Displaying publications 81 - 100 of 376 in total

Abstract:
Sort:
  1. Chao N, Li F, Yu N, Chen G, Wang Z, Ouyang G, et al.
    Sci Total Environ, 2023 Mar 17;879:162886.
    PMID: 36933709 DOI: 10.1016/j.scitotenv.2023.162886
    Terrestrial water storage anomaly (TWSA) from Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-on was first exacted by using the forward modeling (FM) method at three different scales over the Yangtze River basin (YRB): whole basin, three middle sub-basins, and eleven small sub-basins (total 15 basins). The spatiotemporal variability of eight hydroclimatic variables, snow water storage change (SnWS), canopy water storage change (CnWS), surface water storage anomaly (SWSA), soil moisture storage anomaly (SMSA), groundwater storage anomaly (GWSA), precipitation (P), evapotranspiration (ET), and runoff (R), and their contribution to TWSA were comprehensively investigated over the YRB. The results showed that the root mean square error of TWS change after FM improved by 17 %, as validated by in situ P, ET, and R data. The seasonal, inter-annual, and trend revealed that TWSA over the YRB increased during 2003-2018. The seasonal TWSA signal increased from the lower to the upper of YRB, but the trend, sub-seasonal, and inter-annual signals receded from the lower to the upper of YRB. The contribution of CnWS to TWSA was small over the YRB. The contribution of SnWS to TWSA occurs mainly in the upper of YRB. The main contributors to TWSA were SMSA (~36 %), SWSA (~33 %), and GWSA (~30 %). GWSA can be affected by TWSA, but other hydrological elements may have a slight impact on groundwater in the YRB. The primary driver of TWSA over the YRB was P (~46 %), followed by ET and R (both ~27 %). The contribution of SMSA, SWSA, and P to TWSA increased from the upper to the lower of YRB. R was the key driver of TWSA in the lower of YRB. The proposed approaches and results of this study can provide valuable new insights for water resource management in the YRB and can be applied globally.
  2. Chang SH
    Sci Total Environ, 2023 Mar 16;877:162719.
    PMID: 36933741 DOI: 10.1016/j.scitotenv.2023.162719
    Turning plastic waste into plastic oil by pyrolysis is one of the promising techniques to eradicate plastic waste pollution and accelerate the circular economy of plastic materials. Plastic waste is an attractive pyrolysis feedstock for plastic oil production owing to its favorable chemical properties of proximate analysis, ultimate analysis, and heating value other than its abundant availability. Despite the exponential growth of scientific output from 2015 to 2022, a vast majority of the current review articles cover the pyrolysis of plastic waste into a series of fuels and value-added products, and up-to-date reviews exclusively on plastic oil production from pyrolysis are relatively scarce. In light of this void in the current review articles, this review attempts to provide an up-to-date overview of plastic waste as pyrolysis feedstock for plastic oil production. A particular emphasis is placed on the common types of plastic as primary sources of plastic pollution, the characteristics (proximate analysis, ultimate analysis, hydrogen/carbon ratio, heating value, and degradation temperature) of various plastic wastes and their potential as pyrolysis feedstock, and the pyrolysis systems (reactor type and heating method) and conditions (temperature, heating rate, residence time, pressure, particle size, reaction atmosphere, catalyst and its operation modes, and single and mixed plastic wastes) used in plastic waste pyrolysis for plastic oil production. The characteristics of plastic oil from pyrolysis in terms of physical properties and chemical composition are also outlined and discussed. The major challenges and future prospects for the large-scale production of plastic oil from pyrolysis are also addressed.
  3. Chutturi M, Gillela S, Yadav SM, Wibowo ES, Sihag K, Rangppa SM, et al.
    Sci Total Environ, 2023 Mar 15;864:161067.
