An overview of vitamins D3 and E suggests micronutrient deficiency contributes to type 2 diabetes mellitus (T2DM). A case-control study was conducted to determine the status of plasma vitamins D3 and E isomers amongst diabetic Malaysians. Two groups were recruited for participation, one comprising fifty diabetic subjects (DM) and one comprising fifty non-diabetic (non-DM) subjects, in order to assess their plasma vitamin D3, calcium and vitamin E status. Glycaemic status (haemoglobin A1c, HbA1c; fasting blood glucose, FBG; C-Peptide) and lipid profiles (total cholesterol, TC; triglycerides, TG; low-density lipoprotein-cholesterol, LDL-C; high-density lipoprotein-cholesterol, HDL-C) were assessed, followed by anthropometric measurements. The Mann-Whitney U-test, Kruskal-Wallis and Spearman's correlation coefficient were used to elucidate the association between levels of plasma vitamins D3 and E and T2DM. The vitamin D3 deficiency group (<20 ng/mL) showed a significant correlation (p < 0.05) with glycaemic status (HbA1c and FBG) and lipid profiles (HDL-C, LDL and TC). Spearman's correlation demonstrated that vitamin D3 status is strongly correlated with HDL levels (p < 0.05). Similarly, plasma total vitamin E levels >4.9 μg/mL revealed significantly different FBG, HbA1c, C-Peptide, LDL, HDL and TC levels across both groups. Moreover, family history, smoking, waist circumference and HbA1c levels demonstrated a significant association (p < 0.05) with levels of vitamins D and E but not FBG and lipid profiles. This could be because the pre-diabetic status among the non-DM group influenced the outcomes of this study.
Minimally refined brown sugar (MRBS) is a brown sugar derived from sugarcane that has a low glycemic index. This study aimed to determine and compare the antioxidant contents and nutritional and physicochemical properties of MRBS, refined sugar (RS), and brown sugar (BS). In addition, the toxicity of these sugars was evaluated via in vitro cytotoxicity method and by using a zebrafish model. Results showed that MRBS was better than the two other sugars because it has a lower moisture content and higher ash content. The contents of potassium and manganese of MRBS were higher than those of the two other sugars. Surprisingly, MRBS also contained selenium, which was not detected in RS and BS. The major phenolics in MRBS are 4-hydroxybenzoic acid, chlorogenic acid, protocatechuic acid, trans-Ferulic acid, and apigenin. All sugar solutions and their antioxidant-containing extracts were not cytotoxic to 3T3-L1 adipocytes.
Dacryodes species are evergreen, perennial trees with fleshy fruits and belong to the family Buseraseae. Many Dacryodes species are underutilized but are widely applied in traditional folk medicine to treat malaria, fever and skin diseases. The nutritional compositions, phytochemicals and biological activities of Dacryodes edulis, Dacryodes rostrata, Dacryodes buettneri, Dacryodes klaineana and Dacryodes hexandra are presented. The edible fruits of D. edulis are rich in lipids, proteins, vitamins, fatty acids and amino acids. Its extracts (leaf, fruit and resin) exhibit antioxidant, anti-microbial, anti-carcinogenic and other bioactivities. D. rostrata fruit has significant nutrient content, and is rich in proteins, lipids and minerals. These fruits are also highly rich in polyphenols, anthocyanins and antioxidant activities. This comprehensive review will assist the reader in understanding the nutritional benefits of Dacryodes species and in identifying current research needs.
Aging is closely associated with altered gut function and composition, in which elderly were reported with reduced gut microbiota diversity and increased incidence of age-related diseases. Probiotics have been shown to exert beneficial health-promoting effects through modulation of intestinal microflora biodiversity, thus the effects of probiotics administration on D-galactose (D-gal) senescence-induced rat were evaluated based on the changes in gut microbiota and metabolomic profiles. Upon senescence induction, the ratio of Firmicutes/ Bacteroidetes was significantly lowered, while treatment with Lactobacillus helveticus OFS 1515 and L. fermentum DR9 increased the ratio at the phylum level (P
In this study, we hypothesized that different strains of Lactobacillus can alleviate hyperlipidemia and liver steatosis via activation of 5' adenosine monophosphate-activated protein kinase (AMPK), an enzyme that is involved in cellular energy homeostasis, in aged rats. Male rats were fed with a high-fat diet (HFD) and injected with D-galactose daily over 12 weeks to induce aging. Treatments included (n = 6) (i) normal diet (ND), (ii) HFD, (iii) HFD-statin (lovastatin 2 mg/kg/day), (iv) HFD-Lactobacillus fermentum DR9 (10 log CFU/day), (v) HFD-Lactobacillus plantarum DR7 (10 log CFU/day), and (vi) HFD-Lactobacillus reuteri 8513d (10 log CFU/day). Rats administered with statin, DR9, and 8513d reduced serum total cholesterol levels after eight weeks (p < 0.05), while the administration of DR7 reduced serum triglycerides level after 12 weeks (p < 0.05) as compared to the HFD control. A more prominent effect was observed from the administration of DR7, where positive effects were observed, ranging from hepatic gene expressions to liver histology as compared to the control (p < 0.05); downregulation of hepatic lipid synthesis and β-oxidation gene stearoyl-CoA desaturase 1 (SCD1), upregulation of hepatic sterol excretion genes of ATP-binding cassette subfamily G member 5 and 8 (ABCG5 and ABCG8), lesser degree of liver steatosis, and upregulation of hepatic energy metabolisms genes AMPKα1 and AMPKα2. Taken altogether, this study illustrated that the administration of selected Lactobacillus strains led to improved lipid profiles via activation of energy and lipid metabolisms, suggesting the potentials of Lactobacillus as a promising natural intervention for alleviation of cardiovascular and liver diseases.
Dacryodes rostrata (kembayau) is an important food and oil resource for local communities in Borneo, but it is not commonly known to wider community. The objective of this work is to valorize kembayau fruit by evaluating the characteristics of the oil from the fruit. In this study, the physicochemical characteristics and the lipophilic essential nutrient; the fatty acid composition, vitamin E and beta-carotene content of oils obtained from the peel, pulp and seeds of kembayau fruits were studied. The pulp of the kembayau fruit contained highest proportion of oil, followed by peel and seed. Kembayau fruit contained vitamin E and had trace amount of beta-carotene. Besides, kembayau fruit oils were not toxic to BRL3A cells, provided hepatoprotection and reversed lipid peroxidation in paracetamol-induced toxicity. Our results suggest that kembayau can be a potential source for cooking oil as the physicochemical characteristics are comparable with commercial source such as oil palm.