Displaying publications 81 - 100 of 137 in total

Abstract:
Sort:
  1. Takaoka H, Low VL, Sofian-Azirun M, Otsuka Y, Ya'cob Z, Chen CD, et al.
    Parasit Vectors, 2016;9:136.
    PMID: 26961508 DOI: 10.1186/s13071-016-1393-9
    A species of Simulium in the Simulium melanopus species-group of the subgenus Simulium (formerly misidentified as S. laterale Edwards from Sabah and Sarawak, Malaysia) is suspected to have dimorphic male scutal color patterns linked with different numbers of upper-eye facets. This study aimed to confirm whether or not these two forms of adult males represent a single species.
  2. De Silva JR, Lau YL, Fong MY
    Parasit Vectors, 2017 01 03;10(1):2.
    PMID: 28049516 DOI: 10.1186/s13071-016-1935-1
    BACKGROUND: The simian malaria parasite Plasmodium knowlesi has been reported to cause significant numbers of human infection in South East Asia. Its merozoite surface protein-3 (MSP3) is a protein that belongs to a multi-gene family of proteins first found in Plasmodium falciparum. Several studies have evaluated the potential of P. falciparum MSP3 as a potential vaccine candidate. However, to date no detailed studies have been carried out on P. knowlesi MSP3 gene (pkmsp3). The present study investigates the genetic diversity, and haplotypes groups of pkmsp3 in P. knowlesi clinical samples from Peninsular Malaysia.

    METHODS: Blood samples were collected from P. knowlesi malaria patients within a period of 4 years (2008-2012). The pkmsp3 gene of the isolates was amplified via PCR, and subsequently cloned and sequenced. The full length pkmsp3 sequence was divided into Domain A and Domain B. Natural selection, genetic diversity, and haplotypes of pkmsp3 were analysed using MEGA6 and DnaSP ver. 5.10.00 programmes.

    RESULTS: From 23 samples, 48 pkmsp3 sequences were successfully obtained. At the nucleotide level, 101 synonymous and 238 non-synonymous mutations were observed. Tests of neutrality were not significant for the full length, Domain A or Domain B sequences. However, the dN/dS ratio of Domain B indicates purifying selection for this domain. Analysis of the deduced amino acid sequences revealed 42 different haplotypes. Neighbour Joining phylogenetic tree and haplotype network analyses revealed that the haplotypes clustered into two distinct groups.

    CONCLUSIONS: A moderate level of genetic diversity was observed in the pkmsp3 and only the C-terminal region (Domain B) appeared to be under purifying selection. The separation of the pkmsp3 into two haplotype groups provides further evidence of the existence of two distinct P. knowlesi types or lineages. Future studies should investigate the diversity of pkmsp3 among P. knowlesi isolates in North Borneo, where large numbers of human knowlesi malaria infection still occur.

  3. Gauffre-Autelin P, von Rintelen T, Stelbrink B, Albrecht C
    Parasit Vectors, 2017 03 06;10(1):126.
    PMID: 28264699 DOI: 10.1186/s13071-017-2043-6
    BACKGROUND: The planorbid snail Indoplanorbis exustus is the sole intermediate host for the Schistosoma indicum species group, trematode parasites responsible for cattle schistosomiasis and human cercarial dermatitis. This freshwater snail is widely distributed in Southern Asia, ranging from Iran to China eastwards including India and from the southeastern Himalayas to Southeast Asia southwards. The veterinary and medical importance of this snail explains the interest in understanding its geographical distribution patterns and evolutionary history. In this study, we used a large and comprehensive sampling throughout Indo-Malaya, including specimens from South India and Indonesia, areas that have been formerly less studied.

    RESULTS: The phylogenetic inference revealed five highly divergent clades (genetic distances among clades: 4.4-13.9%) that are morphologically indistinguishable, supporting the assumption that this presumed nominal species may represent a cryptic species complex. The species group may have originated in the humid subtropical plains of Nepal or in southern adjacent regions in the Early Miocene. The major cladogenetic events leading to the fives clades occurred successively from the Early Miocene to the Early Pleistocene, coinciding with major periods of monsoonal intensification associated with major regional paleogeographic events in the Miocene and repeated climate changes due to the Plio-Pleistocene climatic oscillations. Our coverage of the Indo-Australian Archipelago (IAA) highlights the presence of a single clade there. Contrary to expectations, an AMOVA did not reveal any population genetic structure among islands or along a widely recognised zoogeographical regional barrier, suggesting a recent colonisation independent of natural biogeographical constraints. Neutrality tests and mismatch distributions suggested a sudden demographic and spatial population expansion that could have occurred naturally in the Pleistocene or may possibly result of a modern colonisation triggered by anthropogenic activities.