    PMID: 36565890 DOI: 10.1016/j.scitotenv.2022.161067
    The uncertainties of the environment and the emission levels of nonrenewable resources have compelled humanity to develop sustainable energy savers and sustainable materials. One of the most abundant and versatile bio-based structural materials is wood. Wood has several promising advantages, including high toughness, low thermal conductivity, low density, high Young's modulus, biodegradability, and non-toxicity. Furthermore, while wood has many ecological and structural advantages, it does not meet optical transparency requirements. Transparent wood is ideal for use in various industries, including electronics, packaging, automotive, and construction, due to its high transparency, haze, and environmental friendliness. As a necessary consequence, current research on developing fine wood is summarized in this review. This review begins with an explanation of the history of fine wood. The concept and various synthesis strategies, such as delignification, refractive index measurement methods, and transparent lumber polymerization, are discussed. Approaches and techniques for the characterization of transparent wood are outlined, including microscopic, Fourier transform infrared (FTIR), and X-ray diffraction (XRD) analysis. Furthermore, the characterization, physical properties, mechanical properties, optical properties, and thermal conductivity of transparent wood are emphasized. Eventually, a brief overview of the various applications of fine wood is presented. The present review summarized the first necessary actions toward future transparent wood applications.
  4. Tan S, Zhou G, Yang Q, Ge S, Liu J, Cheng YW, et al.
    Sci Total Environ, 2023 Mar 15;864:160990.
    PMID: 36539095 DOI: 10.1016/j.scitotenv.2022.160990
    Traditional disposal of animal manures and lignocellulosic biomass is restricted by its inefficiency and sluggishness. To advance the carbon management and greenhouse gas mitigation, this review scrutinizes the effect of pyrolysis in promoting the sustainable biomass and manure disposal as well as stimulating the biochar industry development. This review has examined the advancement of pyrolysis of animal manure (AM) and lignocellulosic biomass (LB) in terms of efficiency, cost-effectiveness, and operability. In particular, the applicability of pyrolysis biochar in enhancing the crops yields via soil remediation is highlighted. Through pyrolysis, the heavy metals of animal manures are fixated in the biochar, thereby both soil contamination via leaching and heavy metal uptake by crops are minimized. Pyrolysis biochar is potentially use in soil remediation for agronomic and environmental co-benefits. Fast pyrolysis assures high bio-oil yield and revenue with better return on investment whereas slow pyrolysis has low revenue despite its minimum investment cost because of relatively low selling price of biochar. For future commercialization, both continuous reactors and catalysis can be integrated to pyrolysis to ameliorate the efficiency and economic value of pyrolysis biochar.
  5. Yu H, Zahidi I
    Sci Total Environ, 2023 Mar 15;864:161135.
    PMID: 36566867 DOI: 10.1016/j.scitotenv.2022.161135
    The over-exploitation of mineral resources has led to increasingly serious dust pollution in mines, resulting in a series of negative impacts on the environment, mine workers (occupational health) and nearby residents (public health). For the environment, mine dust pollution is considered a major threat on surface vegetation, landscapes, weather conditions and air quality, leading to serious environmental damage such as vegetation reduction and air pollution; for occupational health, mine dust from the mining process is also regarded as a major threat to mine workers' health, leading to occupational diseases such as pneumoconiosis and silicosis; for public health, the pollutants contained in mine dust may pollute surrounding rivers, farmlands and crops, which poses a serious risk to the domestic water and food security of nearby residents who are also susceptible to respiratory diseases from exposure to mine dust. Therefore, the second section of this paper combines literature research, statistical studies, and meta analysis to introduce the public mainly to the severity of mine dust pollution and its hazards to the environment, mine workers (occupational health), and residents (public health), as well as to present an outlook on the management of mine dust pollution. At the same time, in order to propose a method for monitoring mine dust pollution on a regional scale, based on the Dense Dark Vegetation (DDV) algorithm, the third section of this paper analysed the aerosol optical depth (AOD) change in Dexing City of China using the data of 2010, 2014, 2018 and 2021 from the NASA MCD19A2 Dataset to explore the mine dust pollution situation and the progress of pollution treatment in Dexing City from 2010 to 2021. As a discussion article, this paper aims to review the environmental and health risks caused by mine dust pollution, to remind the public to take mine dust pollution seriously, and to propose the use of remote sensing technologies to monitor mine dust pollution, providing suggestions for local governments as well as mines on mine dust monitoring measures.
