Displaying publications 61 - 80 of 172 in total

Abstract:
Sort:
  1. Loganathan A, Arumainathan UD, Raman R
    Singapore Med J, 2006 Apr;47(4):271-5.
    PMID: 16572236
    Diagnosis and treatment of acute tonsillitis are one of the most common problems seen at an otorhinolaryngology clinic in both adult and paediatric populations. Much has been written about bacteriology of recurrent tonsillitis but it remains a controversial topic. Despite the fact that tonsillitis is so common, consensus seems to be lacking as to the main causative organism and the differences between children and adults. The tonsillar core bacteriology of 233 patients with recurrent tonsillitis who underwent tonsillectomy from January 2000 to June 2003 is presented.
    Study site: inpatients, University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
    Matched MeSH terms: Klebsiella pneumoniae/isolation & purification
  2. Nik Zuraina NMN, Mohamad S, Hasan H, Goni MD, Suraiya S
    Pathog Glob Health, 2023 Feb;117(1):63-75.
    PMID: 35331083 DOI: 10.1080/20477724.2022.2028378
    Respiratory tract infections (RTIs), including pneumonia and pulmonary tuberculosis, are among the leading causes of death worldwide. The use of accurate diagnostic tests is crucial to initiate proper treatment and therapy to reduce the mortality rates for RTIs. A PCR assay for simultaneous detection of six respiratory bacteria: Haemophilus influenzae, Klebsiella pneumoniae, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus pneumoniae, was developed in our lab. The current study aimed to evaluate the performance of this assay along with the retrospective surveillance of respiratory pathogens at a teaching hospital in Kelantan, Malaysia. Leftover sputa (n = 200) from clinical laboratories were collected and undergone DNA template preparation for PCR analysis. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the PCR assay were determined in comparison with the gold standard sputum culture. Overall, the accuracy performance of this assay was 94.67% (95% CI: 90.87% to 97.21%) with sensitivity, specificity, PPV and NPV of 100%, 91.67%, 87.1% and 100%, respectively. Based on the organisms detected from sputa, K. pneumoniae ranked as the top isolate (n = 48), followed by P. aeruginosa (n = 13) and H. influenzae (n = 10). Surveillance among the patients showed that the associations of bacterial positive with gender and means of acquisition were found significant (p values = 0.049 and 0.001, respectively). Besides the promising performance of this ready-to-use molecular-based assay for the rapid detection of selected bacteria pathogens, this study also highlighted significant spread of K. pneumoniae RTIs in the community.
    Matched MeSH terms: Klebsiella pneumoniae/genetics
  3. Abbas SZ, Riaz M, Ramzan N, Zahid MT, Shakoori FR, Rafatullah M
    Braz J Microbiol, 2014;45(4):1309-15.
    PMID: 25763035
    The present study proposed the isolation of arsenic resistant bacteria from wastewater. Only three bacterial isolates (MNZ1, MNZ4 and MNZ6) were able to grow in high concentrations of arsenic. The minimum inhibitory concentrations of arsenic against MNZ1, MNZ4 and MNZ6 were 300 mg/L, 300 mg/L and 370 mg/L respectively. The isolated strains showed maximum growth at 37 °C and at 7.0 pH in control but in arsenite stress Luria Bertani broth the bacterial growth is lower than control. All strains were arsenite oxidizing. All strains were biochemically characterized and ribotyping (16S rRNA) was done for the purpose of identification which confirmed that MNZ1 was homologous to Enterobacter sp. while MNZ4 and MNZ6 showed their maximum homology with Klebsiella pneumoniae. The protein profiling of these strains showed in arsenic stressed and non stressed conditions, so no bands of induced proteins appeared in stressed conditions. The bacterial isolates can be exploited for bioremediation of arsenic containing wastes, since they seem to have the potential to oxidize the arsenite (more toxic) into arsenate (less toxic) form.
    Matched MeSH terms: Klebsiella pneumoniae/classification; Klebsiella pneumoniae/drug effects*; Klebsiella pneumoniae/growth & development; Klebsiella pneumoniae/isolation & purification
  4. Yap PSX, Ahmad Kamar A, Chong CW, Ngoi ST, Teh CSJ
    Microb Drug Resist, 2020 Mar;26(3):190-203.
    PMID: 31545116 DOI: 10.1089/mdr.2019.0199
    Background:
    Klebsiella pneumoniae is a major opportunistic pathogen frequently associated with nosocomial infections, and often poses a major threat to immunocompromised patients. In our previous study, two K. pneumoniae (K36 and B13), which displayed resistance to almost all major antibiotics, including colistin, were isolated. Both isolates were not associated with infection and isolated from the stools of two preterm neonates admitted to the neonatal intensive care unit (NICU) during their first week of life.
    Materials and Methods:
    In this study, whole genome sequencing was performed on these two clinical multidrug resistant K. pneumoniae. We aimed to determine the genetic factors that underline the antibiotic-resistance phenotypes of these isolates.
    Results:
    The strains harbored blaSHV-27, blaSHV-71, and oqxAB genes conferring resistance to cephalosporins, carbapenems, and fluoroquinolones, respectively, but not harboring any known plasmid-borne colistin resistance determinants such as mcr-1. However, genome analysis discovered interruption of mgrB gene by insertion sequences gaining insight into the development of colistin resistance.
    Conclusion:
    The observed finding that points to a scenario of potential gut-associated resistance genes to Gram negative (K. pneumoniae) host in the NICU environment warrants attention and further investigation.
    Matched MeSH terms: Klebsiella pneumoniae/drug effects; Klebsiella pneumoniae/genetics*; Klebsiella pneumoniae/isolation & purification; Klebsiella pneumoniae/pathogenicity*
  5. Jiménez-Castellanos JC, Wan Ahmad Kamil WN, Cheung CH, Tobin MS, Brown J, Isaac SG, et al.
    J Antimicrob Chemother, 2016 Jul;71(7):1820-5.
    PMID: 27029850 DOI: 10.1093/jac/dkw088
    OBJECTIVES: In Klebsiella pneumoniae, overproduction of RamA and RarA leads to increased MICs of various antibiotics; MarA and SoxS are predicted to perform a similar function. We have compared the relative effects of overproducing these four AraC-type regulators on envelope permeability (a combination of outer membrane permeability and efflux), efflux pump and porin production, and antibiotic susceptibility in K. pneumoniae.

