Displaying publications 61 - 80 of 285 in total

Abstract:
Sort:
  1. Adeleke AO, Latiff AAA, Al-Gheethi AA, Daud Z
    Chemosphere, 2017 May;174:232-242.
    PMID: 28171839 DOI: 10.1016/j.chemosphere.2017.01.110
    The present work aimed to develop a novel composite material made up of activated cow bone powder (CBP) as a starting material for reducing chemical oxygen demand (COD) and ammonia-nitrogen (NH3N) from palm oil mill effluent (POME). The optimization of the reduction efficiency was investigated using response surface methodology (RSM). Six independent variables used in the optimization experiments include pH (4-10), speed (0.27-9.66 rcf), contact time (2-24 h), particle size (1-4.35 mm), dilution factor (100-500) and adsorbent dosage (65-125 g/L). The chemical functional groups were determined using Fourier transform irradiation (FTIR). The elemental composition were detected using SEM-EDX, while thermal decomposition was investigated using thermo gravimetric analysis (TGA) in order to determine the effects of carbonization temperature on the adsorbent. The results revealed that the optimal reduction of COD and NH3N from raw POME was observed at pH 10, 50 rpm, within 2 h and 3 mm of particle size as well as at dilution factor of 500 and 125 g L-1 of adsorbent dosage, the observed and predicted reduction were 89.60 vs. 85.01 and 75.61 vs. 74.04%, respectively for COD and NH3N. The main functional groups in the adsorbent were OH, NH, CO, CC, COC, COH, and CH. The SEM-EDX analysis revealed that the CBP-composite has a smooth surface with high contents of carbon. The activated CBP has very stable temperature profile with no significant weight loss (9.85%). In conclusion, the CBP-composite investigated here has characteristics high potential for the remediation of COD and NH3N from raw POME.
    Matched MeSH terms: Water Purification/methods
  2. Alias NH, Jaafar J, Samitsu S, Yusof N, Othman MHD, Rahman MA, et al.
    Chemosphere, 2018 Aug;204:79-86.
    PMID: 29653325 DOI: 10.1016/j.chemosphere.2018.04.033
    Separation and purification of oilfield produced water (OPW) is a major environmental challenge due to the co-production of the OPW during petroleum exploration and production operations. Effective capture of oil contaminant and its in-situ photodegradation is one of the promising methods to purify the OPW. Based on the photocatalytic capability of graphitic carbon nitride (GCN) which was recently rediscovered, photodegradation capability of GCN for OPW was investigated in this study. GCN was synthesized by calcination of urea and further exfoliated into nanosheets. The GCNs were incorporated into polyacrylonitrile nanofibers using electrospinning, which gave a liquid-permeable self-supporting photocatalytic nanofiber mat that can be handled by hand. The photocatalytic nanofiber demonstrated 85.4% degradation of OPW under visible light irradiation, and improved the degradation to 96.6% under UV light. Effective photodegradation of the photocatalytic nanofiber for OPW originates from synergetic effects of oil adsorption by PAN nanofibers and oil photodegradation by GCNs. This study provides an insight for industrial application on purification of OPW through photocatalytic degradation under solar irradiation.
    Matched MeSH terms: Water Purification/methods
  3. Chen WL, Ling YS, Lee DJH, Lin XQ, Chen ZY, Liao HT
    Chemosphere, 2020 Mar;242:125268.
    PMID: 31896175 DOI: 10.1016/j.chemosphere.2019.125268
    This study investigated chlorinated transformation products (TPs) and their parent micropollutants, aromatic pharmaceuticals and personal care products (PPCPs) in the urban water bodies of two metropolitan cities. Nine PPCPs and 16 TPs were quantitatively or semi-quantitatively determined using isotope dilution techniques and liquid chromatography-tandem mass spectrometry. TPs and most PPCPs were effectively removed by conventional wastewater treatments in a wastewater treatment plant (WWTP). Chlorinated parabens and all PPCPs (at concentrations below 1000 ng/L) were present in the waters receiving treated wastewater. By contrast, the waters receiving untreated wastewater contained higher levels of PPCPs (up to 9400 ng/L) and more species of chlorinated TPs including chlorinated parabens, triclosan, diclofenac, and bisphenol A. The very different chemical profiles between the water bodies of the two cities of similar geographical and climatic properties may be attributed to their respective uses of chemicals and policies of wastewater management. No apparent increase in the number of species or abundances of TPs was observed in either the chlorinated wastewater or the seawater rich in halogens. This is the first study to elucidate and compare the profiles of multiple TPs and their parent PPCPs in the water bodies of coastal cities from tropical islands. Our findings suggest that chlorinated derivatives of bisphenol A, diclofenac, triclosan, and parabens in the surface water originate from sources other than wastewater disinfection or marine chlorination. Although further studies are needed to identify the origins, conventional wastewater treatments may protect natural water bodies against contamination by those chlorinated substances.