  6. Li M, Zhang H, Zhang W, Cao Y, Sun B, Jiang Q, et al.
    Sci Total Environ, 2023 Mar 14;876:162807.
    PMID: 36921865 DOI: 10.1016/j.scitotenv.2023.162807
    In Shanghai, the prevalence of tet(X4) and tet(X4)-carrying plasmid from food-producing -animal Enterobacteriales has not been intensively investigated. Here, five tet(X4)-positive swine-origin E. coli strains were characterized among 652 food-producing-animal E. coli isolates in Shanghai during 2018-2021 using long-term surveillance among poultry, swine and cattle, antimicrobial susceptibility testing, and tet(X4)-specific PCR. A combination of short- and long-read sequencing technologies demonstrated that the five strains with 4 STs carried a nearly identical 193 kb tet(X4)-bearing plasmid (p193k-tetX4) belonging to the same IncFIA(HI1)/IncHI1A/IncHIB plasmid family (p193k). Surprisingly, 34 of the 151 global tet(X4)-positive plasmids was the p193k members and exclusively pandemic in China. Other p193k members harboring many critically important ARGs (mcr or blaNDM) with particular genetic environment are widespread throughout human-animal-environmental sources, with 33.77 % human origin. Significantly, phylogenetic analysis of 203 p193k-tetX4 sequences revealed that human- and animal-origin plasmids clustered within the same phylogenetic subgroups. The largest lineage (173/203) comprised 161 E. coli, 6 Klebsiella, 3 Enterobacter, 2 Citrobacter, and 1 Leclercia spp. from animals (n = 143), humans (n = 18), and the environment (n = 9). Intriguingly, the earliest 2015 E. coli strain YA_GR3 from Malaysian river water and 2016 S. enterica Chinese clinical strain GX1006 in another lineage demonstrated that p193k-tetX4 have been widely spread from S. enterica or E. coli to other Enterobacterales. Furthermore, 180 E. coli p193k-tetX4 strains were widespread cross-sectorial transmission among food animals, pets, migratory birds, human and ecosystems. Our findings proved the extensive transmission of the high-risk p193k harboring crucial ARGs across multiple interfaces and species. Therefore, one-health-based systemic surveillance of these similar high-risk plasmids across numerous sources and bacterial species is extremely essential.
  7. Duan G, Takemi T, Ngan K
    Sci Total Environ, 2023 Mar 13;877:162640.
    PMID: 36921850 DOI: 10.1016/j.scitotenv.2023.162640
    Urban air quality studies have primarily focused on pollutant dispersion; however, spatial or temporal concentrations collected at discretely distributed grid points (or fixed receptors) do not reflect the actual pollutant exposure of pedestrians. Using large-eddy simulation (LES) with virtual walkers implemented, this study investigates pollutant exposure of walking agents (or moving receptors) in an urban turbulent boundary-layer flow developed over an aligned building array under the influence of different wind directions. The spatial variability of the exposure risks are found to be better captured by the moving receptors than the fixed receptors along the same agent walking tracks. We demonstrate that the actual exposure can differ significantly from results interpreted from data recorded by the fixed receptors (corresponding to Eulerian estimates) and show that large discrepancies occur in avenues near the source, wherein dispersion of the point release has not occurred on larger spatiotemporal scales. In most scenarios, optimal evacuation routes are shown to be ones that deviate as much as possible from the dominant wind direction; however, one needs to decide the priority of moving to further avenues first or immediately adjusting the walking direction. The results should serve as a useful baseline reference for environmental health impact assessment and evacuation route planning against hazardous releases of air pollutants in more complex urban environments.
  8. Jion MMMF, Jannat JN, Mia MY, Ali MA, Islam MS, Ibrahim SM, et al.
    Sci Total Environ, 2023 Mar 13;876:162851.