    METHODS: Regulators were overproduced using a pBAD expression vector. Antibiotic susceptibility was measured using disc testing. Envelope permeability was estimated using a fluorescent dye accumulation assay. Porin and efflux pump production was quantified using proteomics and validated using real-time quantitative RT-PCR.

    RESULTS: Envelope permeability and antibiotic disc inhibition zone diameters both reduced during overproduction of RamA and to a lesser extent RarA or SoxS, but did not change following overproduction of MarA. These effects were associated with overproduction of the efflux pumps AcrAB (for RamA and SoxS) and OqxAB (for RamA and RarA) and the outer membrane protein TolC (for all regulators). Effects on porin production were strain specific.

    CONCLUSIONS: RamA is the most potent regulator of antibiotic permeability in K. pneumoniae, followed by RarA then SoxS, with MarA having very little effect. This observed relative potency correlates well with the frequency at which these regulators are reportedly overproduced in clinical isolates.

    Matched MeSH terms: Klebsiella pneumoniae/drug effects*; Klebsiella pneumoniae/genetics*
  6. Ariffin H, Navaratnam P, Mohamed M, Arasu A, Abdullah WA, Lee CL, et al.
    Int J Infect Dis, 2000;4(1):21-5.
    PMID: 10689210
    OBJECTIVES: To evaluate prevalence of ceftazidime-resistant Klebsiella pneumoniae (CRKP) in the pediatric oncology unit of University Hospital, Kuala, Lumpur, and to identify differences between febrile neutropenic pediatric patients with CRKP and ceftazidime-sensitive K. pneumoniae (CSKP) bacteremia.