    Matched MeSH terms: Water Purification/methods*
  4. Nasir AM, Goh PS, Abdullah MS, Ng BC, Ismail AF
    Chemosphere, 2019 Oct;232:96-112.
    PMID: 31152909 DOI: 10.1016/j.chemosphere.2019.05.174
    Heavy metal contamination in aqueous system has attracted global attention due to the toxicity and carcinogenicity effects towards living bodies. Among available removal techniques, adsorptive removal by nanosized materials such as metal oxide, metal organic frameworks, zeolite and carbon-based materials has attracted much attention due to the large active surface area, large number of functional groups, high chemical and thermal stability which led to outstanding adsorption performance. However, the usage of nanosized materials is restricted by the difficulty in separating the spent adsorbent from aqueous solution. The shift towards the use of adsorptive composite membrane for heavy metal ions removal has attracted much attention due to the synergistic properties of adsorption and filtration approaches in a same chamber. Thus, this review critically discusses the development of nanoadsorbents and adsorptive nanocomposite membranes for heavy metal removal over the last decade. The adsorption mechanism of heavy metal ions by the advanced nanoadsorbents is also discussed using kinetic and isotherm models. The challenges and future prospect of adsorptive membrane technology for heavy metal removal is presented at the end of this review.
    Matched MeSH terms: Water Purification/methods
  5. Rusmin R, Sarkar B, Tsuzuki T, Kawashima N, Naidu R
    Chemosphere, 2017 Nov;186:1006-1015.
    PMID: 28838038 DOI: 10.1016/j.chemosphere.2017.08.036
    A palygorskite-iron oxide nanocomposite (Pal-IO) was synthesized in situ by embedding magnetite into the palygorskite structure through co-precipitation method. The physico-chemical characteristics of Pal-IO and their pristine components were examined through various spectroscopic and micro-analytical techniques. Batch adsorption experiments were conducted to evaluate the performance of Pal-IO in removing Pb(II) from aqueous solution. The surface morphology, magnetic recyclability and adsorption efficiency of regenerated Pal-IO using desorbing agents HCl (Pal-IO-HCl) and ethylenediaminetetraacetic acid disodium salt (EDTA-Na2) (Pal-IO-EDTA) were compared. The nanocomposite showed a superparamagnetic property (magnetic susceptibility: 20.2 emu g-1) with higher specific surface area (99.8 m2 g-1) than the pristine palygorskite (49.4 m2 g-1) and iron oxide (72.6 m2 g-1). Pal-IO showed a maximum Pb(II) adsorption capacity of 26.6 mg g-1 (experimental condition: 5 g L-1 adsorbent loading, 150 agitations min-1, initial Pb(II) concentration from 20 to 500 mg L-1, at 25 °C) with easy separation of the spent adsorbent. The adsorption data best fitted to the Langmuir isotherm model (R2 = 0.9995) and pseudo-second order kinetic model (R2 = 0.9945). Pb(II) desorption using EDTA as the complexing agent produced no disaggregation of Pal-IO crystal bundles, and was able to preserve the composite's magnetic recyclability. Pal-IO-EDTA exhibited almost 64% removal capacity after three cycles of regeneration and preserved the nanocomposite's structural integrity and magnetic properties (15.6 emu g-1). The nanocomposite holds advantages as a sustainable material (easily separable and recyclable) for potential application in purifying heavy metal contaminated wastewaters.
    Matched MeSH terms: Water Purification/methods*
  6. Saman N, Johari K, Song ST, Kong H, Cheu SC, Mat H
    Chemosphere, 2017 Mar;171:19-30.