    PMID: 36921864 DOI: 10.1016/j.scitotenv.2023.162851
    Nitrogen dioxide (NO2) and sulfur dioxide (SO2) are two major atmospheric pollutants that significantly threaten human health, the environment, and ecosystems worldwide. Despite this, only some studies have investigated the spatiotemporal hotspots of NO2 and SO2, their trends, production, and sources in Asia. Our study presents a literature review covering the production, trends, and sources of NO2 and SO2 across Asian countries (e.g., Bangladesh, China, India, Iran, Japan, Pakistan, Malaysia, Kuwait, and Nepal). Based on the findings of the review, NO2 and SO2 pollution are increasing due to industrial activity, fossil fuel burning, biomass burning, heavy traffic movement, electricity generation, and power plants. There is significant concern about health risks associated with NO2 and SO2 emissions in Bangladesh, China, India, Malaysia, and Iran, as they pay less attention to managing and controlling pollution. Even though the lack of quality datasets and adequate research in most Asian countries further complicates the management and control of NO2 and SO2 pollution. This study has NO2 and SO2 pollution scenarios, including hotspots, trends, sources, and their influences on Asian countries. This study highlights the existing research gaps and recommends new research on identifying integrated sources, their variations, spatiotemporal trends, emission characteristics, and pollution level. Finally, the present study suggests a framework for controlling and monitoring these two pollutants' emissions.
  9. Sonne C, Jenssen BM, Rinklebe J, Lam SS, Hansen M, Bossi R, et al.
    Sci Total Environ, 2023 Mar 10;876:162770.
    PMID: 36906028 DOI: 10.1016/j.scitotenv.2023.162770
    The Environmental Protection Agencies (EPAs) of Denmark, Sweden, Norway, Germany and the Netherlands submitted a proposal to the European Chemical Agency (ECHA) in February 2023 calling for a ban in the use of toxic industrial chemicals per- and polyfluoroalkyl substances (PFAS). These chemicals are highly toxic causing elevated cholesterol, immune suppression, reproductive failure, cancer and neuro-endocrine disruption in humans and wildlife being a significant threat to biodiversity and human health. The main reason for the submitted proposal is recent findings of significant flaws in the transition to PFAS replacements that is leading to a widespread pollution. Denmark was the first country banning PFAS, and now other EU countries support the restrictions of these carcinogenic, endocrine disruptive and immunotoxic chemicals. The proposed plan is among the most extensive received by the ECHA for 50 years. Denmark is now the first EU country to initiate the establishment of groundwater parks to try and protect its drinking water. These parks are areas free of agricultural activities and nutritious sewage sludge to secure drinking water free of xenobiotic including PFAS. The PFAS pollution also reflects the lack of comprehensive spatial and temporal environmental monitoring programs in the EU. Such monitoring programs should include key indicator species across ecosystems of livestock, fish and wildlife, to facilitate detection of early ecological warning signals and sustain public health. Simultaneously with inferring a total PFAS ban, the EU should also push for more persistent, bioaccumulative and toxic (PBT) PFAS substances to be listed on the Stockholm Convention (SC) Annex A such as PFOS (perfluorooctane sulfonic acid) that is currently listed on the SCs Annex B. The combination of these regulative restrictions combined with groundwater parks and pan-European biomonitoring programs, would pave the way forward for a cleaner environment to sustain health across the EU.
  10. Azwar E, Mahari WAW, Liew RK, Ramlee MZ, Verma M, Chong WWF, et al.
    Sci Total Environ, 2023 Mar 08;876:162673.
    PMID: 36894104 DOI: 10.1016/j.scitotenv.2023.162673
    Fast growing Kariba weed causes major problems and pollution on freshwater and shellfish aquaculture systems by interfering with nutrient uptake of crops, restricting sunlight penetration, and decreasing water quality due to massive biomass of Kariba weed remnants. Solvothermal liquefaction is considered an emerging thermochemical technique to convert waste into high yield of value-added products. Solvothermal liquefaction (STL) of Kariba weed as an emerging contaminant was performed to investigate the effects of different types of solvents (ethanol and methanol) and Kariba weed mass loadings (2.5-10 % w/v) on treating and reducing the weed via conversion into potentially useful crude oil product and char. Up to 92.53 % of Kariba weed has been reduced via this technique. The optimal conditions for crude oil production were found to be at 5 % w/v of mass loading in methanol medium, resulting in a high heating value (HHV) of 34.66 MJ/kg and yield of 20.86 wt%, whereas the biochar production was found to be optimum at 7.5 % w/v of mass loading in methanol medium, resulting in 29.92 MJ/kg of HHV and 25.38 wt% of yield. The crude oil consisted of beneficial chemical compounds for biofuel production such as hexadecanoic acid, methyl ester (65.02 peak area %) and the biochar showed high carbon content (72.83 %). In conclusion, STL as a remediation for emerging Kariba weed is a feasible process for shellfish aquaculture waste treatment and biofuels production.