    MATERIALS AND METHODS: Febrile neutropenic patients treated between January 1996 and December 1997 at the pediatric oncology unit of University Hospital, Kuala Lumpur, were prospectively studied. Empirical antibiotic therapy consisted of ceftazidime and amikacin. Those who developed K. pneumoniae bacteremia were identified, and clinical features analyzed. Ceftazidime-resistance was documented via disk-diffusion testing. Production of extended-spectrum beta-lactamase (ESBL) was inferred on the basis of synergy between ceftazidime and amoxicillin-clavulanic acid. The different features between the two groups and variables associated with the development of CRKP bacteremia were analyzed using chi-square and t-tests and calculation of odds ratios. A multivariate analysis was used to identify independent factors for CRKP development.

    RESULTS: Ceftazidime-resistance was seen in 51.6% of all K. pneumoniae isolates, and all these isolates were inferred to be ESBL producers. All isolates were sensitive to imipenem. Susceptibility to gentamicin was 90.5%. The mean continuous hospital stay prior to the detection of bacteremia was 13.7 days overall, but significantly longer in the CRKP group (21.9 d) compared to the CSKP group (4.3 d) (P = 0.003). Children with CRKP were more likely to have received antibiotics in the 2 weeks prior to detection of bacteremia (87.5% of cases) than the CSKP group (20.0% of cases) (P = 0.0008). Sepsis-related mortality was higher in those with CRKP (50.0%) than in the CSKP group (13.3%) (P = 0.02). Patients who did not receive CRKP-directed antibiotics within 48 hours of admission were more likely to have a fatal outcome than those who did (P = 0.009). Logistic regression analysis identified use of third-generation cephalosporins 2 weeks prior to presentation and a hospital stay of 2 weeks or more as independent risk factors for development of CRKP.

    CONCLUSIONS: More than half of total K. pneumoniae isolated from blood cultures in the unit were ceftazidime-resistant. Children with febrile neutropenia with prolonged hospital stay and recent prior antibiotic exposure are at high risk of developing CRKP bacteremia. Mortality was significantly higher in this group. Early commencement of appropriate antibiotics (e.g., imipenem with or without gentamicin), according to susceptibility study results, may be beneficial in such circumstances.

    Matched MeSH terms: Klebsiella pneumoniae/drug effects*; Klebsiella pneumoniae/isolation & purification
  7. Parasakthi N, Vadivelu J, Ariffin H, Iyer L, Palasubramaniam S, Arasu A
    Int J Infect Dis, 2000;4(3):123-8.
    PMID: 11179914
    OBJECTIVES: To describe the epidemiology, antimicrobial susceptibility, genomic profiles, and control of a nosocomial outbreak of multidrug-resistant Klebsiella pneumoniae (MRKP) that occurred in the pediatric oncology unit of the University of Malaya Medical Centre in Kuala Lumpur.

    MATERIALS AND METHODS: A prospective epidemiologic and microbiologic study was conducted of MRKP isolated from the blood and wound of a boy with necrotizing fasciitis after a 7-day course of ceftazidime and amikacin. In the following 2 weeks, phenotypically similar MRKP were isolated from the blood cultures of four other patients and rectal swabs of another three patients and two liquid soap samples located in the same ward.

    RESULTS: Antimicrobial profiles demonstrated that all the isolates were resistant to ceftazidime, sensitive to imipenem and ciprofloxacin, and confirmed to be extended-spectrum beta-lactamase producers. Plasmids of varying molecular weights were present in all isolates. In eight of these isolates, which included four from blood, there were common large molecular weight plasmids ranging from 80 kb to 100 kb. Pulsed-field gel electrophoresis analysis using XbaI demonstrated six different DNA profiles, A to F. Profile A was shared by two blood culture isolates and were related by 91%. Profile B was found in one rectal swab isolate and one isolate from liquid soap and were related by 94%. Profile C was shared by one blood isolate and one liquid soap isolate and showed 100% relatedness. Profiles D, E, and F each were demonstrated by one blood isolate and two rectal swab isolates, respectively. These showed only 65% relatedness.

