Displaying publications 81 - 92 of 92 in total

Abstract:
Sort:
  1. Yong HS, Eamsobhana P, Lim PE, Razali R, Aziz FA, Rosli NS, et al.
    Acta Trop, 2015 Aug;148:51-7.
    PMID: 25910624 DOI: 10.1016/j.actatropica.2015.04.012
    Angiostrongylus cantonensis is a bursate nematode parasite that causes eosinophilic meningitis (or meningoencephalitis) in humans in many parts of the world. The genomic data from A. cantonensis will form a useful resource for comparative genomic and chemogenomic studies to aid the development of diagnostics and therapeutics. We have sequenced, assembled and annotated the genome of A. cantonensis. The genome size is estimated to be ∼260 Mb, with 17,280 genomic scaffolds, 91X coverage, 81.45% for complete and 93.95% for partial score based on CEGMA analysis of genome completeness. The number of predicted genes of ≥300 bp was 17,482. A total of 7737 predicted protein-coding genes of ≥50 amino acids were identified in the assembled genome. Among the proteins of known function, kinases are the most abundant followed by transferases. The draft genome contains 34 excretory-secretory proteins (ES), a minimum of 44 Nematode Astacin (NAS) metalloproteases, 12 Homeobox (HOX) genes, and 30 neurotransmitters. The assembled genome size (260 Mb) is larger than those of Pristionchus pacificus, Caenorhabditis elegans, Necator americanus, Caenorhabditis briggsae, Trichinella spiralis, Brugia malayi and Loa loa, but smaller than Haemonchus contortus and Ascaris suum. The repeat content (25%) is similar to H. contortus. The GC content (41.17%) is lower compared to P. pacificus (42.7%) and H. contortus (43.1%) but higher compared to C. briggsae (37.69%), A. suum (37.9%) and N. americanus (40.2%) while the scaffold N50 is 42,191. This draft genome will facilitate the understanding of many unresolved issues on the parasite and the disorder it causes.
  2. Low VL, Chen CD, Lim PE, Lee HL, Lim YA, Tan TK, et al.
    Pest Manag Sci, 2013 Dec;69(12):1362-8.
    PMID: 23404830 DOI: 10.1002/ps.3512
    Given that there is limited available information on the insensitive acetylcholinesterase in insect species in Malaysia, the present study aims to detect the presence of G119S mutation in the acetylcholinesterase gene of Culex quinquefasciatus from 14 residential areas across 13 states and a federal territory in Malaysia.
  3. Yong HS, Song SL, Chua KO, Wayan Suana I, Eamsobhana P, Tan J, et al.
    Sci Rep, 2021 May 21;11(1):10680.
    PMID: 34021208 DOI: 10.1038/s41598-021-90162-1
    Spiders of the genera Nephila and Trichonephila are large orb-weaving spiders. In view of the lack of study on the mitogenome of these genera, and the conflicting systematic status, we sequenced (by next generation sequencing) and annotated the complete mitogenomes of N. pilipes, T. antipodiana and T. vitiana (previously N. vitiana) to determine their features and phylogenetic relationship. Most of the tRNAs have aberrant clover-leaf secondary structure. Based on 13 protein-coding genes (PCGs) and 15 mitochondrial genes (13 PCGs and two rRNA genes), Nephila and Trichonephila form a clade distinctly separated from the other araneid subfamilies/genera. T. antipodiana forms a lineage with T. vitiana in the subclade containing also T. clavata, while N. pilipes forms a sister clade to Trichonephila. The taxon vitiana is therefore a member of the genus Trichonephila and not Nephila as currently recognized. Studies on the mitogenomes of other Nephila and Trichonephila species and related taxa are needed to provide a potentially more robust phylogeny and systematics.
  4. Low VL, Lim PE, Chen CD, Lim YA, Tan TK, Norma-Rashid Y, et al.
    Med Vet Entomol, 2014 Jun;28(2):157-68.
    PMID: 23848279 DOI: 10.1111/mve.12022
    The present study explored the intraspecific genetic diversity, dispersal patterns and phylogeographic relationships of Culex quinquefasciatus Say (Diptera: Culicidae) in Malaysia using reference data available in GenBank in order to reveal this species' phylogenetic relationships. A statistical parsimony network of 70 taxa aligned as 624 characters of the cytochrome c oxidase subunit I (COI) gene and 685 characters of the cytochrome c oxidase subunit II (COII) gene revealed three haplotypes (A1-A3) and four haplotypes (B1-B4), respectively. The concatenated sequences of both COI and COII genes with a total of 1309 characters revealed seven haplotypes (AB1-AB7). Analysis using tcs indicated that haplotype AB1 was the common ancestor and the most widespread haplotype in Malaysia. The genetic distance based on concatenated sequences of both COI and COII genes ranged from 0.00076 to 0.00229. Sequence alignment of Cx. quinquefasciatus from Malaysia and other countries revealed four haplotypes (AA1-AA4) by the COI gene and nine haplotypes (BB1-BB9) by the COII gene. Phylogenetic analyses demonstrated that Malaysian Cx. quinquefasciatus share the same genetic lineage as East African and Asian Cx. quinquefasciatus. This study has inferred the genetic lineages, dispersal patterns and hypothetical ancestral genotypes of Cx. quinquefasciatus.
  5. Low VL, Adler PH, Takaoka H, Ya'cob Z, Lim PE, Tan TK, et al.
    PLoS One, 2014;9(6):e100512.
    PMID: 24941043 DOI: 10.1371/journal.pone.0100512
