METHODS/FINDINGS: A total of 634 human and 105 domestic canine and feline fecal samples were randomly collected. The overall prevalence of hookworm in humans and animals determined via microscopy was 9.1% (95% CI = 7.0-11.7%) and 61.9% (95% CI = 51.2-71.2%), respectively. Multivariate analysis indicated that participants without the provision of proper latrine systems (OR = 3.5; 95% CI = 1.53-8.00; p = 0.003), walking barefooted (OR = 5.6; 95% CI = 2.91-10.73; p<0.001) and in close contact with pets or livestock (OR = 2.9; 95% CI = 1.19-7.15; p = 0.009) were more likely to be infected with hookworms. Molecular analysis revealed that while most hookworm-positive individuals were infected with Necator americanus, Ancylostoma ceylanicum constituted 12.8% of single infections and 10.6% mixed infections with N. americanus. As for cats and dogs, 52.0% were positive for A. ceylanicum, 46.0% for Ancylostoma caninum and 2.0% for Ancylostoma braziliense and all were single infections.
CONCLUSION: This present study provided evidence based on the combination of epidemiological, conventional diagnostic and molecular tools that A. ceylanicum infection is common and that its transmission dynamic in endemic areas in Malaysia is heightened by the close contact of human and domestic animal (i.e., dogs and cats) populations.
METHOD: The presence of Entamoeba species was examined in 504 fresh fecal samples, collected randomly from 411 humans and 93 dogs using microscopy and polymerase chain reaction (PCR) amplifying 16 s ribosomal RNA (rRNA). Data was analyzed using appropriate statistical analysis.
RESULTS: The microscopy data showed an overall occurrence of Entamoeba species of 26.3% (108/411) and 36.6% (34/93) in humans and dogs respectively. In humans, the most common species was a single infection of E. dispar (26.5%; 13/49), followed by E. histolytica and E. moshkovskii, (20.4% for each species respectively). Double infection of E. dispar + E. moshkovskii was detected at 10.2%, followed by E. dispar + E. histolytica (8.2%) and E. moshkovskii and E. histolytica (6.1%). 8.2% of the samples had triple infection with all three species. In animals, E. moshkovskii (46.7%) was the most common species detected, followed by E. histolytica, and E. dispar, at 20.0% and 13.3% respectively. Double infection with E. moshkovskii + E. histolytica and a triple infection were found in 2 samples (13.3%) and 1 (6.7%) sample respectively. Risk factor analysis showed that members of the community who used untreated water were more prone to be infected with Entamoeba.
CONCLUSION: This study provides information on the species-specific occurrence of Entamoeba infection, the potential risk factors and their zoonotic potential to humans. This is the first report to describe the molecular occurrence of Entamoeba species in dogs in Malaysia. The presence of pathogenic Entamoeba species implies that dogs could be a reservoir or mechanical host for human amoebiasis. Further studies need to be conducted to better understand the transmission dynamics and public health significance of Entamoeba species in human and animal hosts.
RESULTS: Tumors with a variety of clinical and pathological characteristics were selected. Gene expression stability and the optimal number of reference genes for gene expression normalization were calculated. RPS5 and HNRNPH were highly stable among OS cell lines, while RPS5 and RPS19 were the best combination for primary tumors. Pairwise variation analysis recommended four and two reference genes for optimal normalization of the expression data of canine OS tumors and cell lines, respectively.
CONCLUSIONS: Appropriate combinations of reference genes are recommended to normalize mRNA levels in canine OS tumors and cell lines to facilitate standardized and reliable quantification of target gene expression, which is essential for investigating key genes involved in canine OS metastasis and for comparative biomarker discovery.