    CONCLUSIONS: The MRKP strains in this outbreak were not clonal in origin. The decline of the outbreak after 4 weeks was attributed to the reemphasis of standard infection control procedures and the implementation of a program that addressed sites of environmental contamination.

    Matched MeSH terms: Klebsiella pneumoniae/drug effects*; Klebsiella pneumoniae/genetics
  8. Wong NA, Linton CJ, Jalal H, Millar MR
    Epidemiol Infect, 1994 Dec;113(3):445-54.
    PMID: 7995354
    Discriminatory typing methods are invaluable in the investigation of outbreaks of infectious diseases. Single primers were used to generate randomly amplified polymorphic DNA (RAPD) profiles from Klebsiella pneumoniae isolates of various serotype and K. pneumoniae isolates from cases of sepsis at a Malaysian hospital and two English hospitals. RAPD profiles of acceptable reproducibility, a maximum of three minor band variations, were produced using a rapid DNA extraction method. RAPD typing of K. pneumoniae was shown to be as discriminatory as restriction fragment length polymorphism analysis using pulsed field gel electrophoresis yet quicker and less costly. The findings suggest that RAPD typing may be a useful tool for the epidemiological typing of K. pneumoniae.
    Matched MeSH terms: Klebsiella pneumoniae/classification*; Klebsiella pneumoniae/genetics
  9. Wan Nur Ismah WAK, Takebayashi Y, Findlay J, Heesom KJ, Avison MB
    J Antimicrob Chemother, 2018 11 01;73(11):2990-2996.
    PMID: 30053019 DOI: 10.1093/jac/dky293
    Background: In Klebsiella pneumoniae, loss-of-function mutations in the transcriptional repressors RamR and OqxR both have an impact on the production of efflux pumps and porins relevant to antimicrobial efflux/entry.

    Objectives: To define, in an otherwise isogenic background, the relative effects of OqxR and RamR loss-of-function mutations on envelope protein production, envelope permeability and antimicrobial susceptibility. We also investigated the clinical relevance of an OqxR loss-of-function mutation, particularly in the context of β-lactam susceptibility.

    Methods: Envelope permeability was estimated using a fluorescent dye accumulation assay. Antimicrobial susceptibility was measured using disc testing. Total envelope protein production was quantified using LC-MS/MS proteomics and quantitative RT-PCR was used to measure transcript levels.

    Results: Loss of RamR or OqxR reduced envelope permeability in K. pneumoniae by 45%-55% relative to the WT. RamR loss activated AcrAB efflux pump production ∼5-fold and this reduced β-lactam susceptibility, conferring ertapenem non-susceptibility even in the absence of a carbapenemase. In contrast, OqxR loss specifically activated OqxAB efflux pump production >10 000-fold. This reduced fluoroquinolone susceptibility but had little impact on β-lactam susceptibility even in the presence of a β-lactamase.

    Conclusions: Whilst OqxR loss and RamR loss are both seen in K. pneumoniae clinical isolates, only RamR loss significantly stimulates AcrAB efflux pump production. This means that only RamR mutants have significantly reduced β-lactamase-mediated β-lactam susceptibility and therefore represent a greater clinical threat.