    CONCLUSIONS: Even though Indoplanorbis is the main focus of this study, our findings may also have important implications for fully understanding its role in hosting digenetic trematodes. The existence of a cryptic species complex, the historical phylogeographical patterns and the recent range expansion in the IAA provide meaningful insights to the understanding and monitoring of the parasites potential spread. It brings a substantial contribution to veterinary and public health issues.

  4. Lau SM, Chua TH, Sulaiman WY, Joanne S, Lim YA, Sekaran SD, et al.
    Parasit Vectors, 2017 Mar 21;10(1):151.
    PMID: 28327173 DOI: 10.1186/s13071-017-2091-y
    BACKGROUND: Dengue remains a serious public health problem in Southeast Asia and has increased 37-fold in Malaysia compared to decades ago. New strategies are urgently needed for early detection and control of dengue epidemics.

    METHODS: We conducted a two year study in a high human density dengue-endemic urban area in Selangor, where Gravid Ovipositing Sticky (GOS) traps were set up to capture adult Aedes spp. mosquitoes. All Aedes mosquitoes were tested using the NS1 dengue antigen test kit. All dengue cases from the study site notified to the State Health Department were recorded. Weekly microclimatic temperature, relative humidity (RH) and rainfall were monitored.

    RESULTS: Aedes aegypti was the predominant mosquito (95.6%) caught in GOS traps and 23% (43/187 pools of 5 mosquitoes each) were found to be positive for dengue using the NS1 antigen kit. Confirmed cases of dengue were observed with a lag of one week after positive Ae. aegypti were detected. Aedes aegypti density as analysed by distributed lag non-linear models, will increase lag of 2-3 weeks for temperature increase from 28 to 30 °C; and lag of three weeks for increased rainfall.

    CONCLUSION: Proactive strategy is needed for dengue vector surveillance programme. One method would be to use the GOS trap which is simple to setup, cost effective (below USD 1 per trap) and environmental friendly (i.e. use recyclable plastic materials) to capture Ae. aegypti followed by a rapid method of detecting of dengue virus using the NS1 dengue antigen kit. Control measures should be initiated when positive mosquitoes are detected.

  5. Uni S, Mat Udin AS, Agatsuma T, Saijuntha W, Junker K, Ramli R, et al.
    Parasit Vectors, 2017 Apr 20;10(1):194.
    PMID: 28427478 DOI: 10.1186/s13071-017-2105-9
    BACKGROUND: The filarial nematodes Wuchereria bancrofti (Cobbold, 1877), Brugia malayi (Brug, 1927) and B. timori Partono, Purnomo, Dennis, Atmosoedjono, Oemijati & Cross, 1977 cause lymphatic diseases in humans in the tropics, while B. pahangi (Buckley & Edeson, 1956) infects carnivores and causes zoonotic diseases in humans in Malaysia. Wuchereria bancrofti, W. kalimantani Palmieri, Pulnomo, Dennis & Marwoto, 1980 and six out of ten Brugia spp. have been described from Australia, Southeast Asia, Sri Lanka and India. However, the origin and evolution of the species in the Wuchereria-Brugia clade remain unclear. While investigating the diversity of filarial parasites in Malaysia, we discovered an undescribed species in the common treeshrew Tupaia glis Diard & Duvaucel (Mammalia: Scandentia).

    METHODS: We examined 81 common treeshrews from 14 areas in nine states and the Federal Territory of Peninsular Malaysia for filarial parasites. Once any filariae that were found had been isolated, we examined their morphological characteristics and determined the partial sequences of their mitochondrial cytochrome c oxidase subunit 1 (cox1) and 12S rRNA genes. Polymerase chain reaction (PCR) products of the internal transcribed spacer 1 (ITS1) region were then cloned into the pGEM-T vector, and the recombinant plasmids were used as templates for sequencing.

    RESULTS: Malayfilaria sofiani Uni, Mat Udin & Takaoka, n. g., n. sp. is described based on the morphological characteristics of adults and microfilariae found in common treeshrews from Jeram Pasu, Kelantan, Malaysia. The Kimura 2-parameter distance between the cox1 gene sequences of the new species and W. bancrofti was 11.8%. Based on the three gene sequences, the new species forms a monophyletic clade with W. bancrofti and Brugia spp. The adult parasites were found in tissues surrounding the lymph nodes of the neck of common treeshrews.

