Displaying publications 61 - 70 of 70 in total

Abstract:
Sort:
  1. Chow YL, Lee KH, Vidyadaran S, Lajis NH, Akhtar MN, Israf DA, et al.
    Int Immunopharmacol, 2012 Apr;12(4):657-65.
    PMID: 22306767 DOI: 10.1016/j.intimp.2012.01.009
    The increasing prevalence of neurodegenerative diseases has prompted investigation into innovative therapeutics over the last two decades. Non-steroidal anti-inflammatory drugs (NSAIDs) are among the therapeutic choices to control and suppress the symptoms of neurodegenerative diseases. However, NSAIDs-associated gastropathy has hampered their long term usage despite their clinical advancement. On the natural end of the treatment spectrum, our group has shown that cardamonin (2',4'-dihydroxy-6'-methoxychalcone) isolated from Alpinia rafflesiana exerts potential anti-inflammatory activity in activated macrophages. Therefore, we further explored the anti-inflammatory property of cardamonin as well as its underlying mechanism of action in IFN-γ/LPS-stimulated microglial cells. In this investigation, cardamonin shows promising anti-inflammatory activity in microglial cell line BV2 by inhibiting the secretion of pro-inflammatory mediators including nitric oxide (NO), prostaglandin E(2) (PGE(2)), tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). The inhibition of NO and PGE(2) by cardamonin are resulted from the reduced expression of inducible nitric oxide synthase (iNOS) and cycloxygenase-2 (COX-2), respectively. Meanwhile the suppressive effects of cardamonin on TNF-α, IL-1β and IL-6 were demonstrated at both protein and mRNA levels, thus indicating the interference of upstream signal transduction pathway. Our results also validate that cardamonin interrupts nuclear factor-kappa B (NF-κB) signalling pathway via attenuation of NF-κB DNA binding activity. Interestingly, cardamonin also showed a consistent suppressive effect on the cell surface expression of CD14. Taken together, our experimental data provide mechanistic insights for the anti-inflammatory actions of cardamonin in BV2 and thus suggest a possible therapeutic application of cardamonin for targeting neuroinflammatory disorders.
    Matched MeSH terms: Nitrites/immunology
  2. Chew, S.C., Nagendra Prasad, K., Yang, Bao, Amin Ismail
    MyJurnal
    Changes in nitrate and nitrite contents (leaves and stem) of Amaranthus gangeticus (AG) and Amaranthus paniculatus (AP), resulting from blanching, storage time (0-4 days), storage temperature (0 and 4ºC), and reheating were analysed. Results showed that fresh AG (1859 ± 7.07 mg/kg) had higher nitrite content than AP (1262 ± 2.12 mg/kg). Nitrites content was 506 ± 2 and 825 ± 3.5 mg/kg for AG and AP, respectively. Reheating and storage times significantly increased the conversion of nitrate to nitrite in AG and AP. Storage at 0 and 4oC exhibited a significant change (P < 0.05) in nitrate and nitrite contents for both samples. Higher nitrite content was found in AP when stored at 4oC and 0oC. The present study indicated that storage time and temperature affected the nitrite contents in blanched AG and AP when stored in low temperatures. Apart from that reheating was also found to increase the formation of nitrite.
    Matched MeSH terms: Nitrites
  3. Balan T, Sani MH, Mumtaz Ahmad SH, Suppaiah V, Mohtarrudin N, Zakaria ZA
    J Ethnopharmacol, 2015 Apr 22;164:1-15.
    PMID: 25540923 DOI: 10.1016/j.jep.2014.12.017
    In traditional medicine, the leaves, flowers, barks and roots of Muntingia calabura L. (Muntingiaceae) have been employed as a treatment for various ailments including dyspepsia and to relieve pain caused by gastritis and peptic ulcer disease. The methanolic extract of Muntingia calabura leaves (MEMC) has been proven in the previous study to possess significant antiulcer activity. In this study, we attempted to determine the prophylactic effect of the fractions obtained from MEMC against ethanol-induced gastric lesion in rats and the involvement of antioxidants and anti-inflammatory mediators.
    Matched MeSH terms: Nitrites/metabolism
  4. Azizah Endut, Fathurrahman Lananan, Ahmad Jusoh, Wan Norsani Wan Nik, Nora'aini Ali
    MyJurnal
    The current and escalating extent of soil degradation, water scarcity and environmental concern
    plaguing agricultural productivity, demands re-assessing the direction of food production. Aquaponics
    is a concept relatively new to modern food production methods and can contribute to food security.