    Matched MeSH terms: Klebsiella pneumoniae/drug effects*; Klebsiella pneumoniae/genetics*
  10. Anuar AS, Tay ST
    Trop Biomed, 2014 Dec;31(4):802-12.
    PMID: 25776607 MyJurnal
    Klebsiella pneumoniae is a healthcare-associated bacterial pathogen which causes severe diseases in immunocompromised individuals. Concanavalin A (conA), a lectin which recognizes proteins with mannose or glucose residues, has been reported to agglutinate K. pneumoniae and hence, is postulated to have therapeutical potential for K. pneumoniae-induced liver infection. This study investigated the conA binding properties of a large collection of clinical isolates of K. pneumoniae. ConA agglutination reaction was demonstrated by 94 (51.4%) of 183 K. pneumoniae isolates using a microtiter plate assay. The conA agglutination reactions were inhibited in the presence of 2.5 mg/ml D-mannose and 2.5 mg/ml glucose, and following pretreatment of the bacterial suspension with protease and heating at 80ºC. Majority of the positive isolates originated from respiratory specimens. Isolation of conA-binding proteins from K. pneumoniae ATCC 700603 strain was performed using conA affinity column and the conA binding property of the eluted proteins was confirmed by western blotting analysis using conA-HRP conjugates. Proteins with molecular weights ranging from 35 to 60 kDa were eluted from the conA affinity column, of which four were identified as outer membrane protein precursor A (37 kDa), outer membrane protein precursor C (40 kDa), enolase (45 kDa) and chaperonin (60 kDa) using mass spectrometry analysis. Several conA binding proteins (including 45 and 60 kDa) were found to be immunogenic when reacted with rabbit anti-Klebsiella antibody. The function and interplay of the conA binding proteins in bacterium-host cell relationship merits further investigation.
    Matched MeSH terms: Klebsiella pneumoniae/isolation & purification; Klebsiella pneumoniae/metabolism*
  11. Chung PY
    FEMS Microbiol Lett, 2016 10;363(20).
    PMID: 27664057
    Klebsiella pneumoniae is an opportunistic pathogen that commonly causes nosocomial infections in the urinary tract, respiratory tract, lung, wound sites and blood in individuals with debilitating diseases. Klebsiella pneumoniae is still a cause of severe pneumonia in alcoholics in Africa and Asia, and the predominant primary pathogen of primary liver abscess in Taiwan and Southeast Asia, particularly in Asian and Hispanic patients, and individuals with diabetes mellitus. In the United States and Europe, K. pneumoniae infections are most frequently associated with nosocomial infections. The emergence of antibiotic-resistant strains of K. pneumoniae worldwide has become a cause of concern where extended-spectrum β-lactamases (ESBLs) and carbapenemase-producing strains have been isolated with increasing frequency. The pathogen's ability to form biofilms on inserted devices such as urinary catheter has been proposed as one of the important mechanisms in nosocomially acquired and persistent infections, adding to the increased resistance to currently used antibiotics. In this review, infections caused by K. pneumoniae, antibiotic resistance and formation of biofilm will be discussed.
    Matched MeSH terms: Klebsiella pneumoniae/drug effects*; Klebsiella pneumoniae/growth & development
  12. Low YM, Chong CW, Yap IKS, Chai LC, Clarke SC, Ponnampalavanar S, et al.
    Pathog Glob Health, 2018 10;112(7):378-386.
    PMID: 30380366 DOI: 10.1080/20477724.2018.1538281
    The increasing prevalence of antibiotic resistant pathogens poses a serious threat to global health. However, less emphasis has been placed to co-relate the gene expression and metabolism of antibiotic resistant pathogens. This study aims to elucidate gene expression and variations in metabolism of multidrug resistant Klebsiella pneumoniae after exposure to antibiotics. Phenotypic responses of three genotypically distinct carbapenem resistant Klebsiella pneumoniae (CRKP) strains untreated and treated with sub-lethal concentrations of imipenem were investigated via phenotype microarrays (PM). The gene expression and metabolism of the strain harboring blaNDM-1 before and after exposure to sub-lethal concentration of imipenem were further investigated