    CONCLUSIONS: The newly described species appears most closely related to Wuchereria spp. and Brugia spp., but differs from these in several morphological characteristics. Molecular analyses based on the cox1 and 12S rRNA genes and the ITS1 region indicated that this species differs from both W. bancrofti and Brugia spp. at the genus level. We thus propose a new genus, Malayfilaria, along with the new species M. sofiani.

  6. Idris ZM, Chan CW, Mohammed M, Kalkoa M, Taleo G, Junker K, et al.
    Parasit Vectors, 2017 Apr 26;10(1):204.
    PMID: 28441959 DOI: 10.1186/s13071-017-2139-z
    BACKGROUND: Seroepidemiology can provide evidence for temporal changes in malaria transmission and is an important tool to evaluate the effectiveness of control interventions. During the early 2000s, Vanuatu experienced an acute increase in malaria incidence due to a lapse in funding for vector control. After the distribution of subsidised insecticide-treated nets (ITNs) resumed in 2003, malaria incidence decreased in the subsequent years. This study was conducted to find the serological evidence supporting the impact of ITN on exposure to Anopheles vector bites and parasite prevalence.

    METHODS: On Ambae Island, blood samples were collected from 231 and 282 individuals in 2003 and 2007, respectively. Parasite prevalence was determined by microscopy. Antibodies to three Plasmodium falciparum (PfSE, PfMSP-119, and PfAMA-1) and three Plasmodium vivax (PvSE, PvMSP-119, and PvAMA-1) antigens, as well as the Anopheles-specific salivary antigen gSG6, were detected by ELISA. Age-specific seroprevalence was analysed using a reverse catalytic modelling approach to estimate seroconversion rates (SCRs).

    RESULTS: Parasite rate decreased significantly (P 

  7. Sahimin N, Lim YAL, Ariffin F, Behnke JM, Basáñez MG, Walker M, et al.
    Parasit Vectors, 2017 May 15;10(1):238.
    PMID: 28506241 DOI: 10.1186/s13071-017-2167-8
    BACKGROUND: The number of migrants working in Malaysia has increased sharply since the 1970's and there is concern that infectious diseases endemic in other (e.g. neighbouring) countries may be inadvertently imported. Compulsory medical screening prior to entering the workforce does not include parasitic infections such as toxoplasmosis. Therefore, this study aimed to evaluate the seroprevalence of T. gondii infection among migrant workers in Peninsular Malaysia by means of serosurveys conducted on a voluntary basis among low-skilled and semi-skilled workers from five working sectors, namely, manufacturing, food service, agriculture and plantation, construction and domestic work.

    METHODS: A total of 484 migrant workers originating from rural locations in neighbouring countries, namely, Indonesia (n = 247, 51.0%), Nepal (n = 99, 20.5%), Bangladesh (n = 72, 14.9%), India (n = 52, 10.7%) and Myanmar (n = 14, 2.9%) were included in this study.

    RESULTS: The overall seroprevalence of T. gondii was 57.4% (n = 278; 95% CI: 52.7-61.8%) with 52.9% (n = 256; 95% CI: 48.4-57.2%) seropositive for anti-Toxoplasma IgG only, 0.8% (n = 4; 95% CI: 0.2-1.7%) seropositive for anti-Toxoplasma IgM only and 3.7% (n = 18; 95% CI: 2.1-5.4%) seropositive with both IgG and IgM antibodies. All positive samples with both IgG and IgM antibodies showed high avidity (> 40%), suggesting latent infection. Age (being older than 45 years), Nepalese nationality, manufacturing occupation, and being a newcomer in Malaysia (excepting domestic work) were positively and statistically significantly associated with seroprevalence (P 