    PMID: 28002763 DOI: 10.1016/j.chemosphere.2016.12.049
    An effective organoalkoxysilanes-grafted lignocellulosic waste biomass (OS-LWB) adsorbent aiming for high removal towards inorganic and organic mercury (Hg(II) and MeHg(II)) ions was prepared. Organoalkoxysilanes (OS) namely mercaptoproyltriethoxylsilane (MPTES), aminopropyltriethoxylsilane (APTES), aminoethylaminopropyltriethoxylsilane (AEPTES), bis(triethoxysilylpropyl) tetrasulfide (BTESPT), methacrylopropyltrimethoxylsilane (MPS) and ureidopropyltriethoxylsilane (URS) were grafted onto the LWB using the same conditions. The MPTES grafted lignocellulosic waste biomass (MPTES-LWB) showed the highest adsorption capacity towards both mercury ions. The adsorption behavior of inorganic and organic mercury ions (Hg(II) and MeHg(II)) in batch adsorption studies shows that it was independent with pH of the solutions and dependent on initial concentration, temperature and contact time. The maximum adsorption capacity of Hg(II) was greater than MeHg(II) which respectively followed the Temkin and Langmuir models. The kinetic data analysis showed that the adsorptions of Hg(II) and MeHg(II) onto MPTES-LWB were respectively controlled by the physical process of film diffusion and the chemical process of physisorption interactions. The overall mechanism of Hg(II) and MeHg(II) adsorption was a combination of diffusion and chemical interaction mechanisms. Regeneration results were very encouraging especially for the Hg(II); this therefore further demonstrated the potential application of organosilane-grafted lignocellulosic waste biomass as low-cost adsorbents for mercury removal process.
    Matched MeSH terms: Water Purification/methods*
  7. Yahya SK, Zakaria ZA, Samin J, Raj AS, Ahmad WA
    Colloids Surf B Biointerfaces, 2012 Jun 1;94:362-8.
    PMID: 22398363 DOI: 10.1016/j.colsurfb.2012.02.016
    The potential use of non-viable biomass of a Gram negative bacterium i.e. Acinetobacter haemolyticus to remove Cr(III) species from aqueous environment was investigated. Highest Cr(III) removal of 198.80 mg g(-1) was obtained at pH 5, biomass dosage of 15 mg cell dry weight, initial Cr(III) of 100 mg L(-1) and 30 min of contact time. The Langmuir and Freundlich models fit the experimental data (R(2)>0.95) while the kinetic data was best described using the pseudo second-order kinetic model (R(2)>0.99). Cr(III) was successfully recovered from the bacterial biomass using either 1M of CH(3)COOH, HNO(3) or H(2)SO(4) with 90% recovery. TEM and FTIR suggested the involvement of amine, carboxyl, hydroxyl and phosphate groups during the biosorption of Cr(III) onto the cell surface of A. haemolyticus. A. haemolyticus was also capable to remove 79.87 mg g(-1) Cr(III) (around 22.75%) from raw leather tanning wastewater. This study demonstrates the potential of using A. haemolyticus as biosorbent to remove Cr(III) from both synthetic and industrial wastewater.
    Matched MeSH terms: Water Purification/methods*
  8. Auta M, Hameed BH
    Colloids Surf B Biointerfaces, 2013 May 1;105:199-206.
    PMID: 23376092 DOI: 10.1016/j.colsurfb.2012.12.021
    A renewable waste tea activated carbon (WTAC) was coalesced with chitosan to form composite adsorbent used for waste water treatment. Adsorptive capacities of crosslinked chitosan beads (CCB) and its composite (WTAC-CCB) for Methylene blue dye (MB) and Acid blue 29 (AB29) were evaluated through batch and fixed-bed studies. Langmuir, Freundlich and Temkin adsorption isotherms were tested for the adsorption process and the experimental data were best fitted by Langmuir model and least by Freundlich model; the suitability of fitness was adjudged by the Chi-square (χ(2)) and Marquadt's percent standard deviation error functions. Judging by the values of χ(2), pseudo-second-order reaction model best described the adsorption process than pseudo-first-order kinetic model for MB/AB29 on both adsorbents. After five cycles of adsorbents desorption test, more than 50% WTAC-CCB adsorption efficiency was retained while CCB had <20% adsorption efficiency. The results of this study revealed that WTAC-CCB composite is a promising adsorbent for treatment of anionic and cationic dyes in effluent wastewaters.
