Displaying publications 61 - 80 of 261 in total

Abstract:
Sort:
  1. Cardosa MJ, Hah FL, Choo BH, Padmanathan S
    PMID: 8160055
    A dot enzyme immunoassay for determination of antibodies to Japanese encephalitis virus was designed for use as a field technique for the surveillance of Japanese encephalitis virus activity among domestic pigs. The test was compared with the neutralization test and the hemagglutination inhibition test and found to be more sensitive than the hemagglutination inhibition test and comparable to the neutralization test in sensitivity but more simple to perform than either the neutralization or the hemagglutination inhibition tests. An IgM capture ELISA for the determination of JEV specific porcine IgM was also utilized to determine current infection rates in pigs. The tests which do not involve the determination of specific IgM are better used for testing sentinel animals for providing clues as to the rate of transmission of JEV among pigs. IgM tests determining acute infection are less likely to be useful unless animals are tested very frequently or if a great number of animals are tested at any one time.
    Matched MeSH terms: Encephalitis Virus, Japanese/immunology*; Encephalitis, Japanese/blood; Encephalitis, Japanese/epidemiology; Encephalitis, Japanese/transmission; Encephalitis, Japanese/veterinary*
  2. Schuh AJ, Guzman H, Tesh RB, Barrett AD
    Vector Borne Zoonotic Dis, 2013 Jul;13(7):479-88.
    PMID: 23590316 DOI: 10.1089/vbz.2011.0870
    Five genotypes (GI-V) of Japanese encephalitis virus (JEV) have been identified, all of which have distinct geographical distributions and epidemiologies. It is thought that JEV originated in the Indonesia-Malaysia region from an ancestral virus. From that ancestral virus GV diverged, followed by GIV, GIII, GII, and GI. Genotype IV appears to be confined to the Indonesia-Malaysia region, as GIV has been isolated in Indonesia from mosquitoes only, while GV has been isolated on three occasions only from a human in Malaysia and mosquitoes in China and South Korea. In contrast, GI-III viruses have been isolated throughout Asia and Australasia from a variety of hosts. Prior to this study only 13 JEV isolates collected from the Indonesian archipelago had been studied genetically. Therefore the sequences of the envelope (E) gene of 24 additional Indonesian JEV isolates, collected throughout the archipelago between 1974 and 1987, were determined and a series of molecular adaptation analyses were performed. Phylogenetic analysis indicated that over a 14-year time span three genotypes of JEV circulated throughout Indonesia, and a statistically significant association between the year of virus collection and genotype was revealed: isolates collected between 1974 and 1980 belonged to GII, isolates collected between 1980 and 1981 belonged to GIV, and isolates collected in 1987 belonged to GIII. Interestingly, three of the GII Indonesian isolates grouped with an isolate that was collected during the JE outbreak that occurred in Australia in 1995, two of the GIII Indonesian isolates were closely related to a Japanese isolate collected 40 years previously, and two Javanese GIV isolates possessed six amino acid substitutions within the E protein when compared to a previously sequenced GIV isolate collected in Flores. Several amino acids within the E protein of the Indonesian isolates were found to be under directional evolution and/or co-evolution. Conceivably, the tropical climate of the Indonesia/Malaysia region, together with its plethora of distinct fauna and flora, may have driven the emergence and evolution of JEV. This is consistent with the extensive genetic diversity seen among the JEV isolates observed in this study, and further substantiates the hypothesis that JEV originated in the Indonesia-Malaysia region.
    Matched MeSH terms: Encephalitis Virus, Japanese/classification; Encephalitis Virus, Japanese/genetics*; Encephalitis Virus, Japanese/isolation & purification; Encephalitis, Japanese/epidemiology*; Encephalitis, Japanese/virology
  3. Scaramozzino N, Crance JM, Drouet C, Roebuck JP, Drouet E, Jouan A, et al.
    Biochem Biophys Res Commun, 2002 May 31;294(1):16-22.