  8. Dang K, Doggett SL, Veera Singham G, Lee CY
    Parasit Vectors, 2017 Jun 29;10(1):318.
    PMID: 28662724 DOI: 10.1186/s13071-017-2232-3
    The worldwide resurgence of bed bugs [both Cimex lectularius L. and Cimex hemipterus (F.)] over the past two decades is believed in large part to be due to the development of insecticide resistance. The transcriptomic and genomic studies since 2010, as well as morphological, biochemical and behavioral studies, have helped insecticide resistance research on bed bugs. Multiple resistance mechanisms, including penetration resistance through thickening or remodelling of the cuticle, metabolic resistance by increased activities of detoxification enzymes (e.g. cytochrome P450 monooxygenases and esterases), and knockdown resistance by kdr mutations, have been experimentally identified as conferring insecticide resistance in bed bugs. Other candidate resistance mechanisms, including behavioral resistance, some types of physiological resistance (e.g. increasing activities of esterases by point mutations, glutathione S-transferase, target site insensitivity including altered AChEs, GABA receptor insensitivity and altered nAChRs), symbiont-mediated resistance and other potential, yet undiscovered mechanisms may exist. This article reviews recent studies of resistance mechanisms and the genes governing insecticide resistance, potential candidate resistance mechanisms, and methods of monitoring insecticide resistance in bed bugs. This article provides an insight into the knowledge essential for the development of both insecticide resistance management (IRM) and integrated pest management (IPM) strategies for successful bed bug management.
  9. Hawkes F, Manin BO, Ng SH, Torr SJ, Drakeley C, Chua TH, et al.
    Parasit Vectors, 2017 Jul 18;10(1):338.
    PMID: 28720113 DOI: 10.1186/s13071-017-2277-3
    BACKGROUND: Plasmodium knowlesi is found in macaques and is the only major zoonotic malaria to affect humans. Transmission of P. knowlesi between people and macaques depends on the host species preferences and feeding behavior of mosquito vectors. However, these behaviours are difficult to measure due to the lack of standardized methods for sampling potential vectors attracted to different host species. This study evaluated electrocuting net traps as a safe, standardised method for sampling P. knowlesi vectors attracted to human and macaque hosts. Field experiments were conducted within a major focus on P. knowlesi transmission in Malaysian Borneo to compare the performance of human (HENET) or macaque (MENET) odour-baited electrocuting nets, human landing catches (HLC) and monkey-baited traps (MBT) for sampling mosquitoes. The abundance and diversity of Anopheles sampled by different methods were compared over 40 nights, with a focus on the P. knowlesi vector Anopheles balabancensis.

    RESULTS: HLC caught more An. balabacensis than any other method (3.6 per night). In contrast, no An. balabacensis were collected in MBT collections, which generally performed poorly for all mosquito taxa. Anopheles vector species including An. balabacensis were sampled in both HENET and MENET collections, but at a mean abundance of less than 1 per night. There was no difference between HENET and MENET in the overall abundance (P = 0.05) or proportion (P = 0.7) of An. balabacensis. The estimated diversity of Anopheles species was marginally higher in electrocuting net than HLC collections, and similar in collections made with humans or monkey hosts.

    CONCLUSIONS: Host-baited electrocuting nets had moderate success for sampling known zoonotic malaria vectors. The primary vector An. balabacensis was collected with electrocuting nets baited both with humans and macaques, but at a considerably lower density than the HLC standard. However, electrocuting nets were considerably more successful than monkey-baited traps and representatively characterised anopheline species diversity. Consequently, their use allows inferences about relative mosquito attraction to be meaningfully interpreted while eliminating confounding factors due to trapping method. On this basis, electrocuting net traps should be considered as a useful standardised method for investigating vector contact with humans and wildlife reservoirs.

  10. Noradilah SA, Moktar N, Anuar TS, Lee IL, Salleh FM, Manap SNAA, et al.
    Parasit Vectors, 2017 Jul 31;10(1):360.
    PMID: 28760145 DOI: 10.1186/s13071-017-2294-2
    BACKGROUND: Alternating wet and dry seasons may play an important role in the acquisition and distribution of Blastocystis subtype infection in the tropics. This cross-sectional study was therefore conducted to provide the prevalence of Blastocystis and to determine the potential risk factors associated with each subtype during the wet and dry seasons in the Aboriginal community, Pahang, Malaysia.

    METHODS: A total of 473 faecal samples were collected: 256 (54.1%) and 217 (45.9%) samples were obtained during the wet (October-November 2014) and the dry season (June 2015), respectively. All fresh faecal samples were subjected to molecular analysis for subtype and allele identification.

