Displaying publications 61 - 66 of 66 in total

Abstract:
Sort:
  1. Moharm, Bushra Abdulkarim, Ibrahim Jantan, Santhanam, Jacinta, Jamia Azdina Jamal
    MyJurnal
    The leaf and bark oils of Cinnamomum verum J.S. Presl. were examined for their antifungal activity against 6 dermatophytes (Trichophyton rubrum, T. mentagrophytes, T. tonsurans, Microsporum canis, M. gypseum and M. audouini), one filamentous fungi (Aspergillus fumigatus) and 5 strains of yeasts (Candida albicans, Ca. glabrata, Ca. tropicalis, Ca. parapsilosis and Crytococcus neoformans) by using the broth microdilution method. The antifungal activities of 4 standard compounds (cinnamaldehyde, eugenol, linalool and a-terpineol) which were major constituents in the oils were also investigated in an effort to correlate the effectiveness of the oils with those of the components of the oils. The combined antifungal effect of the oils against M. canis, M. gypseum and Cr. neoformans was investigated by the checkerboard assay. Isobolograms were constructed and Fractional Inhibitory Concentrations Index (FICI) were calculated to determine the combination effects between the oils. The chemical composition of the oils was analyzed by gas chromatography (GC) and gas chromatography- mass spectrometry (GC-MS). The oils showed strong activity against all the tested fungi with Minimum Inhibition Concentration (MIC) values ranging from 0.04 to 0.31 mg/ml. Cinnamaldehyde which was the most abundant component of the bark oil of C. verum showed the strongest activity against all the fungi studied. Based on the results of the assay on standard samples, it may be that the high levels of cinnamaldehyde and eugenol in the oils and in combination with the minor components could be responsible for the high antifungal activity of the oils. The antifungal effect of the leaf and bark oils of C. verum in combination against the tested fungi was not synergistic. However, the effect was additive against M. gypseum and antagonistic against Cr. neoformans and M. canis.
    Matched MeSH terms: Eugenol
  2. Gokhan Gunduz, Barbaros Yaman, Seray Ozden, Suleyman Donmez
    Sains Malaysiana, 2013;42:547-552.
    Composite archery bows have been well known and used by Asiatic societies for thousands of years. The Turkish composite bow, made of wood, horn, sinew and glue is one of the most famous and powerful bows in the world. Because of its high draw weight and mechanical efficiency, the Turkish composite bow became a powerful weapon in the Seljuk and the Ottoman empire. In addition to being a powerful weapon of war, at the same time the bow and arrow (archery) continued
    to be a sport of Ottoman (sultans, state officials, janissaries) until the late Ottoman period. In this study of the Ottoman composite archery bows in the collections of Izmir Ethnography Museum, a small wood sample was investigated on the basis of its wood anatomy. The results showed that it was made of maple wood (Acer sp.) and some of its qualitative and quantitative anatomical properties are presented here. One of the key properties for the identification of maple wood is
    the helical thickening throughout the body of the vessel element. Helical thickenings in vessel elements in cutting surfaces of maple-wooden core increase the bonding surface between the wood and sinew-horn. In most of the woods preferred traditionally for bow-making, helical thickenings in tracheids, vessel elements or ground tissue fibres should be taken into account at a hierarchy of cellular structures for elucidating the efficiency of Ottoman composite-wooden bow.
    Matched MeSH terms: Eugenol
  3. Wee SL, Tan KH
    J Chem Ecol, 2001 May;27(5):953-64.
    PMID: 11471947 DOI: 10.1023/A:1010387020135
    Methyl eugenol (ME), is converted into two major phenylpropanoids, 2-allyl-4,5-dimethoxyphenol and trans-coniferyl alcohol, following consumption by the male fruit fly Bactrocera papayae. Chemical analysis of wild male B. papayae rectal glands, where the compounds are sequestered, revealed the presence of ME metabolites in varying quantities. These phenylpropanoids are shown to be involved in the fruit fly defense both in no-choice and choice feeding tests against the Malayan spiny gecko, Gekko monarchus. After being acclimatized to feeding on fruit flies, geckos consumed significantly fewer ME-fed male flies than controls that consumed all the ME-deprived male flies offered throughout a two-week period. Diagnosis of dissected livers from geckos that consumed ME-fed male flies revealed various abnormalities. These included discoloration and hardening of liver tissue, whitening of the gallbladder, or presence of tumor-like growths in all geckos that consumed ME-fed male flies. Control geckos fed on ME-deprived male flies had healthy livers. When given an alternative prey, geckos preferred to eat untreated house flies, Musca domestica to avoid preying on ME-fed fruit flies.
    Matched MeSH terms: Eugenol/analogs & derivatives*; Eugenol/metabolism*; Eugenol/pharmacokinetics; Eugenol/toxicity*
  4. Lim JHC, Azman BAR, Othman BHR
    Zookeys, 2019;859:17-29.