    PMID: 12054734
    Langat (LGT) virus, initially isolated in 1956 from ticks in Malaysia, is a naturally occurring nonpathogenic virus with a very close antigenicity to the highly pathogenic tick-borne encephalitis (TBE) Western subtype virus and TBE Far Eastern subtype virus. NS3, the second largest viral protein of LGT virus, is highly conserved among flaviviruses and contains a characteristic protease moiety (NS3 pro). NS3 pro represents an attractive target for anti-protease molecules against TBE virus. We report herein a purification method specially designed for NS3 pro of LGT using a strategy for proper refolding coupled with the enzymatic characterisation of the protein. Different p-nitroanilide substrates, defined on canonic sequences for their susceptibility to Ser-protease, were applied to the proteolytic assays of the protein. The highest values were obtained from substrates containing an Arg or Lys (amino acid) residue at the P1 position. This purification method will facilitate the future development of reliable testing procedures for anti-proteases directed to NS3 proteins.
    Matched MeSH terms: Encephalitis Viruses, Tick-Borne/enzymology*; Encephalitis, Tick-Borne/enzymology; Encephalitis, Tick-Borne/virology
  4. Chong HT, Kunjapan SR, Thayaparan T, Tong J, Petharunam V, Jusoh MR, et al.
    Can J Neurol Sci, 2002 Feb;29(1):83-7.
    PMID: 11858542
    BACKGROUND: An outbreak of viral encephalitis occurred among pig industry workers in Malaysia in September 1998 to April 1999. The encephalitis was attributed to a new paramyxovirus, Nipah virus. This is a description of the clinical features of 103 patients treated in the Seremban Hospital with characterization of the prognostic factors.

    METHODS: Clinical case records and laboratory investigations were reviewed. The case definition was: patients from the outbreak area, direct contact or in close proximity with pigs, clinical or CSF features of encephalitis.

    RESULTS: The mean age was 38 years, 89% were male, 58% were ethnic Chinese, 78% were pig farm owners or hired workers. The mean incubation period was 10 days. The patients typically presented with nonspecific systemic symptoms of fever, headache, myalgia and sore throat. Seizures and focal neurological signs were seen in 16% and 5% respectively. In the more severe cases, this was followed by drowsiness and deteriorating consciousness requiring ventilation in 61%. Autonomic disturbances and myoclonic jerks were common features. The mortality was high at 41%. Systolic hypertension, tachycardia and high fever were associated with poor outcome. On the other hand, 40% recovered fully. As for the other 19%, the residual neurological signs were mostly mild.

    CONCLUSION: Nipah virus caused an encephalitis illness with short incubation period and high mortality. The prognosis for the survivors was good.

    Matched MeSH terms: Encephalitis, Viral/diagnosis*; Encephalitis, Viral/ethnology; Encephalitis, Viral/mortality; Encephalitis, Viral/epidemiology*
  5. Vythilingam I, Chiang GL, Lee HL, Singh KI
    PMID: 1363679
    Matched MeSH terms: Encephalitis Virus, Japanese/physiology*; Encephalitis, Japanese/prevention & control; Encephalitis, Japanese/transmission
  6. Simpson DI, Bowen ET, Platt GS, Way H, Smith CE, Peto S, et al.
    Trans R Soc Trop Med Hyg, 1970;64(4):503-10.
    PMID: 4394986
    Matched MeSH terms: Encephalitis Viruses/isolation & purification*; Encephalitis, Japanese/epidemiology*; Encephalitis, Japanese/veterinary
  7. Fong CY, Aung HWW, Khairani A, Gan CS, Shahrizaila N, Goh KJ
    Brain Dev, 2018 Jun;40(6):507-511.
    PMID: 29459060 DOI: 10.1016/j.braindev.2018.02.001
    Bickerstaff's brainstem encephalitis (BBE) is a rare immune-mediated disorder characterized by ophthalmoplegia, ataxia and disturbance of consciousness, which may overlap with Guillain-Barré syndrome (GBS) if there is additional limb weakness. We report a 7-month-old boy presented with ophthalmoplegia followed by a rapidly ascending paralysis of all four limbs and disturbance of consciousness. The initial impression was BBE with overlapping GBS. This was supported by sequential nerve conduction study (NCS) findings compatible with an acute inflammatory demyelinating polyneuropathy (AIDP). He received intravenous pulse methylprednisolone, intravenous immunoglobulin and plasmapharesis with complete clinical recovery after 6 weeks of illness and improved NCS findings from week 16. This is the first case of paediatric BBE with overlapping GBS with an AIDP subtype of GBS. It expands the clinical spectrum of this condition in children. Our case highlights the importance of sequential NCS in paediatric BBE with overlapping GBS for accurate electrophysiological diagnosis and prognosis particularly if the first NCS findings are not informative.