    RESULTS: Of the 473 samples, 42.6% and 37.8% were positive for Blastocystis ST1, ST2, ST3 and ST4 during wet and dry seasons, respectively. Prevalence of Blastocystis ST1 was significantly higher during the wet season compared to the dry season (Z = 2.146, P 

  11. Young KI, Mundis S, Widen SG, Wood TG, Tesh RB, Cardosa J, et al.
    Parasit Vectors, 2017 Aug 31;10(1):406.
    PMID: 28859676 DOI: 10.1186/s13071-017-2341-z
    BACKGROUND: Mosquito-borne dengue virus (DENV) is maintained in a sylvatic, enzootic cycle of transmission between canopy-dwelling non-human primates and Aedes mosquitoes in Borneo. Sylvatic DENV can spill over into humans living in proximity to forest foci of transmission, in some cases resulting in severe dengue disease. The most likely vectors of such spillover (bridge vectors) in Borneo are Ae. albopictus and Ae. niveus. Borneo is currently experiencing extensive forest clearance. To gauge the effect of this change in forest cover on the likelihood of sylvatic DENV spillover, it is first necessary to characterize the distribution of bridge vectors in different land cover types. In the current study, we hypothesized that Ae. niveus and Ae. albopictus would show significantly different distributions in different land cover types; specifically, we predicted that Ae. niveus would be most abundant in forests whereas Ae. albopictus would have a more even distribution in the landscape.

    RESULTS: Mosquitoes were collected from a total of 15 sites using gravid traps and a backpack aspirator around Kampong Puruh Karu, Sarawak, Malaysian Borneo, where sylvatic DENV spillover has been documented. A total of 2447 mosquitoes comprising 10 genera and 4 species of Aedes, were collected over the three years, 2013, 2014 and 2016, in the three major land cover types in the area, homestead, agriculture and forest. Mosquitoes were identified morphologically, pooled by species and gender, homogenized, and subject to DNA barcoding of each Aedes species and to arbovirus screening. As predicted, Ae. niveus was found almost exclusively in forests whereas Ae. albopictus was collected in all land cover types. Aedes albopictus was significantly (P = 0.04) more abundant in agricultural fields than forests. Sylvatic DENV was not detected in any Aedes mosquito pools, however genomes of 14 viruses were detected using next generation sequencing.

    CONCLUSIONS: Land cover type affects the abundance and distribution of the most likely bridge vectors of sylvatic DENV in Malaysia Borneo. Conversion of forests to agriculture will likely decrease the range and abundance of Ae. niveus but enhance the abundance of Ae. albopictus.

  12. Shen DD, Wang JF, Zhang DY, Peng ZW, Yang TY, Wang ZD, et al.
    Parasit Vectors, 2017 Sep 19;10(1):437.
    PMID: 28927469 DOI: 10.1186/s13071-017-2377-0
    BACKGROUND: Haemonchus contortus is known among parasitic nematodes as one of the major veterinary pathogens of small ruminants and results in great economic losses worldwide. Human activities, such as the sympatric grazing of wild with domestic animals, may place susceptible wildlife hosts at risk of increased prevalence and infection intensity with this common small ruminant parasite. Studies on phylogenetic factors of H. contortus should assist in defining the amount of the impact of anthropogenic factors on the extent of sharing of agents such as this nematode between domestic animals and wildlife.

    METHODS: H. contortus specimens (n = 57) were isolated from wild blue sheep (Pseudois nayaur) inhabiting Helan Mountains (HM), China and additional H. contortus specimens (n = 20) were isolated from domestic sheep that were grazed near the natural habitat of the blue sheep. Complete ITS2 (second internal transcribed spacer) sequences and partial sequences of the nad4 (nicotinamide dehydrogenase subunit 4 gene) gene were amplified to determine the sequence variations and population genetic diversities between these two populations. Also, 142 nad4 haplotype sequences of H. contortus from seven other geographical regions of China were retrieved from database to further examine the H. contortus population structure.

    RESULTS: Sequence analysis revealed 10 genotypes (ITS2) and 73 haplotypes (nad4) among the 77 specimens, with nucleotide diversities of 0.007 and 0.021, respectively, similar to previous studies in other countries, such as Pakistan, Malaysia and Yemen. Phylogenetic analyses (BI, MP, NJ) of nad4 sequences showed that there were no noticeable boundaries among H. contortus populations from different geographical origin and population genetic analyses revealed that most of the variation (94.21%) occurred within H. contortus populations. All phylogenetic analyses indicated that there was little genetic differentiation but a high degree of gene flow among the H. contortus populations among wild blue sheep and domestic ruminants in China.

    CONCLUSIONS: The current work is the first genetic characterization of H. contortus isolated from wild blue sheep in the Helan Mountains region. The results revealed a low genetic differentiation and high degree of gene flow between the H. contortus populations from sympatric wild blue sheep and domestic sheep, indicating regular cross-infection between the sympatrically reared ruminants.

