Displaying publications 81 - 100 of 276 in total

Abstract:
Sort:
  1. Mukhopadhyay R, Bhaduri D, Sarkar B, Rusmin R, Hou D, Khanam R, et al.
    J Hazard Mater, 2020 02 05;383:121125.
    PMID: 31541959 DOI: 10.1016/j.jhazmat.2019.121125
    Contaminant removal from water involves various technologies among which adsorption is considered to be simple, effective, economical, and sustainable. In recent years, nanocomposites prepared by combining clay minerals and polymers have emerged as a novel technology for cleaning contaminated water. Here, we provide an overview of various types of clay-polymer nanocomposites focusing on their synthesis processes, characteristics, and possible applications in water treatment. By evaluating various mechanisms and factors involved in the decontamination processes, we demonstrate that the nanocomposites can overcome the limitations of individual polymer and clay components such as poor specificity, pH dependence, particle size sensitivity, and low water wettability. We also discuss different regeneration and wastewater treatment options (e.g., membrane, coagulant, and barrier/columns) using clay-polymer nanocomposites. Finally, we provide an economic analysis of the use of these adsorbents and suggest future research directions.
  2. Lee XJ, Ong HC, Ooi J, Yu KL, Tham TC, Chen WH, et al.
    J Hazard Mater, 2022 Feb 05;423(Pt A):126921.
    PMID: 34523506 DOI: 10.1016/j.jhazmat.2021.126921
    Colourants, micropollutants and heavy metals are regarded as the most notorious hazardous contaminants found in rivers, oceans and sewage treatment plants, with detrimental impacts on human health and environment. In recent development, algal biomass showed great potential for the synthesis of engineered algal adsorbents suitable for the adsorptive management of various pollutants. This review presents comprehensive investigations on the engineered synthesis routes focusing mainly on mechanical, thermochemical and activation processes to produce algal adsorbents. The adsorptive performances of engineered algal adsorbents are assessed in accordance with different categories of hazardous pollutants as well as in terms of their experimental and modelled adsorption capacities. Due to the unique physicochemical properties of macroalgae and microalgae in their adsorbent forms, the adsorption of hazardous pollutants was found to be highly effective, which involved different mechanisms such as physisorption, chemisorption, ion-exchange, complexation and others depending on the types of pollutants. Overall, both macroalgae and microalgae not only can be tailored into different forms of adsorbents based on the applications, their adsorption capacities are also far more superior compared to the conventional adsorbents.
  3. Su G, Ong HC, Mofijur M, Mahlia TMI, Ok YS
    J Hazard Mater, 2022 Feb 15;424(Pt B):127396.
    PMID: 34673394 DOI: 10.1016/j.jhazmat.2021.127396
    The application of waste oils as pyrolysis feedstocks to produce high-grade biofuels is receiving extensive attention, which will diversify energy supplies and address environmental challenges caused by waste oils treatment and fossil fuel combustion. Waste oils are the optimal raw materials to produce biofuels due to their high hydrogen and volatile matter content. However, traditional disposal methods such as gasification, transesterification, hydrotreating, solvent extraction, and membrane technology are difficult to achieve satisfactory effects owing to shortcomings like enormous energy demand, long process time, high operational cost, and hazardous material pollution. The usage of clean and safe pyrolysis technology can break through the current predicament. The bio-oil produced by the conventional pyrolysis of waste oils has a high yield and HHV with great potential to replace fossil fuel, but contains a high acid value of about 120 mg KOH/g. Nevertheless, the application of CaO and NaOH can significantly decrease the acid value of bio-oil to close to zero. Additionally, the addition of coexisting bifunctional catalyst, SBA-15@MgO@Zn in particular, can simultaneously reduce the acid value and positively influence the yield and quality of bio-oil. Moreover, co-pyrolysis with plastic waste can effectively save energy and time, and improve bio-oil yield and quality. Consequently, this paper presents a critical and comprehensive review of the production of biofuels using conventional and advanced pyrolysis of waste oils.
  4. Choong ZY, Lin KA, Lisak G, Lim TT, Oh WD
    J Hazard Mater, 2022 03 15;426:128077.