    Matched MeSH terms: Water Purification/methods*
  9. Sumisha A, Arthanareeswaran G, Lukka Thuyavan Y, Ismail AF, Chakraborty S
    Ecotoxicol Environ Saf, 2015 Nov;121:174-9.
    PMID: 25890841 DOI: 10.1016/j.ecoenv.2015.04.004
    In this study, laundry wastewater filtration was studied using hydrophilic polyvinylpyrollidone (PVP) modified polyethersulfone (PES) ultrafiltration membranes. The performances of PES/PVP membranes were assessed using commercial PES membrane with 10kDa in ultrafiltration. Operating parameters The influence of transmembrane pressure (TMP) and stirring speed on laundry wastewater flux was investigated. A higher permeate flux of 55.2L/m(2)h was obtained for modified PES membrane with high concentration of PVP at TMP of 500kPa and 750rpm of stirring speed. The separation efficiencies of membranes were also studied with respect to chemical oxygen demand (COD), total dissolved solids (TDS), turbidity and conductivity. Results showed that PES membrane with 10% of PVP had higher permeate flux, flux recovery and less fouling when compared with other membranes. Higher COD and TDS rejection of 88% and 82% were also observed for modified membranes due to the improved surface property of membranes. This indicated that modified PES membranes are suitable for the treatment of surfactant, detergent and oil from laundry wastewater.
    Matched MeSH terms: Water Purification/methods*
  10. Kiran SA, Arthanareeswaran G, Thuyavan YL, Ismail AF
    Ecotoxicol Environ Saf, 2015 Nov;121:186-92.
    PMID: 25869419 DOI: 10.1016/j.ecoenv.2015.04.001
    In this study, modified polyethersulfone (PES) and cellulose acetate (CA) membranes were used in the treatment of car wash effluent using ultrafiltration. Hydrophilic sulfonated poly ether ether ketone (SPEEK) and bentonite as nanoclay were used as additives for the PES and CA membrane modification. Performances of modified membranes were compared with commercial PES membrane with 10kDa molecular weight cut off (MWCO). The influencing parameters like stirrer speed (250-750rpm) and transmembrane pressure (100-600kPa) (TMP) were varied and their effects were studied as a function of flux. In the treatment of car wash effluent, a higher permeate flux of 52.3L/m(2)h was obtained for modified CA membrane at TMP of 400kPa and stirrer speed of 750rpm. In comparison with modified PES membrane and commercial PES membrane, modified CA membranes showed better performance in terms of flux and flux recovery ratio. The highest COD removal (60%) was obtained for modified CA membrane and a lowest COD removal (47%) was observed for commercial PES membrane. The modified membranes were better at removing COD, turbidity and maintained more stable flux than commercial PES membrane, suggesting they will provide better economic performance in car wash effluent reclamation.
    Matched MeSH terms: Water Purification/methods*
  11. Khalit WNAW, Tay KS
    Ecotoxicol Environ Saf, 2017 Nov;145:214-220.
    PMID: 28738204 DOI: 10.1016/j.ecoenv.2017.07.020
    Unmetabolized pharmaceuticals often enter the water treatment plants and exposed to various treatment processes. Among these water treatment processes, disinfection is a process which involves the application of chemical oxidation to remove pathogen. Untreated pharmaceuticals from primary and secondary treatment have the potential to be exposed to the chemical oxidation process during disinfection. This study investigated the kinetics and mechanism of the degradation of sotalol during chlorination process. Chlorination with hypochlorous acid (HOCl) as main reactive oxidant has been known as one of the most commonly used disinfection methods. The second order rate constant for the reaction between sotalol and free available chlorine (FAC) was found to decrease from 60.1 to 39.1M-1min-1 when the pH was increased from 6 to 8. This result was mainly attributed by the decreased of HOCl concentration with increasing pH. In the real water samples, the presence of the higher amount of organic content was found to reduce the efficiency of chlorination in the removal of sotalol. This result showed that sotalol competes with natural organic matter to react with HOCl during chlorination. After 24h of FAC exposure, sotalol was found to produce three stable transformation by-products. These by-products are mainly chlorinated compounds. According to the acute and chronic toxicity calculated using ECOSAR computer program, the transformation by-products are more harmful than sotalol.