    Matched MeSH terms: Encephalitis/complications*; Encephalitis/diagnosis*; Encephalitis/physiopathology; Encephalitis/therapy
  8. Ahmad A, Khan MU, Gogoi LJ, Kalita M, Sikdar AP, Pandey S, et al.
    PLoS One, 2015;10(8):e0135767.
    PMID: 26296212 DOI: 10.1371/journal.pone.0135767
    INTRODUCTION: Japanese encephalitis (JE) is a major cause of high morbidity and mortality in several states across India. However, in 2014, a sharp rise was observed in the number of cases of JE in north-eastern Assam state, and 51% of the total cases of JE in India were reported from the Assam in the same year. In this regard, a study was conducted to evaluate the knowledge and attitudes of healthcare workers in Darrang, a district of Assam highly affected by JE.

    METHODS: A cross sectional study was conducted for 2 months among HCWs in the major district hospital of Darrang, Assam. A pre-tested, self-administered questionnaire was used to collect data from the participants. Convenience sampling approach was used to collect data from different departments of the hospitals. Descriptive and logistic regression analyses were used to express the results.

    RESULTS: The knowledge of HCWs regarding JE was poor with a mean knowledge score of 11.02±2.39 (out of 17), while their attitudes were positive with a mean attitudes score of 43.16± 2.47 (ranging from 13 to 52). Overall, 40.4% and 74.3% of participants demonstrated good knowledge and positive attitudes respectively. Cut-off score for good knowledge and positive attitudes toward JE was set as ≥12 and >40 respectively. Older participants (40-49 years) and experienced workers (>10 years) were significantly associated with good knowledge as compared to their referent group (p<0.05), while knowledge of nurses and other orderlies were significantly lower than physicians (p<0.01). Similar factors were associated with the positive attitudes of the participants with the exception of experience. Television was the major source of information regarding JE reported by HCWs (79%).

    CONCLUSION: Although the knowledge was not optimized, HCWs exhibited positive attitudes towards JE. Future research is required to design, implement and evaluate interventions to improve the knowledge of JE among HCWs.

    Matched MeSH terms: Encephalitis, Japanese/diagnosis; Encephalitis, Japanese/epidemiology; Encephalitis, Japanese/psychology*; Encephalitis, Japanese/therapy
  9. Takhampunya R, Kim HC, Tippayachai B, Kengluecha A, Klein TA, Lee WJ, et al.
    Virol J, 2011;8:449.
    PMID: 21943222 DOI: 10.1186/1743-422X-8-449
    Japanese encephalitis virus (JEV) genotype V reemerged in Asia (China) in 2009 after a 57-year hiatus from the continent, thereby emphasizing a need to increase regional surveillance efforts. Genotypic characterization was performed on 19 JEV-positive mosquito pools (18 pools of Culex tritaeniorhynchus and 1 pool of Cx. bitaeniorhynchus) from a total of 64 positive pools collected from geographically different locations throughout the Republic of Korea (ROK) during 2008 and 2010.
    Matched MeSH terms: Encephalitis Virus, Japanese/genetics*; Encephalitis Virus, Japanese/isolation & purification; Encephalitis, Japanese/genetics; Encephalitis, Japanese/epidemiology; Encephalitis, Japanese/transmission; Encephalitis, Japanese/virology*; Japanese Encephalitis Vaccines
  10. Mackenzie JS
    J Neurovirol, 2005 Oct;11(5):434-40.