    PMID: 34953256 DOI: 10.1016/j.jhazmat.2021.128077
    Catalytic activation of peroxymonosulfate (PMS) and peroxydisulfate (PDS) (or collectively known as persulfate, PS) using carbocatalyst is increasingly gaining attention as a promising technology for sustainable recalcitrant pollutant removal in water. Single heteroatom doping using either N, S, B or P is widely used to enhance the performance of the carbocatalyst for PS activation. However, the performance enhancement from single heteroatom doping is limited by the type of heteroatom used. To further enhance the performance of the carbocatalyst beyond the limit of single heteroatom doping, multi-heteroatom doping can be conducted. This review aims to provide a state-of-the-art overview on the development of multi-heteroatom-doped carbocatalyst for PS activation. The potential synergistic and antagonistic interactions of various heteroatoms including N and B, N and S, N and P, and N and halogen for PS activation are evaluated. Thereafter, the preparation strategies to develop multi-heteroatom-doped carbocatalyst including one-step and multi-step preparation approaches along with the characterization techniques are discussed. Evidence and summary of the performance of multi-heteroatom-doped carbocatalyst for various recalcitrant pollutants removal via PS activation are also provided. Finally, the prospects of employing multi-heteroatom-doped carbocatalyst including the need to study the correlation between different heteroatom combination, surface moiety type, and amount of dopant with the PS activation mechanism, identifying the best heteroatom combination, improving the durability of the carbocatalyst, evaluating the feasibility for full-scale application, developing low-cost multi-heteroatom-doped carbocatalyst, and assessing the environmental impact are also briefly discussed.
  5. Chang JS, Strunk J, Chong MN, Poh PE, Ocon JD
    J Hazard Mater, 2020 01 05;381:120958.
    PMID: 31416043 DOI: 10.1016/j.jhazmat.2019.120958
    While bulk zinc oxide (ZnO) is of non-toxic in nature, ZnO nanoarchitectures could potentially induce the macroscopic characteristics of oxidative, lethality and toxicity in the water environment. Here we report a systematic study through state-of-the-art controllable synthesis of multi-dimensional ZnO nanoarchitectures (i.e. 0D-nanoparticle, 1D-nanorod, 2D-nanosheet, and 3D-nanoflowers), and subsequent in-depth understanding on the fundamental factor that determines their photoactivities. The photoactivities of resultant ZnO nanoarchitectures were interpreted in terms of the photodegradation of salicylic acid as well as inactivation of Bacillus subtilis and Escherichia coli under UV-A irradiation. Photodegradation results showed that 1D-ZnO nanorods demonstrated the highest salicylic acid photodegradation efficiency (99.4%) with a rate constant of 0.0364 min-1. 1D-ZnO nanorods also exhibited the highest log reductions of B. subtilis and E. coli of 3.5 and 4.2, respectively. Through physicochemical properties standardisation, an intermittent higher k value for pore diameter (0.00097 min-1 per mm), the highest k values for crystallite size (0.00171 min-1 per nm) and specific surface area (0.00339 min-1 per m2/g) contributed to the exceptional photodegradation performance of nanorods. Whereas, the average normalised log reduction against the physicochemical properties of nanorods (i.e. low crystallite size, high specific surface area and pore diameter) caused the strongest bactericidal effect.
  6. Muthuraman G, Teng TT, Leh CP, Norli I
    J Hazard Mater, 2009 Apr 15;163(1):363-9.
    PMID: 18782652 DOI: 10.1016/j.jhazmat.2008.06.122
    Liquid-liquid extraction (LLE) of methylene blue (MB) from industrial wastewater using benzoic acid (extractant) in xylene has been studied at 27 degrees C. The extraction of the dye increased with increasing extractant concentration. The extraction abilities have been studied on benzoic acid concentration in the range of 0.36-5.8x10(-2) M. The distribution ratio of the dye is reasonably high (D=49.5) even in the presence of inorganic salts. Irrespective of the concentration of dye, extraction under optimal conditions was 90-99% after 15 min of phase separation. The extracted dye in the organic phase can be back extracted into sulphuric acid solution. The resultant recovered organic phase can be reused in succeeding extraction of dye with the yield ranging from 99 to 87% after 15 times reused, depending on the concentration of the initial feed solution. Experimental parameters examined were benzoic acid concentration, effect of diluent, effect of pH, effect of initial dye concentration, effect of equilibration time, various stripping agents, aqueous to organic phase ratio in extraction, organic to aqueous phase ratio in stripping and reusability of solvent.
  7. Oon YS, Ong SA, Ho LN, Wong YS, Oon YL, Lehl HK, et al.
    J Hazard Mater, 2017 Mar 05;325:170-177.
