Displaying publications 81 - 100 of 112 in total

Abstract:
Sort:
  1. Hussain A, Ranjan A, Nandanwar N, Babbar A, Jadhav S, Ahmed N
    Antimicrob Agents Chemother, 2014 Dec;58(12):7240-9.
    PMID: 25246402 DOI: 10.1128/AAC.03320-14
    In view of the epidemiological success of CTX-M-15-producing lineages of Escherichia coli and particularly of sequence type 131 (ST131), it is of significant interest to explore its prevalence in countries such as India and to determine if antibiotic resistance, virulence, metabolic potential, and/or the genetic architecture of the ST131 isolates differ from those of non-ST131 isolates. A collection of 126 E. coli isolates comprising 43 ST131 E. coli, 40 non-ST131 E. coli, and 43 fecal E. coli isolates collected from a tertiary care hospital in India was analyzed. These isolates were subjected to enterobacterial repetitive intergenic consensus (ERIC)-based fingerprinting, O typing, phylogenetic grouping, antibiotic sensitivity testing, and virulence and antimicrobial resistance gene (VAG) detection. Representative isolates from this collection were also analyzed by multilocus sequence typing (MLST), conjugation, metabolic profiling, biofilm production assay, and zebra fish lethality assay. All of the 43 ST131 E. coli isolates were exclusively associated with phylogenetic group B2 (100%), while most of the clinical non-ST131 and stool non-ST131 E. coli isolates were affiliated with the B2 (38%) and A (58%) phylogenetic groups, respectively. Significantly greater proportions of ST131 isolates (58%) than non-ST131 isolates (clinical and stool E. coli isolates, 5% each) were technically identified to be extraintestinal pathogenic E. coli (ExPEC). The clinical ST131, clinical non-ST131, and stool non-ST131 E. coli isolates exhibited high rates of multidrug resistance (95%, 91%, and 91%, respectively), extended-spectrum-β-lactamase (ESBL) production (86%, 83%, and 91%, respectively), and metallo-β-lactamase (MBL) production (28%, 33%, and 0%, respectively). CTX-M-15 was strongly linked with ESBL production in ST131 isolates (93%), whereas CTX-M-15 plus TEM were present in clinical and stool non-ST131 E. coli isolates. Using MLST, we confirmed the presence of two NDM-1-positive ST131 E. coli isolates. The aggregate bioscores (metabolite utilization) for ST131, clinical non-ST131, and stool non-ST131 E. coli isolates were 53%, 52%, and 49%, respectively. The ST131 isolates were moderate biofilm producers and were more highly virulent in zebra fish than non-ST131 isolates. According to ERIC-based fingerprinting, the ST131 strains were more genetically similar, and this was subsequently followed by the genetic similarity of clinical non-ST131 and stool non-ST131 E. coli strains. In conclusion, our data provide novel insights into aspects of the fitness advantage of E. coli lineage ST131 and suggest that a number of factors are likely involved in the worldwide dissemination of and infections due to ST131 E. coli isolates.
    Matched MeSH terms: DNA Fingerprinting
  2. Hoe LN, Wan KL, Nathan S
    Parasitology, 2005 Dec;131(Pt 6):759-68.
    PMID: 16336729
    The protozoan parasite Toxoplasma gondii produces a family of microneme proteins that are thought to play diverse roles in aiding the parasite's intracellular existence. Among these, TgMIC2 has a putative function in parasite adhesion to the host cell to initiate the invasion process. The invasion process may be localized and inhibited by monoclonal antibodies against the protein(s) involved. Here we report on the construction of a phage-displayed single-chain variable fragment (scFv) library from mice immunized with whole T. gondii parasites. The library was subsequently panned against recombinant TgMIC2 (rpTgMIC2) and 2 different groups of antibody clones were obtained, based on fingerprinting and sequencing data. The expressed recombinant scFv antibody was able to recognize rpTgMIC2 in a Western blot detection experiment. These results show that the phage display technology allows quick and effective production of monoclonal antibodies against parasite antigens. By panning the scFv-displayed library, we should be able to obtain a plethora of multi-functional scFv antibodies towards T. gondii proteins.