    PMID: 31327920 DOI: 10.3897/zookeys.859.33284
    A new species of caprellid, Aciconulatinggiensis (Amphipoda, Senticaudata, Caprellidae) was discovered from Pulau Tinggi, Sultan Iskandar Marine Park (SIMP), South China Sea, Malaysia. The new Malaysian species can be distinguished from the other Aciconula species by the combination of the following characters: 1. the presence of a very small suture between head and pereonite 1; 2. antenna 1 flagellum with 4 articles; 3. inner lobe of lower lip unilobed; 4. gnathopod 2 palm of propodus with a large proximal projection (stretching from the proximal margin of the palm to nearly mid-way of palm); 5. pereopods 3-4 with 2 articles (article 1 subrectangular, article 2 conical or tapering at the tip with 1 plumose seta and 2 normal setae) and; 6. pereopod 5 covered with relatively dense and long setae. An updated identification key for the five known species in the genus, including information on the respective geographical distribution and habitat, is presented.
    Matched MeSH terms: Eugenol
  5. Swamy MK, Sinniah UR
    Molecules, 2015 May 12;20(5):8521-47.
    PMID: 25985355 DOI: 10.3390/molecules20058521
    Pogostemon cablin Benth. (patchouli) is an important herb which possesses many therapeutic properties and is widely used in the fragrance industries. In traditional medicinal practices, it is used to treat colds, headaches, fever, nausea, vomiting, diarrhea, abdominal pain, insect and snake bites. In aromatherapy, patchouli oil is used to relieve depression, stress, calm nerves, control appetite and to improve sexual interest. Till now more than 140 compounds, including terpenoids, phytosterols, flavonoids, organic acids, lignins, alkaloids, glycosides, alcohols, aldehydes have been isolated and identified from patchouli. The main phytochemical compounds are patchouli alcohol, α-patchoulene, β-patchoulene, α-bulnesene, seychellene, norpatchoulenol, pogostone, eugenol and pogostol. Modern studies have revealed several biological activities such as antioxidant, analgesic, anti-inflammatory, antiplatelet, antithrombotic, aphrodisiac, antidepressant, antimutagenic, antiemetic, fibrinolytic and cytotoxic activities. However, some of the traditional uses need to be verified and may require standardizing and authenticating the bioactivity of purified compounds through scientific methods. The aim of the present review is to provide comprehensive knowledge on the phytochemistry and pharmacological activities of essential oil and different plant extracts of patchouli based on the available scientific literature. This information will provide a potential guide in exploring the use of main active compounds of patchouli in various medical fields.
    Matched MeSH terms: Eugenol/therapeutic use; Eugenol/chemistry
  6. In LL, Azmi MN, Ibrahim H, Awang K, Nagoor NH
    Anticancer Drugs, 2011 Jun;22(5):424-34.
    PMID: 21346553 DOI: 10.1097/CAD.0b013e328343cbe6
    In this study, the apoptotic mechanism and combinatorial chemotherapeutic effects of the cytotoxic phenylpropanoid compound 1'S-1'-acetoxyeugenol acetate (AEA), extracted from rhizomes of the Malaysian ethnomedicinal plant Alpinia conchigera Griff. (Zingiberaceae), on MCF-7 human breast cancer cells were investigated for the first time. Data from cytotoxic and apoptotic assays such as live and dead and poly-(ADP-ribose) polymerase cleavage assays indicated that AEA was able to induce apoptosis in MCF-7 cells, but not in normal human mammary epithelial cells. A microarray global gene expression analysis of MCF-7 cells, treated with AEA, suggested that the induction of tumor cell death through apoptosis was modulated through dysregulation of the nuclear factor-kappaB (NF-κB) pathway, as shown by the reduced expression of various κB-regulated gene targets. Consequent to this, western blot analysis of proteins corresponding to the NF-κB pathway indicated that AEA inhibited phosphorylation levels of the inhibitor of κB-kinase complex, resulting in the elimination of apoptotic resistance originating from NF-κB activation. This AEA-based apoptotic modulation was elucidated for the first time in this study, and gave rise to the proposal of an NF-κB model termed the 'Switching/Alternating Model.' In addition to this, AEA was also found to synergistically enhance the proapoptotic effects of paclitaxel, when used in combination with MCF-7 cells, presumably by a chemosensitizing role. Therefore, it was concluded that AEA isolated from the Malaysian tropical ginger (A. conchigera) served as a very promising candidate for further in-vivo development in animal models and in subsequent clinical trials involving patients with breast-related malignancies.
    Matched MeSH terms: Eugenol/administration & dosage; Eugenol/analogs & derivatives*; Eugenol/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links