    PMID: 27931001 DOI: 10.1016/j.jhazmat.2016.11.074
    Monoazo and diazo dyes [New coccine (NC), Acid orange 7 (AO7), Reactive red 120 (RR120) and Reactive green 19 (RG19)] were employed as electron acceptors in the abiotic cathode of microbial fuel cell. The electrons and protons generated from microbial organic oxidation at the anode which were utilized for electrochemical azo dye reduction at the cathodic chamber was successfully demonstrated. When NC was employed as the electron acceptor, the chemical oxygen demand (COD) removal and dye decolourisation efficiencies obtained at the anodic and cathodic chamber were 73±3% and 95.1±1.1%, respectively. This study demonstrated that the decolourisation rates of monoazo dyes were ∼50% higher than diazo dyes. The maximum power density in relation to NC decolourisation was 20.64mW/m2, corresponding to current density of 120.24mA/m2. The decolourisation rate and power output of different azo dyes were in the order of NC>AO7>RR120>RG19. The findings revealed that the structure of dye influenced the decolourisation and power performance of MFC. Azo dye with electron-withdrawing group at para substituent to azo bond would draw electrons from azo bond; hence the azo dye became more electrophilic and more favourable for dye reduction.
  8. Anwar MN, Shabbir M, Tahir E, Iftikhar M, Saif H, Tahir A, et al.
    J Hazard Mater, 2021 08 15;416:125851.
    PMID: 34492802 DOI: 10.1016/j.jhazmat.2021.125851
    This study examines point and non-point sources of air pollution and particulate matter and their associated socioeconomic and health impacts in South Asian countries, primarily India, China, and Pakistan. The legislative frameworks, policy gaps, and targeted solutions are also scrutinized. The major cities in these countries have surpassed the permissible limits defined by WHO for sulfur dioxide, carbon monoxide, particulate matter, and nitrogen dioxide. As a result, they are facing widespread health problems, disabilities, and causalities at extreme events. Populations in these countries are comparatively more prone to air pollution effects because they spend more time in the open air, increasing their likelihood of exposure to air pollutants. The elevated level of air pollutants and their long-term exposure increases the susceptibility to several chronic/acute diseases, i.e., obstructive pulmonary diseases, acute respiratory distress, chronic bronchitis, and emphysema. More in-depth spatial-temporal air pollution monitoring studies in China, India, and Pakistan are recommended. The study findings suggest that policymakers at the local, national, and regional levels should devise targeted policies by considering all the relevant parameters, including the country's economic status, local meteorological conditions, industrial interests, public lifestyle, and national literacy rate. This approach will also help design and implement more efficient policies which are less likely to fail when brought into practice.
  9. Yusof AM, Keat LK, Ibrahim Z, Majid ZA, Nizam NA
    J Hazard Mater, 2010 Feb 15;174(1-3):380-5.
    PMID: 19879040 DOI: 10.1016/j.jhazmat.2009.09.063
    The removal of ammonium from aqueous solutions using zeolite NaY prepared from a local agricultural waste, rice husk ash waste was investigated and a naturally occurring zeolite mordenite in powdered and granulated forms was used as comparison. Zeolite NaY and mordenite were well characterized by powder X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis and the total cation exchange capacity (CEC). CEC of the zeolites were measured as 3.15, 1.46 and 1.34 meq g(-1) for zeolite Y, powdered mordenite and granular mordenite, respectively. Adsorption kinetics and equilibrium data for the removal of NH(4)(+) ions were examined by fitting the experimental data to various models. Kinetic studies showed that the adsorption followed a pseudo-second-order reaction. The equilibrium pattern fits well with the Langmuir isotherm compared to the other isotherms. The monolayer adsorption capacity for zeolite Y (42.37 mg/g) was found to be higher than that powdered mordenite (15.13 mg/g) and granular mordenite (14.56 mg/g). Thus, it can be concluded that the low cost and economical rice husk ash-synthesized zeolite NaY could be a better sorbent for ammonium removal due to its rapid adsorption rate and higher adsorption capacity compared to natural mordenite.
  10. Idris A, Hassan N, Rashid R, Ngomsik AF
    J Hazard Mater, 2011 Feb 15;186(1):629-35.
