Displaying publications 61 - 80 of 373 in total

Abstract:
Sort:
  1. De Zulueta J, Lachance F
    Bull World Health Organ, 1956;15(3-5):673-93.
    PMID: 13404443
    A first experiment on malaria control in the interior of Borneo by spraying with residual insecticides is described. The work was carried out in the isolated, sparsely populated valleys of the Baram River and its tributary, the Tinjar, in northern Sarawak. The experimental area was divided into three parts: a DDT test area, where a 75% suspension of wettable powder was applied at the rate of 2 g of DDT per m(2) of surface; a BHC test area, where a 50% suspension of wettable powder was applied at the rate of 0.10 g of gamma isomer per m(2); and a check area.Entomological investigations made before the spraying operations were started showed that Anopheles leucosphyrus Dönitz, 1901 was the main malaria vector in both the test and the check areas. Out of a total of 7568 A. leucosphyrus dissected, 30 gland infections were detected-a sporozoite-rate of 0.40%. A. barbirostris was found to be a secondary vector throughout the experimental area.THE RESULTS OF INSECTICIDE SPRAYING WERE SATISFACTORY: in the DDT test area, the spleen-rate fell from 51.8% to 25.1%, and the parasite-rate from 35.6% to 1.6%, in 21 months, and a similar reduction in the rates was observed in the BHC test area. In the check area, the spleen- and parasite-rates rose during the period of observations. It is considered that if such a degree of control can be obtained in 21 months, complete eradication can be expected in the near future.Although BHC spraying proved effective, the fact that it has to be repeated every three months makes it impracticable in the interior of Sarawak, where communications are very poor and difficulties of transport very great. DDT spraying, which need only be done twice a year, is therefore to be preferred. The cost of the DDT operations-US$ 0.45 per person protected per year-is comparatively high, owing to the difficulty of communications and to the necessity for spraying not only the village "longhouses", but also the temporary shelters which the semi-nomadic people in the interior of Sarawak build each year in the rice-fields.
    Matched MeSH terms: Culicidae*
  2. Dean RF
    Bull World Health Organ, 1959;20:727-9.
    PMID: 13815166
    Matched MeSH terms: Culicidae*
  3. Diez Benavente E, Florez de Sessions P, Moon RW, Holder AA, Blackman MJ, Roper C, et al.
    PLoS Genet, 2017 Sep;13(9):e1007008.
    PMID: 28922357 DOI: 10.1371/journal.pgen.1007008
    The macaque parasite Plasmodium knowlesi is a significant concern in Malaysia where cases of human infection are increasing. Parasites infecting humans originate from genetically distinct subpopulations associated with the long-tailed (Macaca fascicularis (Mf)) or pig-tailed macaques (Macaca nemestrina (Mn)). We used a new high-quality reference genome to re-evaluate previously described subpopulations among human and macaque isolates from Malaysian-Borneo and Peninsular-Malaysia. Nuclear genomes were dimorphic, as expected, but new evidence of chromosomal-segment exchanges between subpopulations was found. A large segment on chromosome 8 originating from the Mn subpopulation and containing genes encoding proteins expressed in mosquito-borne parasite stages, was found in Mf genotypes. By contrast, non-recombining organelle genomes partitioned into 3 deeply branched lineages, unlinked with nuclear genomic dimorphism. Subpopulations which diverged in isolation have re-connected, possibly due to deforestation and disruption of wild macaque habitats. The resulting genomic mosaics reveal traits selected by host-vector-parasite interactions in a setting of ecological transition.
    Matched MeSH terms: Culicidae/genetics; Culicidae/parasitology
  4. Dugdale JN
    Matched MeSH terms: Culicidae
  5. EDESON JF
    Ann Trop Med Parasitol, 1959 Dec;53:388-93.
    PMID: 13819291
    Matched MeSH terms: Culicidae*
  6. EDESON JF, WHARTON RH
    Trans R Soc Trop Med Hyg, 1958 Jan;52(1):25-38; discussion 39-45.