    PMID: 16287684
    The last decade of the 20th Century saw the introduction of an unprecedented number of encephalitic viruses emerge or spread in the Southeast Asian and Western Pacific regions (Mackenzie et al, 2001; Solomon, 2003a). Most of these viruses are zoonotic, either being arthropod-borne viruses or bat-borne viruses. Thus Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, has spread through the Indonesian archipelago to Papua New Guinea (PNG) and to the islands of the Torres Strait of northern Australia, to Pakistan, and to new areas in the Indian subcontinent; a strain of tick-borne encephalitis virus (TBEV) was described for the first time in Hokkaido, Japan; and a novel mosquito-borne alphavirus, Me Tri virus, was described from Vietnam. Three novel bat-borne viruses emerged in Australia and Malaysia; two, Hendra and Nipah viruses, represent the first examples of a new genus in the family Paramyxoviridae, the genus Henipaviruses, and the third, Australian bat lyssavirus (ABLV) is new lyssavirus closely related to classical rabies virus. These viruses will form the body of this brief review.
    Matched MeSH terms: Encephalitis Virus, Japanese/isolation & purification; Encephalitis Virus, Japanese/pathogenicity; Encephalitis Viruses, Tick-Borne/isolation & purification; Encephalitis Viruses, Tick-Borne/pathogenicity; Encephalitis, Viral/epidemiology*; Encephalitis, Viral/virology
  11. Monath TP
    PMID: 12082985
    Vaccination against JE ideally should be practiced in all areas of Asia where the virus is responsible for human disease. The WHO has placed a high priority on the development of a new vaccine for prevention of JE. Some countries in Asia (Japan, South Korea, North Korea, Taiwan, Vietnam, Thailand, and the PRC) manufacture JE vaccines and practice childhood immunization, while other countries suffering endemic or epidemic disease (India, Nepal, Laos, Cambodia, Bangladesh, Myanmar, Malaysia, Indonesia and the Philippines) have no JE vaccine manufacturing or policy for use. With the exception of the PRC, all countries practicing JE vaccination use formalin inactivated mouse brain vaccines, which are relatively expensive and are associated with rare but clinically significant allergic and neurological adverse events. New inactivated JE vaccines manufactured in Vero cells are in advanced preclinical or early clinical development in Japan, South Korea, Taiwan, and the PRC. An empirically derived, live attenuated vaccine (SA14-14-2) is widely used in the PRC. Trials in the PRC have shown SA14-14-2 to be safe and effective when administered in a two-dose regimen, but regulatory concerns over manufacturing and control have restricted international distribution. The genetic basis of attenuation of SA14-14-2 has been partially defined. A new live attenuated vaccine (ChimeriVax-JE) that uses a reliable flavivirus vaccine--yellow fever 17D--as a live vector for the envelope genes of SA14-14-2 virus is in early clinical trials and appears to be well tolerated and immunogenic after a single dose. Vaccinia and avipox vectored vaccines have also been tested clinically, but are no longer being pursued due to restricted effectiveness mediated by anti-vector immunity. Other approaches to JE vaccines--including naked DNA, oral vaccination, and recombinant subunit vaccines--have been reviewed.
    Matched MeSH terms: Encephalitis Virus, Japanese/genetics; Encephalitis Virus, Japanese/immunology*; Encephalitis, Japanese/immunology; Encephalitis, Japanese/prevention & control*
  12. Gibbs WW
    Sci. Am., 1999 Aug;281(2):80-7.
    PMID: 10443039
    Matched MeSH terms: Encephalitis, Japanese/virology; Encephalitis, Viral/etiology*; Encephalitis, Viral/epidemiology*; Encephalitis, Viral/veterinary
  13. Piyasena TBH, Setoh YX, Hobson-Peters J, Prow NA, Bielefeldt-Ohmann H, Khromykh AA, et al.
    Vector Borne Zoonotic Dis, 2017 12;17(12):825-835.