    This study was conducted to establish sustainable aquaculture systems that maximize benefits and
    minimize the accumulation of detrimental compounds and other types of negative impacts on both
    natural and social environments. This study carried out at an average inflow rate of 1.28 m/day to
    evaluate the operation of the aquaponics recirculation system (ARS) on nutrients removal and growth
    and yield of African catfish as well as water spinach. A special design of ARS was used to provide
    nitrification of fishery wastewater, where the combination of sands and gravels in hydroponics trough,
    providing both surfaces for biofuel development and cultivation area for plants. Removal efficiencies
    of 5-day biochemical oxygen demand (BOD5), total suspended solids (TSS), total ammonia nitrogen
    (TAN), nitrite-nitrogen (NO2-N), nitrate-nitrogen (NO3-N), and orthophosphate (PO4
    3-
    ) were 82%, 89%,
    93%, 94%, 81%, and 80%, respectively. The feed conversion ratio (FCR) and specific growth rate
    (SGR) of African catfish were 1.08 and 3.34% day-1
    , respectively. The average water spinach
    production was 3.56 kg per m2
    . This study showed that ARS is a method of producing crop along with
    a healthy protein source and among the best alternatives for achieving economic and environmental
    sustainability.
    Matched MeSH terms: Nitrites
  5. Aziz HA, Puat NNA, Alazaiza MYD, Hung YT
    PMID: 30104522 DOI: 10.3390/ijerph15081734
    In this study, a sequential batch reactor (SBR) with different types of fibers was employed for the treatment of poultry slaughterhouse wastewater. Three types of fibers, namely, juite fiber (JF), bio-fringe fiber (BF), and siliconised conjugated polyester fiber (SCPF), were used. Four SBR experiments were conducted, using the fibers in different reactors, while the fourth reactor used a combination of these fibers. The treatment efficiency of the different reactors with and without fibers on biochemical oxygen demand (BOD), chemical oxygen demand (COD), ammonia-nitrogen (NH₃-N), phosphorus (P), nitrite (NO₂), nitrate (NO₃), total suspended solids (TSS), and oil-grease were evaluated. The removal efficiency for the reactors with fibers was higher than that of the reactor without fibers for all pollutants. The treated effluent had 40 mg/L BOD₅ and 45 mg/L COD with an average removal efficiency of 96% and 93%, respectively, which meet the discharge limits stated in the Environmental Quality Act in Malaysia.
    Matched MeSH terms: Nitrites
  6. Asma Liyana Shaari, Misni Surif, Faazaz Abd. Latiff, Wan Maznah Wan Omar, Mohd Noor Ahmad
    Trop Life Sci Res, 2011;22(1):-.
    MyJurnal
    Many reports have revealed that the abundance of microalgae in shrimp ponds vary with changes in environmental factors such as light, temperature, pH, salinity and nutrient level throughout a shrimp culture period. In this study, shrimp cultivation period was divided into three stages (initial = week 0–5, mid = week 6–10 and final = week 11–15). Physical and chemical parameters throughout the cultivation period were studied and species composition of microalgae was monitored. Physical parameters were found to
    fluctuate widely with light intensity ranging between 182.23–1278 µmol photon m–2s–1, temperature between 29.56ºC –31.59ºC, dissolved oxygen (DO) between 4.56–8.21 mg/l, pH between 7.65–8.49 and salinity between 20‰–30‰. Ammonium (NH4+-N), nitrite (NO2– -N), nitrate (NO3– -N), and orthophosphate (PO43– -P) concentrations in the pond at all cultivation stages ranged from 0.017 to 0.38 mg/l, 0.24 to 2.12 mg/l, 0.06 to 0.98 mg/l and 0.16 to 1.93 mg/l respectively. Statistical test (ANOVA) showed that there were no significant difference (p
    Matched MeSH terms: Nitrites
  7. Arul P, Gowthaman NSK, John SA, Lim HN
    ACS Omega, 2020 Jun 23;5(24):14242-14253.