  11. Al-Humairi ST, Lee JGM, Harvey AP, Salman AD, Juzsakova T, Van B, et al.
    Sci Total Environ, 2023 Mar 01;862:160702.
    PMID: 36481155 DOI: 10.1016/j.scitotenv.2022.160702
    The purpose of this study was to examine the application of the mathematical model of drift flux to the experimental results of the effect of cationic trimethyl-ammonium bromide (CTAB)-aided continuous foam flotation harvesting on the lipid content in Chlorella vulgaris microalgae. An experiment was conducted to determine the effect of the operating conditions on the enrichment factor (EF) and percentage recovery efficiency (%RE), where the flow rates at the inlet and bottom outlet remained constant. Data for the binary system (without algae) and ternary system (with algae) in an equal-area foam column show that the EF decreases linearly with increasing initial CTAB concentrations ranging from 30 to 75 mg/L for three levels of the studied air volumetric flow rate range (1-3) L/min. The percentage harvesting efficiency increased with increasing initial CTAB concentration and air volumetric flow rate to 96 % in the binary systems and 94 % in the ternary systems. However, in the foam column with the riser used in the three systems, a lower volume of liquid foam in the upward outlet stream resulted in a lower RE% than that of the column without the riser. The objective function of EF for the system with algae increased when the initial CTAB concentration was increased from 30 to 45 mg/L in the foam column with a riser for all air flow rates, and after 45 mg/L, a sudden drop in the microalgae EF was observed. In the comparison between the foam column with and without the riser for the system with algae, the optimum EF was 145 for the design of the column with the riser and 139 for the column without the riser.
  12. Mohanty SS, Vyas S, Koul Y, Prajapati P, Varjani S, Chang JS, et al.
    Sci Total Environ, 2023 Feb 20;860:160377.
    PMID: 36414054 DOI: 10.1016/j.scitotenv.2022.160377
    Landfilling is the most widely used disposal method for municipal solid waste around the world. The main disadvantage of this strategy is formation of leachate, among other aspects. Landfill leachate contains highly toxic and bio-refractory substances that are detrimental to the environment and human health. Hence, the risk(s) of discharging potentially harmful landfill leachate into the environment need to be assessed and measured in order to make effective choices about landfill leachate management and treatment. In view of this, the present review aims to investigate (a) how landfill leachate is perceived as an emerging concern, and (b) the stakeholders' mid- to long-term policy priorities for implementing technological and integrative solutions to reduce the harmful effects of landfill leachate. Because traditional methods alone have been reported ineffective, and in response to emerging contaminants and stringent regulations, new effective and integrated leachate treatments have been developed. This study gives a forward-thinking of the accomplishments and challenges in landfill leachate treatment during the last decade. It also provides a comprehensive compilation of the formation and characterization of landfill leachate, the geo-environmental challenges that it raises, as well as the resource recovery and industrial linkage associated with it in order to provide an insight into its sustainable management.
  13. Itoh M, Osaka K, Iizuka K, Kosugi Y, Lion M, Shiodera S
    Sci Total Environ, 2023 Feb 10;859(Pt 2):160319.