    PMID: 29083957 DOI: 10.1089/vbz.2017.2172
    In Australia, infection of horses with the West Nile virus (WNV) or Murray Valley encephalitis virus (MVEV) occasionally results in severe neurological disease that cannot be clinically differentiated. Confirmatory serological tests to detect antibody specific for MVEV or WNV in horses are often hampered by cross-reactive antibodies induced to conserved epitopes on the envelope (E) protein. This study utilized bacterially expressed recombinant antigens derived from domain III of the E protein (rE-DIII) of MVEV and WNV, respectively, to determine whether these subunit antigens provided specific diagnostic markers of infection with these two viruses. When a panel of 130 serum samples, from horses with known flavivirus infection status, was tested in enzyme-linked immunosorbent assay (ELISA) using rE-DIII antigens, a differential diagnosis of MVEV or WNV was achieved for most samples. Time-point samples from horses exposed to flavivirus infection during the 2011 outbreak of equine encephalitis in south-eastern Australia also indicated that the rE-DIII antigens were capable of detecting and differentiating MVEV and WNV infection in convalescent sera with similar sensitivity and specificity to virus neutralization tests and blocking ELISAs. Overall, these results indicate that the rE-DIII is a suitable antigen for use in rapid immunoassays for confirming MVEV and WNV infections in horses in the Australian context and warrant further assessment on sensitive, high-throughput serological platforms such as multiplex immune assays.
    Matched MeSH terms: Encephalitis, Arbovirus/diagnosis; Encephalitis, Arbovirus/veterinary*; Encephalitis, Arbovirus/virology; Encephalitis Virus, Murray Valley/isolation & purification*
  14. Hasan S, B Basri H, P Hin L, Stanslas J
    Pak J Med Sci, 2013 May;29(3):859-62.
    PMID: 24353644
    Encephalitis has been included in the causes of optic neuritis, but post encephalitic optic neuritis has been rarely reported. Majority of the cases of optic neuritis are either idiopathic or associated with multiple sclerosis, especially in western countries. This is very important in the Asian population where the incidence and prevalence of multiple sclerosis is not as high as in the Western countries. Although post infectious optic neuritis is more common in children, it can also be found in adults and is usually seen one to three weeks after a symptomatic infective prodrome. Here, we present a case of a 48 year-old-male who developed optic neuritis following viral encephalitis. His first presentation was with severe headache of two weeks duration. Viral encephalitis was diagnosed and treated. The patient presented again three weeks later with right eye pain and other features typical of optic neuritis. Corticosteroid therapy facilitated prompt recovery. Optic neuritis is an uncommon manifestation of encephalitis. It is important that both doctors and patients remain aware of post infectious cause of optic neuritis, which would enable a timely diagnosis and treatment of this reversible cause of vision loss.
    Matched MeSH terms: Encephalitis; Encephalitis, Viral
  15. Wang HJ, Liu L, Li XF, Ye Q, Deng YQ, Qin ED, et al.
    J Gen Virol, 2016 07;97(7):1551-1556.
    PMID: 27100268 DOI: 10.1099/jgv.0.000486
    Duck Tembusu virus (DTMUV), a newly identified flavivirus, has rapidly spread to China, Malaysia and Thailand. The potential threats to public health have been well-highlighted; however its virulence and pathogenesis remain largely unknown. Here, by using reverse genetics, a recombinant chimeric DTMUV based on Japanese encephalitis live vaccine strain SA14-14-2 was obtained by substituting the corresponding prM and E genes (named ChinDTMUV). In vitro characterization demonstrated that ChinDTMUV replicated efficiently in mammalian cells with small-plaque phenotype in comparison with its parental viruses. Mouse tests showed ChinDTMUV exhibited avirulent phenotype in terms of neuroinvasiveness, while it retained neurovirulence from its parental virus DTMUV. Furthermore, immunization with ChinDTMUV was evidenced to elicit robust IgG and neutralizing antibody responses in mice. Overall, we successfully developed a viable chimeric DTMUV, and these results provide a useful platform for further investigation of the pathogenesis of DTMUV and development of a live attenuated DTMUV vaccine candidate.
    Matched MeSH terms: Encephalitis Virus, Japanese/genetics*; Encephalitis, Japanese/immunology; Encephalitis, Japanese/virology*; Japanese Encephalitis Vaccines/genetics*; Japanese Encephalitis Vaccines/immunology*
  16. Alice V, Cheong BM
    Med J Malaysia, 2016 02;71(1):41-3.