    The population genetic structure of Simulium tani was inferred from mitochondria-encoded sequences of cytochrome c oxidase subunits I (COI) and II (COII) along an elevational gradient in Cameron Highlands, Malaysia. A statistical parsimony network of 71 individuals revealed 71 haplotypes in the COI gene and 43 haplotypes in the COII gene; the concatenated sequences of the COI and COII genes revealed 71 haplotypes. High levels of genetic diversity but low levels of genetic differentiation were observed among populations of S. tani at five elevations. The degree of genetic diversity, however, was not in accordance with an altitudinal gradient, and a Mantel test indicated that elevation did not have a limiting effect on gene flow. No ancestral haplotype of S. tani was found among the populations. Pupae with unique structural characters at the highest elevation showed a tendency to form their own haplotype cluster, as revealed by the COII gene. Tajima's D, Fu's Fs, and mismatch distribution tests revealed population expansion of S. tani in Cameron Highlands. A strong correlation was found between nucleotide diversity and the levels of dissolved oxygen in the streams where S. tani was collected.
  6. Low VL, Tan TK, Lim PE, Domingues LN, Tay ST, Lim YA, et al.
    Vet Parasitol, 2014 Aug 29;204(3-4):439-42.
    PMID: 24912955 DOI: 10.1016/j.vetpar.2014.05.036
    A multilocus sequence analysis using mitochondria-encoded cytochrome c oxidase subunit I (COI), cytochrome B (CytB), NADH dehydrogenase subunit 5 (ND5); nuclear encoded 18S ribosomal RNA (18S) and 28S ribosomal RNA (28S) genes was performed to determine the levels of genetic variation between the closely related species Haematobia irritans Linnaeus and Haematobia exigua de Meijere. Among these five genes, ND5 and CytB genes were found to be more variable and informative in resolving the interspecific relationships of both species. In contrast, the COI gene was more valuable in inferring the intraspecific relationships. The ribosomal 18S and 28S sequences of H. irritans and H. exigua were highly conserved with limited intra- and inter-specific variation. Molecular evidence presented in this study demonstrated that both flies are genetically distinct and could be differentiated based on sequence analysis of mitochondrial genes.
  7. Low VL, Chen CD, Lee HL, Tan TK, Chen CF, Leong CS, et al.
    PLoS One, 2013;8(11):e79928.
    PMID: 24278220 DOI: 10.1371/journal.pone.0079928
    There has been no comprehensive study on biochemical characterization of insecticide resistance mechanisms in field populations of Malaysian Culex quinquefasciatus. To fill this void in the literature, a nationwide investigation was performed to quantify the enzyme activities, thereby attempting to characterize the potential resistance mechanisms in Cx. quinquefasciatus in residential areas in Malaysia.
  8. Loh KH, Shao KT, Chen CH, Chen HM, Then AY, Loo PL, et al.
    PMID: 26029876 DOI: 10.3109/19401736.2015.1043530
    In this study, the complete mitogenome sequence of two moray eels of Gymnothorax formosus and Scuticaria tigrina (Anguilliformes: Muraenidae) has been sequenced by the next-generation sequencing method. The assembled mitogenome, with the length of 16,558 bp for G. formosus and 16,521 bp for S. tigrina, shows 78% identity to each other. Both mitogenomes follow the typical vertebrate arrangement, including 13 protein coding genes, 22 transfer RNAs, two ribosomal RNAs genes, and a non-coding control region of D-loop. The length of D-loop is 927 bp (G. formosus) and 850 bp (S. tigrina), which is located between tRNA-Pro and tRNA-Phe. The overall GC content is 45.5% for G. formosus and 47.9% for S. tigrina. Complete mitogenomes of G. formosus and S. tigrina provide essential and important DNA molecular data for further phylogenetic and evolutionary analysis for moray eel.
  9. Loh KH, Shao KT, Chen HM, Chen CH, Loo PL, Hui AT, et al.
    PMID: 26016872 DOI: 10.3109/19401736.2015.1030629
    In this study, the complete mitogenome sequence of the longfang moray, Enchelynassa canina (Anguilliformes: Muraenidae) has been sequenced by the next-generation sequencing method. The length of the assembled mitogenome is 16,592 bp, which includes 13 protein coding genes, 22 transfer RNAs, and 2 ribosomal RNAs genes. The overall base composition of longfang moray is 28.4% for A, 28.0% for C, 18.4% for G, 25.1% for T, and show 82% identities to Kidako moray, Gymnothorax kidako. The complete mitogenome of the longfang moray provides an essential and important DNA molecular data for further phylogeography and evolutionary analysis for moray eel phylogeny.
  10. Lee CJ, Lai LL, See MH, Velayuthan RD, Doon YK, Lim PE, et al.
    World J Surg, 2023 Nov;47(11):2743-2752.
    PMID: 37491402 DOI: 10.1007/s00268-023-07108-z
    BACKGROUND: In recent years, the increase in antibiotics usage locally has led to a worrying emergence of multi-drug resistant organisms (MDRO), with the Malaysian prevalence rate of methicillin-resistant Staphylococcus aureus (MRSA) ranging from 17.2 to 28.1% between 1999 and 2017. A study has shown that 7% of all non-lactational breast abscesses are caused by MRSA. Although aspiration offers less morbidities compared to surgical drainage, about 20% of women infected by MRSA who initially underwent aspiration subsequently require surgical drainage. This study is conducted to determine the link between aetiology, antimicrobial resistance pattern and treatment modalities of breast abscesses.