    PMID: 32596560 DOI: 10.1021/acsomega.9b03829
    Excess levels of nitrite ion in drinking water interact with amine functionalized compounds to form carcinogenic nitrosamines, which cause stomach cancer. Thus, it is indispensable to develop a simple protocol to detect nitrite. In this paper, a Cu-metal-organic framework (Cu-MOF) with graphene oxide (GO) composite was synthesized by ultrasonication followed by solvothermal method and then fabricated on a glassy carbon (GC) electrode for the sensitive and selective determination of nitrite contamination. The SEM image of the synthesized Cu-MOF showed colloidosome-like structure with an average size of 8 μm. Interestingly, the Cu-MOF-GO composite synthesized by ultrasonic irradiation followed by solvothermal process produce controlled size of 3 μm colloidosome-like structure. This was attributed to the formation of an exfoliated sheet-like structure of GO by ultrasonication in addition to the obvious influence of GO providing the oxygen functional groups as a nucleation node for size-controlled growth. On the other hand, the composite prepared without ultrasonication exhibited 6.6 μm size agglomerated colloidosome-like structures, indicating the crucial role of ultrasonication for the formation of size-controlled composites. XPS results confirmed the presence of Cu(II) in the as-synthesized Cu-MOF-GO based on the binding energies at 935.5 eV for Cu 2p3/2 and 955.4 eV for Cu 2p1/2. The electrochemical impedance studies in [Fe(CN)6]3-/4- redox couple at the composite fabricated electrode exhibited more facile electron transfer than that with Cu-MOF and GO modified electrodes, which helped to utilize Cu-MOF-GO for trace level determination of nitrite in environmental effluent samples. The Cu-MOF-GO fabricated electrode offered a superior sensitive platform for nitrite determination than the Cu-MOF and GO modified electrodes demonstrating oxidation at less positive potential with enhanced oxidation current. The present sensor detects nitrite in the concentration range of 1 × 10-8 to 1 × 10-4 M with the lowest limit of detection (LOD) of 1.47 nM (S/N = 3). Finally, the present Cu-MOF-GO electrode was successfully exploited for nitrite ion determination in lake and dye contaminated water samples.
    Matched MeSH terms: Nitrites
  8. Altowayti WAH, Allozy HGA, Shahir S, Goh PS, Yunus MAM
    Environ Sci Pollut Res Int, 2019 Oct;26(28):28737-28748.
    PMID: 31376124 DOI: 10.1007/s11356-019-06059-0
    Several parts of the world have been facing the problem of nitrite and nitrate contamination in ground and surface water. The acute toxicity of nitrite has been shown to be 10-fold higher than that of nitrate. In the present study, aminated silica carbon nanotube (ASCNT) was synthesised and tested for nitrite removal. The synergistic effects rendered by both amine and silica in ASCNT have significantly improved the nitrite removal efficiency. The IEP increased from 2.91 for pristine carbon nanotube (CNT) to 8.15 for ASCNT, and the surface area also increased from 178.86 to 548.21 m2 g-1. These properties have promoted ASCNT a novel adsorbent to remove nitrite. At optimum conditions of 700 ppm of nitrite concentration at pH 7 and 5 h of contact with 15 mg of adsorbent, the ASCNT achieved the maximal loading capacity of 396 mg/g (85% nitrite removal). The removal data of nitrite onto ASCNT fitted the Langmuir isotherm model better than the Freundlich isotherm model with the highest regression value of 0.98415, and also, the nonlinear analysis of kinetics data showed that the removal of nitrite followed pseudo-second-order kinetic. The positive values of both ΔS° and ΔH° suggested an endothermic reaction and an increase in randomness at the solid-liquid interface. The negative ΔG° values indicated a spontaneous adsorption process. The ASCNT was characterised using FESEM-EDX and FTIR, and the results obtained confirmed the removal of nitrite. Based on the findings, ASCNT can be considered as a novel and promising candidate for the removal of nitrite ions from wastewater.
    Matched MeSH terms: Nitrites/analysis; Nitrites/chemistry*
  9. Abdul-Talib S, Ujang Z, Vollertsen J, Hvitved-Jacobsen T
    Water Sci Technol, 2005;52(3):181-9.
    PMID: 16206858
    A two-stage anoxic transformation process, involving growth of biomass utilizing two types of different electron acceptors, namely nitrate and nitrite, has been observed. The present water quality modules established for sewer processes cannot account for the two-stage process. This paper outlines the development of a model concept that enables the two-stage anoxic transformation process to be simulated. The proposed model is formulated in a matrix form that is similar to the Activated Sludge Models and Sewer Process Model matrices. The model was successfully applied to simulate changes in nitrate and nitrite concentrations during anoxic transformations in the bulkwater phase of municipal wastewater.
    Matched MeSH terms: Nitrites/analysis; Nitrites/chemistry*
  10. Abdul-Talib S, Hvitved-Jacobsen T, Vollertsen J, Ujang Z
    Water Sci Technol, 2002;46(9):185-92.
    PMID: 12448468
    A significant breakthrough and progress have been made in the study of the kinetics of microbial transformation in sewers under aerobic and under changing aerobic/anaerobic conditions. Fundamental knowledge on anoxic kinetics of wastewater is still lacking, so it is not now possible to apply an integrated approach to municipal wastewater treatment incorporating sewer networks as a bio-chemical reactor. This paper presents the results of studies on determining half saturation constants for nitrate, KNO3, and nitrite, KNO2, in raw wastewater. The average values of KNO3 and KNO2, determined from experiments conducted on 7 different wastewater samples were found to be 0.76 gNO3-N/m3 and 0.33 gNO2-N/m3 respectively.
    Matched MeSH terms: Nitrites/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links