    Matched MeSH terms: DNA Fingerprinting
  3. Hakim HM, Khan HO, Ismail SA, Ayob S, Lalung J, Kofi EA, et al.
    Sci Rep, 2019 10 10;9(1):14558.
    PMID: 31601905 DOI: 10.1038/s41598-019-51154-4
    Short repetitive regions in autosomal and Y chromosomes known as short tandem repeats (STRs) are currently used for DNA profiling in crime investigations. However, DNA profiling requires a sufficient quality and quantity of DNA template, which is often not obtained from trace evidence or degraded biological samples collected at the scene of a crime. Here, we assessed autosomal and male DNA components extracted from crime scene and mock casework samples using the Casework Direct Kit, Custom and compared the results against those obtained by extraction of matching samples using well-established Maxwell 16 System DNA IQ Casework Pro Kit. The quantity and quality of extracted DNA obtained using both Casework Direct Kit, Custom and Maxwell 16 System DNA IQ Casework Pro Kit were analyzed using PowerQuant Systems followed by autosomal and Y-chromosome STR profiling using GlobalFiler Express PCR Amplification Kit and PowerPlex Y23 System, respectively. Our results showed that the Casework Direct Kit and Maxwell 16 DNA IQ Casework Pro Kit have more or less equal capacity to extract inhibitor free DNA, but that the latter produces slightly better quality and more DNA template and subsequently higher numbers of STR allele calls for autosomal and Y-STR analyses. Nonetheless, the Casework Direct Kit, Custom is the quicker and cheaper option for extraction of good, clean DNA from high content material and might best be used for extraction of reference samples. Such reference DNA samples typically come from buccal swabs or freshly drawn blood. So, in general, they can confidently be expected to have a high nucleic acid content and to be inhibitor-free.
    Matched MeSH terms: DNA Fingerprinting*
  4. Hakim HM, Khan HO, Ismail SA, Lalung J, Kofi AE, Aziz MY, et al.
    Int J Legal Med, 2021 Jul;135(4):1433-1435.
    PMID: 33782746 DOI: 10.1007/s00414-021-02577-0
    DNA profiling of X-chromosomal short tandem repeats (X-STR) has exceptional value in criminal investigations, especially for complex kinship and incest cases. In this study, Investigator® Argus X-12 Quality Sensor (QS) kits were successfully used to characterize 12 X-STR loci in 199 unrelated healthy Kedayan individuals living in Sabah and Sarawak, Malaysia. The LG1 haplogroup (DXS8378 - DXS10135 - DXS10148) has the largest HD (0.9799) as compared with all other closely linked haplotype groups examined (LG2; DXS7132-DXS10074-DXS10079, LG3; DXS10103-DXS10101-HPRTB and LG4; DXS10134-DXS7423-DXS10146). Data from statistical analysis showed that high combined of PDM, PDF, MEC_Krüger, MEC_Kishida, MEC_Desmarais, and MEC_Desmarais_duo values (0.999999994405922, 0.99999999999999, 0.999990463834938, 0.999999975914808, 0.999999975985006, and 0.999996491927194, respectively) in the Kedayan. In a two-dimensional scaling (MDS) plot and dendrogram constructed using allele frequencies at the 12 X-STR loci, Kedayan appear to be most closely related to their other Austronesian populations including the Malays and Filipinos as compared with other reference population groups. Findings from the present study thus demonstrate high genetic variability across the 12 tested X-STR loci and can be used for population studies and forensic applications.
    Matched MeSH terms: DNA Fingerprinting/instrumentation*
  5. Goh YL, Yasin R, Puthucheary SD, Koh YT, Lim VK, Taib Z, et al.
    J Appl Microbiol, 2003;95(5):1134-42.
