sub-confluent keratinocytes, whereas 200-1600 µg/mL DFCM-FM significantly increased the healing rate in the wound healing assay, and 400-800 µg/mL DFCM-FM was suitable to enhance keratinocyte attachment and proliferation. A real-time (RT2) profiler polymerase chain reaction (PCR) array showed that 42 genes in the DFCM groups had similar fold regulation compared to the control group and most of the genes were directly involved in wound healing. In conclusion, in vitro keratinocyte re-epithelialisation is supported by the fibroblast-secreted proteins in 200-400 µg/mL DFCM-KM1 and DFCM-KM2, and 400-800 µg/mL DFCM-FM, which could be useful for treating skin injuries.
    Matched MeSH terms: Culture Media, Conditioned/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links