    Matched MeSH terms: Water Purification/methods*
  12. Islam MA, Ahmed MJ, Khanday WA, Asif M, Hameed BH
    Ecotoxicol Environ Saf, 2017 Apr;138:279-285.
    PMID: 28081490 DOI: 10.1016/j.ecoenv.2017.01.010
    Hydrothermal carbonization of biomass wastes presents a promising step in the production of cost-effective activated carbon. In the present work, mesoporous activated carbon (HAC) was prepared by the hydrothermal carbonization of rattan furniture wastes followed by NaOH activation. The textural and morphological characteristics, along with adsorption performance of prepared HAC toward methylene blue (MB) dye, were evaluated. The effects of common adsorption variables on performance resulted in a removal efficiency of 96% for the MB sample at initial concentration of 25mg/L, solution pH of 7, 30°C, and 8h. The Langmuir equation showed the best isotherm data correlation, with a maximum uptake of 359mg/g. The adsorbed amount versus time data was well fitted by a pseudo-second order kinetic model. The prepared HAC with a high surface area of 1135m(2)/g and an average pore size distribution of 35.5Å could be an efficient adsorbent for treatment of synthetic dyes in wastewaters.
    Matched MeSH terms: Water Purification/methods
  13. Ahmed MJ, Hameed BH
    Ecotoxicol Environ Saf, 2018 Mar;149:257-266.
    PMID: 29248838 DOI: 10.1016/j.ecoenv.2017.12.012
    Pharmaceutical pollutants substantially affect the environment; thus, their treatments have been the focus of many studies. In this article, the fixed-bed adsorption of pharmaceuticals on various adsorbents was reviewed. The experimental breakthrough curves of these pollutants under various flow rates, inlet concentrations, and bed heights were examined. Fixed-bed data in terms of saturation uptakes, breakthrough time, and the length of the mass transfer zone were included. The three most popular breakthrough models, namely, Adams-Bohart, Thomas, and Yoon-Nelson, were also reviewed for the correlation of breakthrough curve data along with the evaluation of model parameters. Compared with the Adams-Bohart model, the Thomas and Yoon-Nelson more effectively predicted the breakthrough data for the studied pollutants.
    Matched MeSH terms: Water Purification/methods*
  14. Lee SH, Choi H, Kim KW
    Environ Geochem Health, 2018 Oct;40(5):2119-2129.
    PMID: 29536286 DOI: 10.1007/s10653-018-0087-y
    To develop a novel granular adsorbent to remove arsenic and antimony from water, calcined Mg/Al-layered double-hydroxide (CLDH)-incorporated polyethersulfone (PES) granular adsorbents (PES-LDH) were prepared using a core-shell method having 25% PES in an N,N-dimethylformamide solution. The PES-LDH displayed a spherical hollow shape having a rough surface and the average particle size of 1-2 mm. On the PES-LDH surface, nanosized CLDH (100-150 nm) was successfully immobilized by consolidation between PES and CLDH. The adsorption of Sb(V) by PES-LDH was found to be more favorable than for As(V), with the maximum adsorption capacity of As(V) and Sb(V) being 7.44 and 22.8 mg/g, respectively. The regeneration results indicated that a 0.5 M NaOH and 5 M NaCl mixed solution achieved an 80% regeneration efficiency in As(V) adsorption and desorption. However, the regeneration efficiency of Sb(V) gradually decreased due to its strong binding affinity, even though the PES-LDH showed much higher Sb(V) adsorption efficiency than As(V). This study suggested that PES-LDH could be a promising granular adsorbent for the remediation of As(V) and Sb(V) contained in wastewater.
    Matched MeSH terms: Water Purification/methods
  15. Mojiri A, Ahmad Z, Tajuddin RM, Arshad MF, Gholami A
    Environ Monit Assess, 2017 Jul;189(7):337.