    PMID: 36410477 DOI: 10.1016/j.scitotenv.2022.160319
    Land conversion from natural forests to plantations (e.g., oil palm) in Southeast Asia is one of the most intensive land-use changes occurring worldwide. To clarify the effects of oil palm plantations on water quality, we conducted multipoint river and stream water sampling in peninsular Malaysia at the end of the rainy season over a 3-year period (2013-2015). We measured the major dissolved ions and stable isotope ratios of water (δ2H-H2O and δ18O-H2O) and nitrate (δ15N-NO3- and δ18O-NO3-) in water from the upper streams in mountainous forests to the midstream areas of two major rivers in peninsular Malaysia. The electrical conductivity increased, and the d-excess value (as an index of the degree of evaporation) decreased with increasing distance from the headwaters, suggesting the effect of evaporative enrichment and the addition of pollutants. We separated the sampling points into four groups (G1-G4) through cluster analysis of the water quality data. From the land use/land cover (LULC) classification maps developed from satellite images and local information, we found that G1 and G2 mainly consisted of sampling points in forested areas, while G3 and G4 were located in oil-palm-affected areas. The concentrations of major ions were higher in the oil palm areas, indicating the effects of fertilizer and limestone (i.e., pH adjustment) applications. The dissolved inorganic nitrogen concentration did not differ among the groups, but the dissolved organic carbon, total dissolved nitrogen, and δ15N-NO3- were higher in the oil palm area than in the forested area. Although the nitrogen concentration was low, even in the oil palm area, the significantly higher δ15N-NO3- in the oil palm area indicated substantial denitrification. This implies that denitrification contributed to the lowering of the NO3- concentration in rivers in the oil palm area, in addition to nutrient uptake by oil palm trees.
  14. Yu H, Zahidi I
    Sci Total Environ, 2023 Feb 10;859(Pt 2):160392.
    PMID: 36423851 DOI: 10.1016/j.scitotenv.2022.160392
    The increasing frequency of mining activities in the world has led to many environmental pollution problems, such as mine wastewater discharge, mine solid waste dumps, and mine dust dispersion. These problems have negative implications for the environment and the public health of people living nearby the mining areas. Despite this, there are few methods to determine the state of mine pollution on a regional scale. Therefore, we applied remote sensing technologies to assess the mine pollution situation, especially the mine solid waste pollution, of a mining area, taking Qibaoshan Town, Liuyang City, Hunan Province, China, as an example. In our research, we have calculated the vegetation cover change of the Qibaoshan Town over the years (2000-2020), charted the vegetation coverage grade maps, and analysed the tendency of vegetation cover changes, to infer the mine pollution situation, the progress of pollution treatment and the efforts made by the local government and the mines on mine pollution disposal and the land reclamation. Additionally, mining damage can bring about geological hazards such as surface subsidence leading to vegetation destruction, while mining solid waste pollution and discharge can occupy a large amount of land and thus lead to vegetation reduction. As a result, this method of calculating FVC changes in a mining area is particularly suitable for assessing the extent of mining damage, the status of solid waste pollution and discharge, and the progress of land reclamation. In the abstract, we claim that this short communication article serves as a guide to start a conversation, and encourages experts and scholars to engage in this area of research.
  15. Salaudeen A, Shahid S, Ismail A, Adeogun BK, Ajibike MA, Bello AD, et al.
    Sci Total Environ, 2023 Feb 01;858(Pt 2):159874.
    PMID: 36334669 DOI: 10.1016/j.scitotenv.2022.159874
    Recently, there is an upsurge in flood emergencies in Nigeria, in which their frequencies and impacts are expected to exacerbate in the future due to land-use/land cover (LULC) and climate change stressors. The separate and combined forces of these stressors on the Gongola river basin is feebly understood and the probable future impacts are not clear. Accordingly, this study uses a process-based watershed modelling approach - the Hydrological Simulation Program FORTRAN (HSPF) (i) to understand the basin's current and future hydrological fluxes and (ii) to quantify the effectiveness of five management options as adaptation measures for the impacts of the stressors. The ensemble means of the three models derived from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are employed for generating future climate scenarios, considering three distinct radiative forcing peculiar to the study area. Also, the historical and future LULC (developed from the hybrid of Cellular Automata and Markov Chain model) are used to produce the LULC scenarios for the basin. The effective calibration, uncertainty and sensitivity analyses are used for optimising the parameters of the model and the validated result implies a plausible model with efficiency of up to 75 %. Consequently, the results of individual impacts of the stressors yield amplification of the peak flows, with more profound impacts from climate stressor than the LULC. Therefore, the climate impact may trigger a marked peak discharge that is 48 % higher as compared to the historical peak flows which are equivalent to 10,000-year flood event. Whilst the combine impacts may further amplify this value by 27 % depending on the scenario. The proposed management interventions such as planned reforestation and reservoir at Dindima should attenuate the disastrous peak discharges by almost 36 %. Furthermore, the land management option should promote the carbon-sequestering project of the Paris agreement ratified by Nigeria. While the reservoir would serve secondary functions of energy production; employment opportunities, aside other social aspects. These measures are therefore expected to mitigate feasibly the negative impacts anticipated from the stressors and the approach can be employed in other river basins in Africa confronted with similar challenges.