    PMID: 21168966 DOI: 10.1016/j.jhazmat.2010.11.101
    Physical adsorption and photocatalytic reduction of Cr(VI) in magnetic separable beads were investigated. In order to elucidate the kinetics of photocatalytic process, operating parameters such as catalyst dosage and the initial concentration were examined in detail. It was observed that the reduction rate of Cr(VI) increased with an increase in the catalyst loading, as this translated into an increase in the number of available active sites. Critical scrutiny of the percentage of the initial reduction rate versus time at various initial concentration of Cr(VI) revealed that the rate of substrate conversion decreased as the initial concentration increased. The kinetic analysis of the photoreduction showed that the removal of Cr(VI) satisfactory obeyed the pseudo first-order kinetic according to the Langmuir-Hinshelwood (L-H) model and the absorption of Cr(VI) on the magnetic beads surfaces was the controlling step in the entire reduction process. Furthermore, desorption experiments by elution of the loaded gels with sodium hydroxide indicated that the magnetic photocatalyst beads could be reused without significant losses of their initial properties even after 3 adsorption-desorption cycles.
  11. Foo CY, Lim HN, Pandikumar A, Huang NM, Ng YH
    J Hazard Mater, 2016 Mar 5;304:400-8.
    PMID: 26595899 DOI: 10.1016/j.jhazmat.2015.11.004
    A newly developed CdS/rGO/CC electrode was prepared based on a flexible carbon cloth (CC) substrate with cadmium sulfide (CdS) nanoparticles and reduced graphene oxide (rGO). The CdS was synthesized using an aerosol-assisted chemical vapor deposition (AACVD) method, and the graphene oxide was thermally reduced on the modified electrode surface. The existence of rGO in the CdS-modified electrode increased the photocurrent intensity of the CdS/rGO/CC-modified electrode by three orders of magnitude, compared to that of the CdS/ITO electrode and two orders of magnitude higher than the CdS/CC electrode. A new visible-light-prompt photoelectrochemical sensor was developed based on the competitive binding reaction of Cu(2+) and CdS on the electrode surface. The results showed that the effect of the Cu(2+) on the photocurrent response was concentration-dependent over the linear ranges of 0.1-1.0 μM and 1.0-40.0 μM with a detection limit of 0.05 μM. The results of a selectivity test showed that this modified electrode has a high response toward Cu(2+) compared to other heavy metal ions. The proposed CdS/rGO/CC electrode provided a significantly high potential current compared to other reported values, and could be a practical tool for the fast, sensitive, and selective determination of Cu(2+).
  12. Yap CL, Gan S, Ng HK
    J Hazard Mater, 2010 May 15;177(1-3):28-41.
    PMID: 20006435 DOI: 10.1016/j.jhazmat.2009.11.078
    A brief review is conducted on the application of vegetable oils in the treatment of PAH-contaminated soils. Three main scopes of treatment strategies are discussed in this work including soil washing by oil, integrated oil-biological treatment and integrated oil-non-biological treatment. For each of these, the arguments supporting vegetable oil application, the applied treatment techniques and their efficiencies, associated factors, as well as the feasibility of the techniques are detailed. Additionally, oil regeneration, the environmental impacts of oil residues in soil and comparison with other commonly employed techniques are also discussed.
  13. Gan S, Lau EV, Ng HK
    J Hazard Mater, 2009 Dec 30;172(2-3):532-49.
    PMID: 19700241 DOI: 10.1016/j.jhazmat.2009.07.118
    Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic micropollutants which are resistant to environmental degradation due to their highly hydrophobic nature. Concerns over their adverse health effects have resulted in extensive studies on the remediation of soils contaminated with PAHs. This paper aims to provide a review of the remediation technologies specifically for PAH-contaminated soils. The technologies discussed here include solvent extraction, bioremediation, phytoremediation, chemical oxidation, photocatalytic degradation, electrokinetic remediation, thermal treatment and integrated remediation technologies. For each of these, the theories are discussed in conjunction with comparative evaluation of studies reported in the specialised literature.
  14. Sobhanzadeh E, Abu Bakar NK, Bin Abas MR, Nemati K
    J Hazard Mater, 2011 Feb 28;186(2-3):1308-13.