  13. Lai MY, Lau YL
    Parasit Vectors, 2017 Oct 02;10(1):456.
    PMID: 28969712 DOI: 10.1186/s13071-017-2387-y
    BACKGROUND: The identification of receptors or binding partners of Toxoplasma gondii from humans is an essential activity. Many proteins involved in T. gondii invasion have been characterized, and their contribution for parasite entry has been proposed. However, their molecular interactions remain unclear.

    RESULTS: Yeast two-hybrid (Y2H) experiment was used to identify the binding partners of surface antigens of T. gondii by using SAG2 as bait. Colony PCR was performed and positive clones were sent for sequencing to confirm their identity. The yeast plasmids for true positive clones were rescued by transformation into E. coli TOP 10F' cells. The interplay between bait and prey was confirmed by β-galactosidase assay and co-immunoprecipitation experiment. We detected 20 clones interacting with SAG2 based on a series of the selection procedures. Following the autoactivation and toxicity tests, SAG2 was proven to be a suitable candidate as a bait. Thirteen clones were further examined by small scale Y2H experiment. The results indicated that a strong interaction existed between Homo sapiens zinc finger protein and SAG2, which could activate the expressions of the reporter genes in diploid yeast. Co-immunoprecipitation experiment result indicated the binding between this prey and SAG2 protein was significant (Mann-Whitney U-test: Z = -1.964, P = 0.05).

    CONCLUSIONS: Homo sapiens zinc finger protein was found to interact with SAG2. To improve the understanding of this prey protein's function, advanced investigations need to be carried out.

  14. Srisuka W, Takaoka H, Otsuka Y, Fukuda M, Thongsahuan S, Taai K, et al.
    Parasit Vectors, 2017 Nov 21;10(1):574.
    PMID: 29157269 DOI: 10.1186/s13071-017-2492-y
    BACKGROUND: Blackflies are an important medical and veterinary group of small blood-sucking insects. Ninety-three blackfly species have been reported in Thailand. However, information on their biodiversity and population dynamics in each region is lacking. The main aim of this study was to assess the regional biodiversity, seasonal abundance and distribution of blackflies in six eco-geographically different regions in the country.

    METHODS: Blackfly larvae and pupae were sampled monthly from 58 sites between May 2011 and April 2013. Diversity parameters, seasonal abundance, regional distribution and frequency of species occurrence in stream sites were analyzed.

    RESULTS: A total of 19,456 mature larvae representing 57 species, and belonging to six subgenera in the genus Simulium Latreille (s.l.), were found. The five predominant taxa were S. fenestratum (8.6%), the S. asakoae complex (8.3%), S. nakhonense (7.5%), the S. siamense complex (7.4%) and the S. doipuiense complex (6.7%). The most frequent taxa at all sites were the S. asakoae complex (84.5%), followed by S. fenestratum (82.8%), the S. siamense complex (75.9%), S. decuplum (60.3%), S. nakhonense (58.6%) and the S. tani complex (48.3%). The richness of regional species was highest (40 species) in the north and predominated in the cold season. However, blackflies in the south predominated during the hot season. The highest numbers of blackflies collected from central, northeastern, eastern and western regions of the country were observed in the rainy season. Overall, the mean number of blackflies collected across the six regions during the rainy and cold season had no statistically significant difference, but it differed significantly in the hot season.

    CONCLUSIONS: Blackflies in Thailand were surveyed in all three seasons across six geographical regions. These findings demonstrated that blackfly communities at each stream site varied with seasonality, and the regional relative abundance of blackflies differed markedly in the hot season. It was also found that the occurrence and distribution of blackflies in each region were associated strongly with elevation.

  15. Ng SL, Nordin A, Abd Ghafar N, Suboh Y, Ab Rahim N, Chua KH
    Parasit Vectors, 2017 12 28;10(1):625.
    PMID: 29282148 DOI: 10.1186/s13071-017-2547-0
    BACKGROUND: In recent years, the concern of Acanthamoeba keratitis has increased since the infection is often associated with contact lens use. Partial 18S rRNA genotypic identification of Acanthamoeba isolates is important to correlate with pathophysiological properties in order to evaluate the degree of virulence. This is the first report of genotypic identification for clinical isolates of Acanthamoeba from corneal scrapings of keratitis in Malaysia. This study is also the first to correlate the mRNA expression of MBP and AhLBP as virulent markers for axenic strains of Acanthamoeba.