by RNA-sequencing (RNA-Seq) and 1H NMR spectroscopy respectively. Most genes related to cell division, central carbon metabolism and nucleotide metabolism were downregulated after imipenem treatment. Similarly, 1H NMR spectra obtained from treated CRKP showed decrease in levels of bacterial end products (acetate, pyruvate, succinate, formate) and metabolites involved in nucleotide metabolism (uracil, xanthine, hypoxanthine) but elevated levels of glycerophosphocholine. The presence of anserine was also observed for the treated CRKP while FAPγ-adenine and methyladenine were only present in untreated bacterial cells. As a conclusion, the studied CRKP strain exhibited decrease in central carbon metabolism, cell division and nucleotide metabolism after exposure to sub-lethal concentrations of imipenem. The understanding of the complex biological system of this multidrug resistant bacterium may help in the development of novel strategies and potential targets for the management of the infections.
    Matched MeSH terms: Klebsiella pneumoniae/drug effects*; Klebsiella pneumoniae/genetics
  13. Yang SK, Yusoff K, Ajat M, Thomas W, Abushelaibi A, Akseer R, et al.
    PLoS One, 2019;14(4):e0214326.
    PMID: 30939149 DOI: 10.1371/journal.pone.0214326
    Klebsiella pneumoniae (KP) remains the most prevalent nosocomial pathogen and carries the carbapenemase (KPC) gene which confers resistance towards carbapenem. Thus, it is necessary to discover novel antimicrobials to address the issue of antimicrobial resistance in such pathogens. Natural products such as essential oils are a promising source due to their complex composition. Essential oils have been shown to be effective against pathogens, but the overall mechanisms have yet to be fully explained. Understanding the molecular mechanisms of essential oil towards KPC-KP cells would provide a deeper understanding of their potential use in clinical settings. Therefore, we aimed to investigate the mode of action of essential oil against KPC-KP cells from a proteomic perspective by comparing the overall proteome profile of KPC-KP cells treated with cinnamon bark (Cinnamomum verum J. Presl) essential oil (CBO) at their sub-inhibitory concentration of 0.08% (v/v). A total of 384 proteins were successfully identified from the non-treated cells, whereas only 242 proteins were identified from the CBO-treated cells. Proteins were then categorized based on their biological processes, cellular components and molecular function prior to pathway analysis. Pathway analysis showed that CBO induced oxidative stress in the KPC-KP cells as indicated by the abundance of oxidative stress regulator proteins such as glycyl radical cofactor, catalase peroxidase and DNA mismatch repair protein. Oxidative stress is likely to oxidize and disrupt the bacterial membrane as shown by the loss of major membrane proteins. Several genes selected for qRT-PCR analysis validated the proteomic profile and were congruent with the proteomic abundance profiles. In conclusion, KPC-KP cells exposed to CBO undergo oxidative stress that eventually disrupts the bacterial membrane possibly via interaction with the phospholipid bilayer. Interestingly, several pathways involved in the bacterial membrane repair system were also affected by oxidative stress, contributing to the loss of cells viability.
    Matched MeSH terms: Klebsiella pneumoniae/drug effects*; Klebsiella pneumoniae/pathogenicity
  14. Mobasseri G, Teh CSJ, Ooi PT, Tan SC, Thong KL
    Microb Drug Resist, 2019 Sep;25(7):1087-1098.
    PMID: 30844323 DOI: 10.1089/mdr.2018.0184
    Aims:
    The high prevalence of multidrug resistance (MDR) and extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae associated with nosocomial infections has caused serious therapeutic challenges. The objectives of this study were to determine the genotypic and phenotypic characteristics of K. pneumoniae strains isolated from Malaysian swine farms and the transferability of ESBL genes by plasmids.
    Results:
    A total of 50 K. pneumoniae strains were isolated from 389 samples, which were collected from healthy and unhealthy pigs (swine rectum and oral cavities), healthy farmers (human rectum, urine, and nasal cavities), farm's environment, and animal feeds from seven Malaysian swine farms. Antimicrobial susceptibility analysis of these 50 K. pneumoniae strains showed that the majority (86%) were resistant to tetracycline, while 44% and 36% of these strains were MDR and ESBL producers, respectively. PCR and DNA sequencing of the amplicons showed the occurrence of blaTEM (15/18), blaSHV (15/18), blaCTX-M-1 group (7/18), and blaCTX-M-2 group (2/18), while only class 1 integron-encoded integrase was detected. Conjugation experiments and plasmid analysis indicated that the majority of the ESBL genes were plasmid encoded and the plasmids in 11 strains were conjugative. Genotyping by pulsed-field gel electrophoresis and repetitive extragenic palindrome-polymerase chain reaction (REP-PCR) showed that these 50 strains were genetically diverse with 44 pulsotypes and 43 REP-PCR subtypes.
    Conclusions:
    ESBL-producing K. pneumoniae strains showed high resistance to tetracycline as this antibiotic is used for prophylaxis and therapeutic purposes at the swine farms. The findings in this study have drawn attention to the issue of increasing MDR in animal husbandry and it should be taken seriously to prevent the spread and treatment failure due to antimicrobial resistance.
    Matched MeSH terms: Klebsiella pneumoniae/genetics*; Klebsiella pneumoniae/isolation & purification*
  15. Deris ZZ, Akter J, Sivanesan S, Roberts KD, Thompson PE, Nation RL, et al.
    J Antibiot (Tokyo), 2014 Feb;67(2):147-51.
    PMID: 24169795 DOI: 10.1038/ja.2013.111
    Polymyxin B and colistin were examined for their ability to inhibit the type II NADH-quinone oxidoreductases (NDH-2) of three species of Gram-negative bacteria. Polymyxin B and colistin inhibited the NDH-2 activity in preparations from all of the isolates in a concentration-dependent manner. The mechanism of NDH-2 inhibition by polymyxin B was investigated in detail with Escherichia coli inner membrane preparations and conformed to a mixed inhibition model with respect to ubiquinone-1 and a non-competitive inhibition model with respect to NADH. These suggest that the inhibition of vital respiratory enzymes in the bacterial inner membrane represents one of the secondary modes of action for polymyxins.
    Matched MeSH terms: Klebsiella pneumoniae/drug effects; Klebsiella pneumoniae/enzymology
  16. Al-Marzooq F, Mohd Yusof MY, Tay ST
    Biomed Res Int, 2014;2014:601630.
    PMID: 24860827 DOI: 10.1155/2014/601630
    Ninety-three Malaysian extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae isolates were investigated for ciprofloxacin resistance. Two mismatch amplification mutation (MAMA) assays were developed and used to facilitate rapid detection of gyrA and parC mutations. The isolates were also screened for plasmid-mediated quinolone resistance (PMQR) genes including aac(6')-Ib-cr, qepA, and qnr. Ciprofloxacin resistance (MICs 4- ≥ 32  μ g/mL) was noted in 34 (37%) isolates, of which 33 isolates had multiple mutations either in gyrA alone (n = 1) or in both gyrA and parC regions (n = 32). aac(6')-Ib-cr was the most common PMQR gene detected in this study (n = 61), followed by qnrB and qnrS (n = 55 and 1, resp.). Low-level ciprofloxacin resistance (MICs 1-2  μ g/mL) was noted in 40 (43%) isolates carrying qnrB accompanied by either aac(6')-Ib-cr (n = 34) or a single gyrA 83 mutation (n = 6). Ciprofloxacin resistance was significantly associated with the presence of multiple mutations in gyrA and parC regions. While the isolates harbouring gyrA and/or parC alteration were distributed into 11 PFGE clusters, no specific clusters were associated with isolates carrying PMQR genes. The high prevalence of ciprofloxacin resistance amongst the Malaysian ESBL-producing K. pneumoniae isolates suggests the need for more effective infection control measures to limit the spread of these resistant organisms in the hospital.
    Matched MeSH terms: Klebsiella pneumoniae/drug effects*; Klebsiella pneumoniae/enzymology; Klebsiella pneumoniae/genetics*
  17. Palasubramaniam S, Subramaniam G, Muniandy S, Parasakthi N
    Microb Drug Resist, 2007;13(3):186-90.
    PMID: 17949305