    PMID: 28612336 DOI: 10.1007/s10661-017-6052-x
    Water pollution is a global problem. During current study, ammonia, phosphate, phenol, and copper(II) were removed from aqueous solution by subsurface and surface flow constructed wetland. In current investigation, distilled water was polluted with four contaminants including ammonia, phosphate, copper (Cu), and phenol. Response surface methodology and central composite design were applied to optimize pollutant removal during treatment by subsurface flow constructed wetland (SSFCW). Contact time (12 to 80 h) and initial pollutant concentration (20 to 85 mg/L) were selected as independent factors; some upper and lower ranges were also monitored for accuracy. In SSFCW, water hyacinth transplanted in two substrate layers, namely zeolite and cockle shell. SSFCW removed 87.7, 81.4, 74.7, and 54.9% of ammonia, phosphate, Cu, and phenol, respectively, at optimum contact time (64.5 h) and initial pollutant concentration (69.2 mg/L). Aqueous solution was moved to a surface flow constructed wetland (SFCW) after treating via SSFCW at optimum conditions. In SFCW, Typha was transplanted to a fixed powdered substrate layer, including bentonite, zeolite, and cockle shell. SFCW could develop performance of this combined system and could improve elimination efficacy of the four contaminants to 99.99%. So this combined CW showed a good performance in removing pollutants. Graphical abstract Wetlands arrangement for treating aqueous solution in current study.
    Matched MeSH terms: Water Purification/methods
  16. Zulfadhly Z, Mashitah MD, Bhatia S
    Environ Pollut, 2001;112(3):463-70.
    PMID: 11291452
    The ability of Pycnoporus sanguineus to adsorb heavy metals from aqueous solution was investigated in fixed-bed column studies. The experiments were conducted to study the effect of important design parameters such as column bed height, flow rate and initial concentration of solution. The breakthrough profiles were obtained in these studies. A mathematical model based on external mass transfer and pore diffusion was used for the prediction of mass transfer coefficient and effective diffusivity of metals in macro-fungi bed. Experimental breakthrough profiles were compared with the simulated breakthrough profiles obtained from the mathematical model. Bed Depth Service Time (BDST) model was used to analyse the experimental data and evaluated the performance of biosorption column. The BDST model parameters needed for the design of biosorption columns were evaluated for lead, copper and cadmium removal in the column. The columns were regenerated by eluting the metal ions using 0.1 M hydrochloric acid solution after the adsorption studies. The columns were subjected to repeated cycles of adsorption of same metal ions and desorption to evaluate the removal efficiency after adsorption-desorption.
    Matched MeSH terms: Water Purification/methods*
  17. Mengting Z, Kurniawan TA, Fei S, Ouyang T, Othman MHD, Rezakazemi M, et al.
    Environ Pollut, 2019 Dec;255(Pt 1):113182.
    PMID: 31541840 DOI: 10.1016/j.envpol.2019.113182
    Methylene blue (MB) is a dye pollutant commonly present in textile wastewater. We investigate and critically evaluate the applicability of BaTiO3/GO composite for photodegradation of MB in synthetic wastewater under UV-vis irradiation. To enhance its performance, the BaTiO3/GO composite is varied based on the BaTiO3 weight. To compare and evaluate any changes in their morphologies and crystalline structures before and after treatment, BET (Brunauer-Emmett-Teller), XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), SEM (scanning electron microscopy) and TEM (transmission electron microscopy) tests are conducted, while the effects of reaction time, pH, dose of photocatalyst and initial MB concentration on its photodegradation by the composite are also investigated under identical conditions. The degradation pathways and removal mechanisms of MB by the BaTiO3/GO are elaborated. It is evident from this study that the BaTiO3/GO composite is promising for MB photodegradation through ·OH. Under optimized conditions (0.5 g/L of dose, pH 9.0, and 5 mg/L of MB concentration), the composite with 1:2 dose ratio of BaTiO3/GO has the highest MB degradation rate (95%) after 3 h of UV vis irradiation. However, its treated effluents still could not comply with the discharge standard limit of less than 0.2 mg/L imposed by national environmental legislation. This suggests that additional biological treatments are still required to deal with the remaining oxidation by-products of MB, still present in the wastewater samples such as 3,7-bis (dimethyl-amino)-10H-phenothiazine 5-oxide.