    PMID: 13507120
    Matched MeSH terms: Culicidae*
  7. EDESON JF, WHARTON RH, WILSON T, REID JA
    Med J Malaya, 1957 Sep;12(1):319-47.
    PMID: 13492806
    Matched MeSH terms: Culicidae*
  8. Eng KL, Chiang GL, Hamidah T, Loong KP
    PMID: 1976273
    Descriptions of the eggs of Mansonia uniformis, Ma. indiana and Ma. annulifera are provided with the aid of scanning electron micrographs. Eggs of these three species, although similar in shape and colour, are covered by outer chorionic reticulum and tubercles which provide reliable morphological character for their identification. Size, distribution and number of lobes on the large tubercles present in the region between the anterior tube and posterior region, are important distinguishing features. Measurements of egg sizes and other chorionic differences are also discussed.
    Matched MeSH terms: Culicidae/ultrastructure*
  9. Eyles DE, Warren M, Guinn E, Wharton RH, Ramachandran CP
    Bull World Health Organ, 1963;28(1):134-5.
    PMID: 14166986
    Matched MeSH terms: Culicidae*
  10. FAIRBURN AC, SEMPLE SJ
    Lancet, 1956 Jan 07;270(6906):13-6.
    PMID: 13279151
    Matched MeSH terms: Culicidae*
  11. FIELD JW, REID JA
    J Trop Med Hyg, 1956 Feb;59(2):23-7.
    PMID: 13307708
    Matched MeSH terms: Culicidae*
  12. FIELD JW
    World Med J, 1957 Nov;4(6):330-1; French transl 346-7 pasim.; Spanish transl 364-5 passim.
    PMID: 13496810
    Matched MeSH terms: Culicidae*
  13. Ferdig MT, Taft AS, Severson DW, Christensen BM
    Genome Res, 1998 Jan;8(1):41-7.
    PMID: 9445486
    One of the causative agents of lympahtic filariasis is the nematode parasite Brugia malayi that requires a competent mosquito vector for its development and transmission. Armigeres subalbatus mosquitoes rapidly destroy invading B. malayi microfilariae via a defense response known as melanotic encapsulation. We have constructed a genetic linkage map for this mosquito species using RFLP markers from Aedes aegypti. This heterologous approach was possible because of the conserved nature of the coding sequences used as markers and provided an experimental framework to evaluate the hypothesis that linkage and gene order are conserved between these mosquito species. Of the 56 Ae. aegypti markers tested, 77% hybridize to genomic DNA digests of Ar. subalbatus under stringent conditions, with 53% of these demonstrating strain-specific polymorphisms. Twenty-six Ae. aegypti markers have been mapped using an F2- segregating Ar. subalbatus population derived from a cross of strains originating in Japan and Malaysia. Linear order of these marker loci is highly conserved between the two species. Only 1 of these markers, LF92, was not linked in the manner predicted by the Ae. aegypti map. In addition, the autosomal sex-determination locus that occurs in linkage group 1 in Ae. aegypti resides in group 3 in Ar. subalbatus. The Ar. subalbatus map provides a basic genetic context that can be utilized in further genetic studies to clarify the genetic basis of parasite resistance in this mosquito and is a necessary precursor to the identification of genome regions that carry genes that determine the encapsulation phenotype. [The composite map and sequence database information for Ae. aegypti markers can be retrieved directly from the Ae. aegypti Genome Database through the World Wide Web: http://klab.agsci.colostate.edu.]
    Matched MeSH terms: Culicidae/genetics*
  14. Fernando A, Fernando CH
    Singapore Med J, 1961 Jun;2(2):78-80.
    PMID: 13698986
    A second case of a gordian worm (hairworm) "parasitic" in man is recorded from Malaya. A previous literature is critically discussed especially in regard to the mode of human infection. It is suggested that water-borne larvae reach the gut, invade the tissues and are finally voided with the faeces or passed with urine. Other modes of infection are considered less likely by the authors.
    Matched MeSH terms: Culicidae*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links