    In this report, we describe the detection of AmpC and CMY-2 beta-lactamases with the loss of OmpK35 porin among seven sporadic strains of ceftazidime-resistant Klebsiella pneumoniae and ceftazidime-resistant Escherichia coli. Cefoxitin, which was used as a marker of resistance toward 7-alpha-methoxy-cephalosporins, exhibited high minimum inhibitory concentration (MIC) values ranging between 128 microg/ml and >256 microg/ml in all the strains. The presence of hyperproducing AmpC enzymes was indicated by the positive three-dimensional test. Isoelectric focusing (IEF) study confirmed the presence of AmpC enzymes in all the strains. The ampC gene was detected by PCR in all the strains and confirmed by DNA sequencing. Large plasmids in all the strains, ranging from 60 kb to 150 kb in size, most likely encode the ampC gene. Two E. coli strains out of the seven strains showed positive amplification of the bla(CMY-2) gene, an AmpC variant, and was confirmed by DNA sequence analyses. DNA hybridization confirmed the bla(CMY-2) gene to be plasmid-mediated in both of these strains. However, one of these two strains also mediated a chromosomal CMY gene. All the strains showed an absence of OmpK35 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS/PAGE) and was confirmed by western blot analyses using raised polyclonal anti-OmpK35 antiserum. This suggests that, apart from CMY production, absence of OmpK35 porin also contributed to cefoxitin resistance resulting in extended-spectrum beta-lactam resistance among these isolates.
    Matched MeSH terms: Klebsiella pneumoniae/drug effects*; Klebsiella pneumoniae/enzymology; Klebsiella pneumoniae/genetics
  18. Palasubramaniam S, Subramaniam G, Muniandy S, Parasakthi N
    Int J Infect Dis, 2005 May;9(3):170-2.
    PMID: 15840458
    Matched MeSH terms: Klebsiella pneumoniae/enzymology*; Klebsiella pneumoniae/genetics; Klebsiella pneumoniae/isolation & purification
  19. Akinsanya MA, Goh JK, Lim SP, Ting AS
    FEMS Microbiol Lett, 2015 Dec;362(23):fnv184.
    PMID: 26454221 DOI: 10.1093/femsle/fnv184
    Twenty-nine culturable bacterial endophytes were isolated from surface-sterilized tissues (root, stem and leaf) of Aloe vera and molecularly characterized to 13 genera: Pseudomonas, Bacillus, Enterobacter, Pantoea, Chryseobacterium, Sphingobacterium, Aeromonas, Providencia, Cedecea, Klebsiella, Cronobacter, Macrococcus and Shigella. The dominant genera include Bacillus (20.7%), Pseudomonas (20.7%) and Enterobacter (13.8%). The crude and ethyl acetate fractions of the metabolites of six isolates, species of Pseudomonas, Bacillus, Chryseobacterium and Shigella, have broad spectral antimicrobial activities against pathogenic Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Salmonella Typhimurium, Proteus vulgaris, Klebsiella pneumoniae, Escherichia coli, Streptococcus pyogenes and Candida albicans, with inhibition zones ranging from 6.0 ± 0.57 to 16.6 ± 0.57 mm. In addition, 80% of the bacterial endophytes produced 1,1-diphenyl-2-picrylhydrazyl (DPPH) with scavenging properties of over 75% when their crude metabolites were compared with ascorbic acid (92%). In conclusion, this study revealed for the first time the endophytic bacteria communities from A. vera (Pseudomonas hibiscicola, Macrococcus caseolyticus, Enterobacter ludwigii, Bacillus anthracis) that produce bioactive compounds with high DPPH scavenging properties (75-88%) and (Bacillus tequilensis, Pseudomonas entomophila, Chryseobacterium indologenes, Bacillus aerophilus) that produce bioactive compounds with antimicrobial activities against bacterial pathogens. Hence, we suggest further investigation and characterization of their bioactive compounds.
    Matched MeSH terms: Klebsiella pneumoniae
  20. Harris PN, Yin M, Jureen R, Chew J, Ali J, Paynter S, et al.
    PMID: 25932324 DOI: 10.1186/s13756-015-0055-6
    Extended-spectrum β-lactamase (ESBL) producing Enterobacteriaceae are often susceptible in vitro to β-lactam/β-lactamase inhibitor (BLBLI) combination antibiotics, but their use has been limited by concerns of clinical inefficacy. We aimed to compare outcomes between patients treated with BLBLIs and carbapenems for bloodstream infection (BSI) caused by cefotaxime non-susceptible (likely ESBL- or AmpC β-lactamase-producing) Escherichia coli and Klebsiella pneumoniae.
    Matched MeSH terms: Klebsiella pneumoniae
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links