    PMID: 21177032 DOI: 10.1016/j.jhazmat.2010.12.001
    A simple and effective multiresidue method based on precipitation at low temperature followed by matrix solid-phase dispersion-sonication was developed and validated to determine dimethoate, malathion, carbaryl, simazine, terbuthylazine, atrazine and diuron in palm oil using liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS). Liquid-liquid extraction (LLE) followed by low temperature method were optimized by studying the effect of type and volume of organic solvent (acetonitrile, acetonitrile:n-hexane (3:2 v/v) and acetone) and time of freezing to obtain high recovery yield and low co-extract fat residue in the final extract. The optimal conditions for matrix solid-phase dispersion (MSPD) were obtained using 5 g of palm oil, 2 g of primary secondary amine (PSA) as dispersing sorbent, 1 g of graphitized carbon black (GCB) as clean-up sorbent and 15 mL of acetonitrile as eluting solvent under conditions of 15 min ultrasonication at room temperature. Method validation was performed in order to study sensitivity, linearity, precision, and accuracy. Average recoveries at three concentration levels (25, 50 and 100 μg kg(-1)) were found in the range of 72.6-91.3% with relative standard deviations between 5.3% and 14.2%. Detection and quantification limits ranged from 1.5 to 5 μg kg(-1) and from 2.5 to 9 μg kg(-1), respectively.
  15. Wong SS, Teng TT, Ahmad AL, Zuhairi A, Najafpour G
    J Hazard Mater, 2006 Jul 31;135(1-3):378-88.
    PMID: 16431022
    The flocculation performances of nine cationic and anionic polyacrylamides with different molecular weights and different charge densities in the treatment of pulp and paper mill wastewater have been studied. The experiments were carried out in jar tests with the polyacrylamide dosages range of 0.5-15 mg l(-1), rapid mixing at 200 rpm for 2 min, followed by slow mixing at 40 rpm for 15 min and settling time of 30 min. The effectiveness of the polyacrylamides was measured based on the reduction of turbidity, the removal of total suspended solids (TSS) and the reduction of chemical oxygen demand (COD). Cationic polyacrlyamide Organopol 5415 with very high molecular weight and low charge density is found to give the highest flocculation efficiency in the treatment of the paper mill wastewater. It can achieve 95% of turbidity reduction, 98% of TSS removal, 93% of COD reduction and sludge volume index (SVI) of 14 ml g(-1) at the optimum dosage of 5 mg l(-1). SVI values of less than 70 m lg(-1) are found for all polyacrylamide at their respective optimum dosage. Based on the cost evaluation, the use of the polyacrylamides is economically feasible to treat the pulp and paper mill wastewaters. This result suggests that single-polymer system can be used alone in the coagulation-flocculation process due to the efficiency of the polyacrylamide. Sedimentation of the sludge by gravity thickening with settling time of 30 min is possible based on the settling characteristics of the sludge produced by Organopol 5415 that can achieve 91% water recovery and 99% TSS removal after 30 min settling.
  16. Lin C, Lee CJ, Mao WM, Nadim F
    J Hazard Mater, 2009 Jan 15;161(1):270-5.
    PMID: 18456397 DOI: 10.1016/j.jhazmat.2008.03.082
    Sediment samples were analyzed for di-(2-ethylhexyl) phthalate (DEHP), an organic endocrine disruptor, in Houjing River in southern Taiwan. The average DEHP concentration at 10 sampling locations, spanning from upper, middle, and lower segments of the stream, was calculated at 3.81+/-6.36mgkg(-1)drywt. Highest concentration was recorded at the Jhongsing Bridge (20.22mgkg(-1)drywt.) near the Dashe Industrial Park, followed by the Renwu Bridge (8.93mgkg(-1)drywt.) near the Renwu Industrial Park. The surface sediment concentration of DEHP was found to be higher in the dry season (October and December), and lower in the wet (flood) season (August), indicating that sources of DEHP remained active and continued to recharge the Houjing River. Vertical sediment core analysis revealed that highest concentration occurred at the depth of 40-60cm, indicating that historical discharges of DEPH may have been higher than recent years. Domestic comparison of DEHP concentrations in sediment from highest to lowest could be categorized as northern, southern, central, and eastern Taiwan, respectively, and seemed to be positively correlated with population density and/or industrial activity. Compared to other countries, DEHP concentration of the Houjing River was relatively higher than rivers studied in Japan, Germany, Italy, and Malaysia, and was relatively lower than the Aire and Trent Rivers in the United Kingdom.
  17. Guo X, Sun C, Lin R, Xia A, Huang Y, Zhu X, et al.
    J Hazard Mater, 2020 11 15;399:122830.