    PMID: 14633043
    DNA fingerprinting of Salmonella enterica serotype Paratyphi B isolated in Malaysia during 1982-83, 1992 and 1996-2002 was carried out by pulsed-field gel electrophoresis (PFGE), antimicrobial susceptibility tests and D-tartrate utilization tests to assess the extent of genetic diversity of these isolates in Malaysia.
    Matched MeSH terms: DNA Fingerprinting*
  6. Ghaznavi-Rad E, Nor Shamsudin M, Sekawi Z, Khoon LY, Aziz MN, Hamat RA, et al.
    J Clin Microbiol, 2010 Mar;48(3):867-72.
    PMID: 20089756 DOI: 10.1128/JCM.01112-09
    We define the epidemiology of predominant and sporadic methicillin-resistant Staphylococcus aureus (MRSA) strains in a central teaching and referral hospital in Kuala Lumpur, Malaysia. This is done on the basis of spa sequencing, multilocus sequence typing (MLST), staphylococcal cassette chromosome mec (SCCmec) typing, and virulence gene profiling. During the period of study, the MRSA prevalence was 44.1%, and 389 MRSA strains were included. The prevalence of MRSA was found to be significantly higher in the patients of Indian ethnicity (P < 0.001). The majority (92.5%) of the isolates belonged to ST-239, spa type t037, and possessed the type III or IIIA SCCmec. The arginine catabolic mobile element (ACME) arcA gene was detected in three (1.05%) ST-239 isolates. We report the first identification of ACME arcA gene-positive ST-239. Apart from this predominant clone, six (1.5%) isolates of ST-22, with two related spa types (t032 and t4184) and a singleton (t3213), carrying type IVh SCCmec, were detected for the first time in Asia. A limited number of community-acquired (CA) MRSA strains were also detected. These included ST-188/t189 (2.1%), ST-1/t127 (2.3%), and ST-7/t091 (1%). Panton-Valentin leukocidin (PVL) was detected in all ST-1 and ST-188 strains and in 0.7% of the ST-239 isolates. The majority of the isolates carried agr I, except that ST-1 strains were agr III positive. Virulence genes seg and sei were seen only among ST-22 isolates. In conclusion, current results revealed the predominance of ST-239-SCCmec III/IIIA and the penetration of ST-22 with different virulence gene profiles. The emergence in Malaysia of novel clones of known epidemic and pathogenic potential should be taken seriously.
    Matched MeSH terms: DNA Fingerprinting
  7. Fomukong NG, Tang TH, al-Maamary S, Ibrahim WA, Ramayah S, Yates M, et al.
    Tuber. Lung Dis., 1994 Dec;75(6):435-40.
    PMID: 7718832 DOI: 10.1016/0962-8479(94)90117-1
    DNA fingerprinting with the insertion sequence IS6110 (also known as IS986) has become established as a major tool for investigating the spread of tuberculosis. Most strains of Mycobacterium tuberculosis have multiple copies of IS6110, but a small minority carry a single copy only. We have examined selected strains from Malaysia, Tanzania and Oman, in comparison with M. bovis isolates and BCG strains carrying one or two copies of IS6110. The insertion sequence appears to be present in the same position in all these strains, which suggests that in these organisms the element is defective in transposition and that the loss of transposability may have occurred at an early stage in the evolution of the M. tuberculosis complex.
    Matched MeSH terms: DNA Fingerprinting*
  8. Ewart KM, Lightson AL, Sitam FT, Rovie-Ryan JJ, Mather N, McEwing R
    Forensic Sci Int Genet, 2020 01;44:102187.