    PMID: 27130747
    A previously well 13-year-old boy presented with a short history of fever and altered mental status. His mother was admitted for dengue fever and there had been a recent dengue outbreak in their neighbourhood. He was diagnosed with dengue encephalitis as both his dengue non-structural protein 1 (NS-1) antigen and cerebrospinal fluid (CSF) dengue polymerase chain reaction (PCR) were positive. He did not have haemoconcentration, thrombocytopenia or any warning signs associated with severe dengue. He recovered fully with supportive treatment. This case highlights the importance of considering the diagnosis of dengue encephalitis in patients from dengue endemic areas presenting with an acute febrile illness and neurological symptoms.
    Matched MeSH terms: Encephalitis/etiology*
  17. Sinniah M
    PMID: 2561714
    JE is neither classified as an entity in the Malaysian Medical records system nor is it a notifiable disease but is grouped under the broad umbrella of viral encephalitis. There is no centralised program by the Ministry of Health specially for JE surveillance and control. JE is endemic, occurs sporadically throughout the country all year round. Asymptomatic inapparent infections have been found to be more frequent than acute clinical encephalitis cases, judging from results of previous serosurveys (Pond et al., 1954). JE vaccination has never been tried in Malaysia. In a relative sense, JEV infection unlike dengue virus infection, does not appear to be much of a problem in Malaysia. Perhaps, the laboratory confirmed cases represent only a small proportion of the total hospitalised cases that actually occurred. The reasons may be that these cases could not be confirmed by laboratory tests due to improper timing or failure to obtain the second serum specimen, or failure to perform lumbar puncture on patient's refusal. Attempts to improve the case detection rate of JE in Malaysia should be made namely, by increasing clinical index of suspicion, instituting better specimen collection procedures and by adopting rapid diagnostic tests.
    Matched MeSH terms: Encephalitis, Japanese/epidemiology*
  18. Pit S, Jamal F, Isahak I, Minhaj AA
    Med J Malaysia, 1987 Dec;42(4):302-5.
    PMID: 3454403
    Lactic acid concentration was determined in 37 specimens of cerebrospinal fluid by gas liquid chromatography. It was found to be raised (30 mg/dl) in 15 specimens from culture positive cases of bacterial meningitis and one of fungal meningitis. It was < 30 mg/dl in cerebrospinal fluid from four cases of viral meningoencephalitis and 10 contaminated specimens. It was also raised in two specimens from culture negative cases. Determination of cerebrospinal fluid lactic acid concentration by gas liquid chromatography provides a useful, additional test in the diagnosis of bacterial meningitis
    Matched MeSH terms: Encephalitis, Arbovirus/cerebrospinal fluid
  19. Okuno T, Okada T, Kondo A, Suzuki M, Kobayashi M, Oya A
    Bull World Health Organ, 1968;38(4):547-63.
    PMID: 5302450
    The immunological characteristics of 26 strains of Japanese encephalitis virus (JEV) isolated in Japan and Malaya between 1935 and 1966 have been investigated mainly by the antibody-absorption variant of the haemagglutination-inhibition test, and to a certain extent also by conventional haemagglutination-inhibition and complement-fixation tests. The antibody-absorption technique shows promise as a routine method for the immunotyping of JEV.At present, two immunotypes can be distinguished. One comprises 2 strains, Nakayama-NIH and I-58, and is designated as the I-58 immunotype. The other immunotype, JaGAr 01, comprises 17 strains which share the characteristics of the JaGAr 01 strain, including one subline of the Nakayama strain, Nakayama-Yakken. The Nakayama-RFVL strain was found to have the characteristics of both immunotypes. The I-58 immunotype differs more markedly from related arboviruses, such as the Murray Valley encephalitis virus and the West Nile Eg101 strain, than does the JaGAr 01 immunotype.Evidence is presented which suggests that a given JEV strain can change immunotype on repeated passage through mice.
    Matched MeSH terms: Encephalitis Viruses/classification*
  20. Heathcote OH
    Trans R Soc Trop Med Hyg, 1970;64(4):483-8.
    PMID: 4394983
    Matched MeSH terms: Encephalitis, Japanese/epidemiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links