    PMID: 32937692 DOI: 10.1016/j.jhazmat.2020.122830
    Stimulating direct interspecies electron transfer with conductive materials is a promising strategy to overcome the limitation of electron transfer efficiency in syntrophic methanogenesis of industrial wastewater. This paper assessed the impact of conductive foam nickel (FN) supplementation on syntrophic methanogenesis and found that addition of 2.45 g/L FN in anaerobic digestion increased the maximum methane production rate by 27.4 % (on day 3) while decreasing the peak production time by 33 % as compared to the control with no FN. Cumulative methane production from day 2 to 6 was 14.5 % higher with addition of 2.45 g/L FN than in the control. Levels of FN in excess of 2.45 g/L did not show benefits. Cyclic voltammetry results indicated that the biofilm formed on the FN could generate electrons. The dominant bacterial genera in suspended sludge were Dechlorobacter and Rikenellaceae DMER64, whereas that in the FN biofilm was Clostridium sensu stricto 11. The dominant archaea Methanosaeta in the FN biofilm was enriched by 14.1 % as compared to the control.
  18. Fakhru'l-Razi A, Molla AH
    J Hazard Mater, 2007 Aug 17;147(1-2):350-6.
    PMID: 17321676
    A promising biological, sustainable, non-hazardous, safe and environmental friendly management and disposal technique of domestic wastewater sludge is global expectation. Fungal entrapped biosolids as a result of prior fungal treated raw wastewater sludge was recycled to evaluate its performance as inoculum for bioseparation/bioconversion of supplemented sludge in view of continuous as well as scale up wastewater sludge treatment. Encouraging results were achieved in bioseparation of suspended solids and in dewaterability/filterability of treated domestic wastewater sludge. Fungal entrapped biosolids offered 98% removal of total suspended solids (TSS) in supplemented sludge treatment at 6-day without nutrient (wheat flour, WF) supply. Consequently, 99% removal of turbidity and 87% removal of chemical oxygen demand (COD) were achieved in supernatant of treated sludge. The lowest value (1.75 x 10(12)m/kg) of specific resistance to filtration (SRF) was observed at 6-day after treatment, which was equivalent to the 70% decrease of SRF. The all results except SRF were not influenced further in treatments accompanied with WF supplementation. The present treatments offered significant (P
  19. Al-Gheethi A, Noman E, Radin Mohamed RMS, Ismail N, Bin Abdullah AH, Mohd Kassim AH
    J Hazard Mater, 2019 03 05;365:883-894.
    PMID: 30497042 DOI: 10.1016/j.jhazmat.2018.11.068
    Biodegradation of pharmaceuticals active compounds (PACs) in secondary effluents by using B. subtilis 2012WTNC as a function of β-lactamase was optimized using response surface methodology (RSM) designed by central composite design (CCD). Four factors including initial concentration of bacteria (1-6 log10 CFU mL-1), incubation period (1-14 days), incubation temperature (20-40 °C) and initial concentration of PACs (1-5 mg L-1) were investigated. The optimal operating factors for biodegradation process determined using response surface methodology (RSM) was recorded with 5.57 log10 CFU mL-1 of B. subtilis, for 10.38 days, at 36.62 °C and with 4.14 mg L-1 of (cephalexin/amoxicillin) with R2 coefficient of 0.99. The biodegradation was 83.81 and 93.94% respectively. The relationship among the independent variables was significant (p 
  20. Dahlan I, Lee KT, Kamaruddin AH, Mohamed AR
    J Hazard Mater, 2011 Jan 30;185(2-3):1609-13.
    PMID: 21071143 DOI: 10.1016/j.jhazmat.2010.10.053
    In this study, the kinetic parameters of rice husk ash (RHA)/CaO/CeO(2) sorbent for SO(2) and NO sorptions were investigated in a laboratory-scale stainless steel fixed-bed reactor. Data experiments were obtained from our previous results and additional independent experiments were carried out at different conditions. The initial sorption rate constant (k(0)) and deactivation rate constant (k(d)) for SO(2)/NO sorptions were obtained from the nonlinear regression analysis of the experimental breakthrough data using deactivation kinetic model. Both the initial sorption rate constants and deactivation rate constants increased with increasing temperature, except at operating temperature of 170 °C. The activation energy and frequency factor for the SO(2) sorption were found to be 18.0 kJ/mol and 7.37 × 10(5)cm(3)/(g min), respectively. Whereas the activation energy and frequency factor for the NO sorption, were estimated to be 5.64 kJ/mol and 2.19 × 10(4)cm(3)/(g min), respectively. The deactivation kinetic model was found to give a very good agreement with the experimental data of the SO(2)/NO sorptions.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links