  16. Chee SY, Tan ML, Tew YL, Sim YK, Yee JC, Chong AKM
    Sci Total Environ, 2023 Feb 01;858(Pt 2):159889.
    PMID: 36328260 DOI: 10.1016/j.scitotenv.2022.159889
    Cities all over the world are edging further into the ocean. Coastal reclamation is a global conservation issue with implications for ocean life, ecosystems, and human well-being. Using Malaysia as a case study, the coastal reclamation trends over three decades (1991-2021) were mapped using Landsat images and Normalized Difference Water Index (NDWI) via the Google Earth Engine platform. The changes in drivers and impacts of these coastal expansions throughout the decades were also reviewed. Twelve out of the 14 states in Malaysia had planned, active, or completed reclamations on their shorelines. Between 1991 and 2021, an absolute area of 82.64 km2 has been or will be reclaimed should all the projects be completed. The most reported driver for coastal expansion in Malaysia is for development and modernization (41 %), followed by rise in human population (20 %), monetary gains from the development of prime land (15 %), and agriculture and aquaculture activities (9 %). Drivers such as reduction of construction costs, financial advantage of prime land, oil and gas, advancement of technology, and tourism (Malaysia My Second Home (MM2H)) had only started occurring within the last decade, while others have been documented since the 1990's. Pollution is the most reported impact (24 %) followed by disruption of livelihoods, sources of income and human well-being (21 %), destruction of natural habitats (17 %), decrease in biodiversity (11 %), changes in landscapes (10 %), erosion / accretion (8 %), threat to tourism industry (6 %), and exposure to wave surges (3 %). Of these, changes in landscape, shoreline alignment, seabed contour, and coastal groundwater, as well as wave surges had only started to surface as impacts in the last two decades. Efforts to protect existing natural coastal and marine ecosystems, restore degraded ones, and fund endeavours that emphasize nature is needed to support sustainable development goals for the benefit of future generations.
  17. McCalmont J, Kho LK, Teh YA, Chocholek M, Rumpang E, Rowland L, et al.
    Sci Total Environ, 2023 Feb 01;858(Pt 1):159356.
    PMID: 36270353 DOI: 10.1016/j.scitotenv.2022.159356
    While existing moratoria in Indonesia and Malaysia should preclude continued large-scale expansion of palm oil production into new areas of South-East Asian tropical peatland, existing plantations in the region remain a globally significant source of atmospheric carbon due to drainage driven decomposition of peatland soils. Previous studies have made clear the direct link between drainage depth and peat carbon decomposition and significant reductions in the emission rate of CO2 can be made by raising water tables nearer to the soil surface. However, the impact of such changes on palm fruit yield is not well understood and will be a critical consideration for plantation managers. Here we take advantage of very high frequency, long-term monitoring of canopy-scale carbon exchange at a mature oil palm plantation in Malaysian Borneo to investigate the relationship between drainage level and photosynthetic uptake and consider the confounding effects of light quality and atmospheric vapour pressure deficit. Canopy modelling from our dataset demonstrated that palms were exerting significantly greater stomatal control at deeper water table depths (WTD) and the optimum WTD for photosynthesis was found to be between 0.3 and 0.4 m below the soil surface. Raising WTD to this level, from the industry typical drainage level of 0.6 m, could increase photosynthetic uptake by 3.6 % and reduce soil surface emission of CO2 by 11 %. Our study site further showed that despite being poorly drained compared to other planting blocks at the same plantation, monthly fruit bunch yield was, on average, 14 % greater. While these results are encouraging, and at least suggest that raising WTD closer to the soil surface to reduce emissions is unlikely to produce significant yield penalties, our results are limited to a single study site and more work is urgently needed to confirm these results at other plantations.