    RESULTS: In this study, ten clinical isolates were obtained from corneal scrapings. Rns genotype and intra-genotypic variation at the DF3 region of the isolates were identified. Results revealed that all clinical isolates belonged to the T4 genotype, with T4/6 (4 isolates), T4/2 (3 isolates), T4/16 (2 isolates) and one new genotype T4 sequence (T4/36), being determined. The axenic clinical isolates were cytopathogenic to rabbit corneal fibroblasts. MBP and AhLBP mRNA expression are directly correlated to Acanthamoeba cytopathic effect.

    CONCLUSIONS: All ten Malaysian clinical isolates were identified as genotype T4 which is predominantly associated with AK. Measuring the mRNA expression of Acanthamoeba virulent markers could be useful in the understanding of the pathogenesis of Acanthamoeba keratitis.

  16. Anwar A, Khan NA, Siddiqui R
    Parasit Vectors, 2018 01 09;11(1):26.
    PMID: 29316961 DOI: 10.1186/s13071-017-2572-z
    Acanthamoeba spp. are protist pathogens and causative agents of serious infections including keratitis and granulomatous amoebic encephalitis. Its ability to convert into dormant and highly resistant cysts form limits effectiveness of available therapeutic agents and presents a pivotal challenge for drug development. During the cyst stage, Acanthamoeba is protected by the presence of hardy cyst walls, comprised primarily of carbohydrates and cyst-specific proteins, hence synthesis inhibition and/or degradation of cyst walls is of major interest. This review focuses on targeting of Acanthamoeba cysts by identifying viable therapeutic targets.
  17. Amir A, Cheong FW, De Silva JR, Lau YL
    Parasit Vectors, 2018 01 23;11(1):53.
    PMID: 29361963 DOI: 10.1186/s13071-018-2617-y
    Every year, millions of people are burdened with malaria. An estimated 429,000 casualties were reported in 2015, with the majority made up of children under five years old. Early and accurate diagnosis of malaria is of paramount importance to ensure appropriate administration of treatment. This minimizes the risk of parasite resistance development, reduces drug wastage and unnecessary adverse reaction to antimalarial drugs. Malaria diagnostic tools have expanded beyond the conventional microscopic examination of Giemsa-stained blood films. Contemporary and innovative techniques have emerged, mainly the rapid diagnostic tests (RDT) and other molecular diagnostic methods such as PCR, qPCR and loop-mediated isothermal amplification (LAMP). Even microscopic diagnosis has gone through a paradigm shift with the development of new techniques such as the quantitative buffy coat (QBC) method and the Partec rapid malaria test. This review explores the different diagnostic tools available for childhood malaria, each with their characteristic strengths and limitations. These tools play an important role in making an accurate malaria diagnosis to ensure that the use of anti-malaria are rationalized and that presumptive diagnosis would only be a thing of the past.
  18. Ismail BA, Kafy HT, Sulieman JE, Subramaniam K, Thomas B, Mnzava A, et al.
    Parasit Vectors, 2018 03 02;11(1):122.
    PMID: 29499751 DOI: 10.1186/s13071-018-2732-9
    BACKGROUND: Long-lasting insecticidal nets (LLINs) (with pyrethroids) and indoor residual spraying (IRS) are the cornerstones of the Sudanese malaria control program. Insecticide resistance to the principal insecticides in LLINs and IRS is a major concern. This study was designed to monitor insecticide resistance in Anopheles arabiensis from 140 clusters in four malaria-endemic areas of Sudan from 2011 to 2014. All clusters received LLINs, while half (n = 70), distributed across the four regions, had additional IRS campaigns.

    METHODS: Anopheles gambiae (s.l.) mosquitoes were identified to species level using PCR techniques. Standard WHO insecticide susceptibility bioassays were carried out to detect resistance to deltamethrin (0.05%), DDT (4%) and bendiocarb (0.1%). TaqMan assays were performed on random samples of deltamethrin-resistant phenotyped and pyrethrum spray collected individuals to determine Vgsc-1014 knockdown resistance mutations.

    RESULTS: Anopheles arabiensis accounted for 99.9% of any anopheline species collected across all sites. Bioassay screening indicated that mosquitoes remained susceptible to bendiocarb but were resistance to deltamethrin and DDT in all areas. There were significant increases in deltamethrin resistance over the four years, with overall mean percent mortality to deltamethrin declining from 81.0% (95% CI: 77.6-84.3%) in 2011 to 47.7% (95% CI: 43.5-51.8%) in 2014. The rate of increase in phenotypic deltamethrin-resistance was significantly slower in the LLIN + IRS arm than in the LLIN-only arm (Odds ratio 1.34; 95% CI: 1.02-1.77). The frequency of Vgsc-1014F mutation varied spatiotemporally with highest frequencies in Galabat (range 0.375-0.616) and New Halfa (range 0.241-0.447). Deltamethrin phenotypic-resistance correlated with Vgsc-1014F frequency.