    METHODS: Retrospective study of reviewing microbiology specimens of breast abscess patients treated at Universiti Malaya Medical Centre from 2015 to 2020. Data collected from microbiology database and electronic medical records were analysed using SPSS V21.

    RESULT: A total of 210 specimens from 153 patients were analysed. One-fifth (19.5%) of the specimens isolated were MDRO. Lactational associated infections had the largest proportion of MDR in comparison to non-lactational and secondary infections (38.5%, 21.7%, 25.7%, respectively; p = 0.23). Staphylococcus epidermidis recorded the highest number of MDR (n = 12) followed by S. aureus (n = 8). Adjusted by aetiological groups, the presence of MDRO is linked to failure of single aspirations (p = 0.554) and significantly doubled the risk of undergoing surgical drainage for resolution (p = 0.041).

    CONCLUSION: MDR in breast abscess should be recognised as an increasing healthcare burden due to a paradigm shift of MDRO and a rise of resistance cases among lactational associated infection that were vulnerable to undergo surgical incision and drainage for resolution.

  11. Chanthran SSD, Lim PE, Li Y, Liao TY, Poong SW, Du J, et al.
    Zookeys, 2020;911:139-160.
    PMID: 32104142 DOI: 10.3897/zookeys.911.39222
    A background study is important for the conservation and stock management of a species. Terapon jarbua is a coastal Indo-Pacific species, sourced for human consumption. This study examined 134 samples from the central west and east coasts of Peninsular (West) Malaysia and East Malaysia. A 1446-bp concatenated dataset of mtDNA COI and Cyt b sequences was used in this study and 83 haplotypes were identified, of which 79 are unique haplotypes and four are shared haplotypes. Populations of T. jarbua in Malaysia are genetically heterogenous as shown by the high level of haplotype diversity ranging from 0.9167-0.9952, low nucleotide diversity ranging from 0.0288-0.3434, and high FST values (within population genetic variation). Population genetic structuring is not distinct as shown by the shared haplotypes between geographic populations and mixtures of haplotypes from different populations within the same genetic cluster. The gene flow patterns and population structuring observed among these regions are likely attributed to geographical distance, past historical events, allopatric speciation, dispersal ability and water currents. For instance, the mixture of haplotypes revealed an extraordinary migration ability of T. jarbua (>1200 km) via ancient river connectivity. The negative overall value of the neutrality test and a non-significant mismatch distribution are consistent with demographic expansion(s) in the past. The median-joining network concurred with the maximum likelihood haplotype tree with three major clades resolved. The scarcity of information on this species is an obstacle for future management and conservation purposes. Hence, this study aims to contribute information on the population structure, genetic diversity, and historical demography of T. jarbua in Malaysia.
  12. Cottier-Cook EJ, Cabarubias JP, Brakel J, Brodie J, Buschmann AH, Campbell I, et al.
    Nat Commun, 2022 Dec 01;13(1):7401.
    PMID: 36456544 DOI: 10.1038/s41467-022-34783-8
    The rapid expansion and globalization of the seaweed production industry, combined with rising seawater temperatures and coastal eutrophication, has led to an increase in infectious diseases and pest outbreaks. Here, we propose a novel Progressive Management Pathway for improving Seaweed Biosecurity.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links