  18. Busman NA, Melling L, Goh KJ, Imran Y, Sangok FE, Watanabe A
    Sci Total Environ, 2023 Feb 01;858(Pt 2):159973.
    PMID: 36347298 DOI: 10.1016/j.scitotenv.2022.159973
    Information on temporal and spatial variations in soil greenhouse gas (GHG) fluxes from tropical peat forests is essential to predict the influence of climate change and estimate the effects of land use on global warming and the carbon (C) cycle. To obtain such basic information, soil carbon dioxide (CO2) and methane (CH4) fluxes, together with soil physicochemical properties and environmental variables, were measured at three major forest types in the Maludam National Park, Sarawak, Malaysia, for eight years, and their relationships were analyzed. Annual soil CO2 fluxes ranged from 860 to 1450 g C m⁻2 yr⁻1 without overall significant differences between the three forest sites, while soil CH4 fluxes, 1.2-10.8 g C m⁻2 yr⁻1, differed. Differences in GHG fluxes between dry and rainy seasons were not necessarily significant, corresponding to the extent of seasonal variation in groundwater level (GWL). The lack of significant differences in soil CO2 fluxes between the three sites could be attributed to set-off between the negative and positive effects of the decomposability of soil organic matter as estimated by pyrophosphate solubility index (PSI) and GWL. The impact of El-Niño on annual CO2 flux also varied between the sites. The variation in soil CH4 fluxes from the three sites was enhanced by variations in temperature, GWL, PSI, and soil iron (Fe) content. A positive correlation was observed between the annual CH4 flux and GWL at only one site, and the influence of soil properties was more pronounced at the site with the lowest GWL and the highest PSI. Variation in annual CH4 fluxes was controlled more strongly by temperature where GWL was the highest and GWL and plant growth fluctuations were the least. Inter-annual variations in soil CO2 and CH4 fluxes confirmed the importance of long-term monitoring of these at multiple sites supporting different forest types.
  19. Nguyen DTC, Tran TV, Nguyen TTT, Nguyen DH, Alhassan M, Lee T
    Sci Total Environ, 2023 Jan 20;857(Pt 2):159278.
    PMID: 36216068 DOI: 10.1016/j.scitotenv.2022.159278
    Above 1000 invasive species have been growing and developing ubiquitously on Earth. With extremely vigorous adaptability, strong reproduction, and spreading powers, invasive species have posed an alarming threat to indigenous plants, water quality, soil, as well as biodiversity. It was estimated that an economic loss of billions of dollars or equivalent to 1 % of gross domestic product as a consequence of lost crops, control efforts, and damage costs caused by invasive plants in the United States. While eradicating invasive plants from the ecosystems is practically infeasible, taking advantage of invasive plants as a sustainable, locally available, and zero-cost source to provide valuable phytochemicals for bionanoparticles fabrication is worth considering. Here, we review the harms, benefits, and role of invasive species as important botanical sources to extract natural compounds such as piceatannol, resveratrol, and quadrangularin-A, flavonoids, and triterpenoids, which are linked tightly to the formation and application of bionanoparticles. As expected, the invasive plant-mediated bionanoparticles have exhibited outstanding antibacterial, antifungal, anticancer, and antioxidant activities. The mechanism of biomedical activities of the invasive plant-mediated bionanoparticles was insightfully addressed and discussed. We also expect that this review not only contributes to efforts to combat invasive plant species but also opens new frontiers of bionanoparticles in the biomedical applications, therapeutic treatment, and smart agriculture.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links