    CONCLUSION: Combining LLIN and IRS, with different classes of insecticide, may delay pyrethroid resistance development, but the speed at which resistance develops may be area-specific. Continued monitoring is vital to ensure optimal management and control.

  19. Amelia-Yap ZH, Chen CD, Sofian-Azirun M, Low VL
    Parasit Vectors, 2018 Jun 04;11(1):332.
    PMID: 29866193 DOI: 10.1186/s13071-018-2899-0
    Human arboviral diseases transmitted by Aedes aegypti such as dengue, Zika, chikungunya and yellow fever remain global public health threats to date. Of these diseases, dengue fever is particularly prevalent in Southeast Asia. Relentless vector control efforts are performed to curtail disease transmissions through which pyrethroid insecticides are broadly used as the first line of defense to control Ae. aegypti, especially in the course of disease outbreaks. Here, we compile the largest contemporary database for susceptibility profiles and underlying mechanisms involved in Ae. aegypti resistant to pyrethroids in Southeast Asia. The extensive use of pyrethroids inevitably elicit different levels of resistance to numerous populations despite the presence of geographical isolation. The most common mechanisms of pyrethroid resistance that have been identified in Ae. aegypti includes mutations in the voltage sensitive sodium channel gene (Vssc gene) and metabolic-mediated insecticide resistance. Aedes aegypti develops resistance to pyrethroids by acquisition of one or several amino acid substitution(s) in this Vssc gene. Enzymes involved in metabolic-mediated detoxification (i.e. monooxygenases, glutathione-S-transferases and esterases) have been reported to be related to pyrethroid resistance but many specific contributory enzymes are not completely studied. An inadequate amount of data from some countries indicates an urgent need for further study to fill the knowledge gaps. Perspectives and future research needs are also discussed.
  20. Brown R, Hing CT, Fornace K, Ferguson HM
    Parasit Vectors, 2018 Jun 14;11(1):346.
    PMID: 29898780 DOI: 10.1186/s13071-018-2926-1
    BACKGROUND: Widespread deforestation occurring in the tropics is hypothesized to impact the transmission of vector-borne diseases (VBD). Predicting how environmental changes will impact VBD transmission is dependent on understanding the ecology and behaviour of potential vector species outside of domestic settings. However there are few reliable sampling tools for measuring the habitat preference and host choice of mosquito vectors; with almost none suitable for sampling recently blood-fed, resting mosquitoes. This study evaluated the use of two mosquito traps: the resting bucket (RB) and sticky resting bucket (SRB) traps relative to CDC backpack aspiration (CDC) for sampling mosquitoes resting in a range of habitats representing a gradient of deforestation. Eight habitats were selected for sampling around two villages in Kudat District, Malaysian Borneo, to reflect the range of habitats available to mosquitoes in and around human dwellings, and nearby forest habitats where reservoir hosts are present: secondary forest (edge, interior and canopy); plantations (palm and rubber); and human settlements (inside, under and around houses).

    RESULTS: Over 31 days, 2243 mosquitoes were collected in 5748 discrete collections. Nine mosquito genera were sampled with Aedes and Culex species being present in all habitats and most abundant. RB and CDC backpack aspiration were most efficient for sampling Culex whereas CDC backpack aspiration and SRB were most efficient for Aedes. Most Aedes identified to species level were Ae. albopictus (91%), with their abundance being highest in forest edge habitats. In contrast, Culex were most abundant under houses. Most blood-fed mosquitoes (76%) were found in human settlements; with humans and chickens being the only blood source.

    CONCLUSIONS: RB and SRB traps proved capable of sampling mosquitoes resting in all sampled habitats. However, sampling efficiency was generally low (c.0.1 per trap per day), necessitating traps to be deployed in high numbers for mosquito detection. None of the traps were effective for sampling zoonotic malaria vectors; however, SRB collected relatively higher numbers of the dengue vector Ae. albopictus. The higher abundance of mosquitoes in forest edge habitats indicates the potential value of these traps for investigating sylvatic dengue transmission. This study has demonstrated the merits in application of simple resting traps for characterising mosquito vector resting behaviour outside of the home.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links