    Matched MeSH terms: Water Purification/methods*
  18. Ahmad AL, Ismail S, Bhatia S
    Environ Sci Technol, 2005 Apr 15;39(8):2828-34.
    PMID: 15884382
    The coagulation-flocculation process incorporated with membrane separation technology will become a new approach for palm oil mill effluent (POME) treatment as well as water reclamation and reuse. In our current research, a membrane pilot plant has been used for POME treatment where the coagulation-flocculation process plays an important role as a pretreatment process for the mitigation of membrane fouling problems. The pretreated POME with low turbidity values and high water recovery are the main objectives to be achieved through the coagulation-flocculation process. Therefore, treatment optimization to serve these purposes was performed using jar tests and applying a response surface methodology (RSM) to the results. A 2(3) full-factorial central composite design (CCD) was chosen to explain the effect and interaction of three factors: coagulant dosage, flocculent dosage, and pH. The CCD is successfully demonstrated to efficiently determine the optimized parameters, where 78% of water recovery with a 20 NTU turbidity value can be obtained at the optimum value of coagulant dosage, flocculent dosage, and pH at 15 000 mg/L, 300 mg/L, and 6, respectively.
    Matched MeSH terms: Water Purification/methods*
  19. Lau YY, Wong YS, Ang TZ, Ong SA, Lutpi NA, Ho LN
    Environ Sci Pollut Res Int, 2018 Mar;25(7):7067-7075.
    PMID: 29275478 DOI: 10.1007/s11356-017-1069-9
    The theme of present research demonstrates performance of copper (II) sulfate (CuSO4) as catalyst in thermolysis process to treat reactive black 5 (RB 5) dye. During thermolysis without presence of catalyst, heat was converted to thermal energy to break the enthalpy of chemical structure bonding and only 31.62% of color removal. With CuSO4 support as auxiliary agent, the thermally cleaved molecular structure was further destabilized and reacted with CuSO4. Copper ions functioned to delocalize the coordination of π of the lone paired electron in azo bond, C=C bond of the sp2 carbon to form C-C of the sp3 amorphous carbon in benzene and naphthalene. Further, the radicals of unpaired electrons were stabilized and RB 5 was thermally decomposed to methyl group. Zeta potential measurement was carried out to analyze the mechanism of RB 5 degradation and measurement at 0 mV verified the critical chemical concentration (CCC) (0.7 g/L copper (II) sulfate), as the maximum 92.30% color removal. The presence of copper (II) sulfate catalyst has remarkably increase the RB 5 dye degradation as the degradation rate constant without catalyst, k1 is 6.5224 whereas the degradation rate constant with catalyst, k2 is 25.6810. This revealed the correlation of conversion of thermal energy from heat to break the chemical bond strength, subsequent fragmentation of RB 5 dye molecular mediated by copper (II) sulfate catalyst. The novel framework on thermolysis degradation of molecular structure of RB 5 with respect to the bond enthalpy and interfacial intermediates decomposition with catalyst reaction were determined.
    Matched MeSH terms: Water Purification/methods*
  20. Khasri A, Ahmad MA
    Environ Sci Pollut Res Int, 2018 Nov;25(31):31508-31519.
    PMID: 30203351 DOI: 10.1007/s11356-018-3046-3
    The adsorption behavior of basic, methylene blue (MB), and reactive, remazol brilliant violet 5R (RBV), dyes from aqueous solution onto Intsia bijuga sawdust-based activated carbon (IBSAC) was executed via batch and column studies. The produced activated carbon was characterized through Brunauer-Emmett-Teller (BET) surface area and pore structural analysis, proximate and ultimate, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). Batch studies were performed to investigate the effects of contact time, initial concentration, and solution pH. The equilibrium data for both MB and RBV adsorption better fits Langmuir model with maximum adsorption capacity of 434.78 and 212.77 mg/g, respectively. Kinetic studies for both MB and RBV dyes showed that the adsorption process followed a pseudo-second-order and intraparticle diffusion kinetic models. For column mode, the breakthrough curves were plotted by varying the flow rate, bed height, and initial concentration and the breakthrough data were best correlated with the Yoon-Nelson model compared to Thomas and Adams-Bohart model. The adsorption activity of IBSAC shows good stability even after four consecutive cycles.
    Matched MeSH terms: Water Purification/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links