    PMID: 31670244 DOI: 10.1016/j.fsigen.2019.102187
    The illegal ivory trade continues to drive elephant poaching. Large ivory seizures in Africa and Asia are still commonplace. Wildlife forensics is recognised as a key enforcement tool to combat this trade. However, the time and resources required to effectively test large ivory seizures is often prohibitive. This limits or delays testing, which may impede investigations and/or prosecutions. Typically, DNA analysis of an ivory seizure involves pairing and sorting the tusks, sampling the tusks, powdering the sample, decalcification, then DNA extraction. Here, we optimize the most time-consuming components of this process: sampling and decalcification. Firstly, using simulations, we demonstrate that tusks do not need to be paired to ensure an adequate number of unique elephants are sampled in a large seizure. Secondly, we determined that directly powdering the ivory using a Dremel drill with a high-speed cutter bit, instead of cutting the ivory with a circular saw and subsequently powdering the sample in liquid nitrogen with a freezer mill, produces comparable results. Finally, we optimized a rapid 2 -h decalcification protocol that produces comparable results to a standard 3-day protocol. We tested/optimised the protocols on 33 raw and worked ivory samples, and demonstrated their utility on a case study, successfully identifying 94% of samples taken from 123 tusks. Using these new rapid protocols, the entire sampling and DNA extraction process takes less than one day and requires less-expensive equipment. We expect that the implementation of these rapid protocols will promote more consistent and timely testing of ivory seizures suitable for enforcement action.
    Matched MeSH terms: DNA Fingerprinting*
  9. Chung NE, Castilani A, Tierra WE, Beh P, Mahmood MS
    Forensic Sci Int, 2017 Sep;278:367-373.
    PMID: 28806635 DOI: 10.1016/j.forsciint.2017.07.030
    On December 1st, 2014, the sinking of Oryong 501 occurred in the Bering Sea off the east coast of Russia. A total of 60 crew members, including 35 Indonesians, 13 Filipinos, 11 South Koreans and 1 Russian inspector were on board out of which only seven survived. Through an international rescue operation, the dead bodies of 27 were found and the remaining 26 crew are still missing. After transferring the dead bodies to the Busan Harbor in South Korea, the operation to identify the deceased began involving DVI teams from three countries: Korea, Indonesia and the Philippines. When a deep sea fishing boat sinks, it is very difficult to obtain antemortem data of the crew who had been on board for a long time. This is especially so if the crews are multinational. Further, the accuracy of the antemortem data provided by the families may be questionable, and the provided data is often not standardized. Despite the fact that the antemortem data were received in different formats, the identification process for the bodies of the 27 crew from the Oryong sinking was quickly completed through the cooperation among the three DVI teams. This case is an excellent example of how efficiently a DVI operation can be conducted in the Asia Pacific region. Issues raised during this operation should enable even better preparation for similar events in the future.
    Matched MeSH terms: DNA Fingerprinting
  10. Chua KH, See KH, Thong KL, Puthucheary SD
    Trop Biomed, 2010 Dec;27(3):517-24.
    PMID: 21399594 MyJurnal
    Melioidosis is an infectious disease caused by Burkholderia pseudomallei and endemic in Southeast Asia. One hundred and forty six clinical isolates of B. pseudomallei from different states in Malaysia were obtained and molecular typing was carried out using pulsed-field gel electrophoresis (PFGE). Overall, nine clusters were successfully identified. Burkholderia pseudomallei isolates used in this study were found to be genetically diverse and there were differences in the clusters of isolates from peninsular and east Malaysia. BS9 cluster was the most common cluster and found in all the states while BS2 cluster only existed in a particular state. Based on the PFGE analysis, the distribution of different B. pseudomallei clinical isolates in Malaysia was mapped.
    Matched MeSH terms: DNA Fingerprinting*
  11. Chong, Lee Kim
    MyJurnal
    Animal species identification is one of the important fields in forensic science. Unlike human forensics which makes use of DNA fingerprinting techniques to identify individuals of the same species - humans, animal forensic species identification is much more complicated as it involves the ability to identify and distinguish between hundreds to thousands of species when the material evidence is only a trace of animal tissue without the presence of any visual physical morphology. It is even more difficult when the specimen is an unknown and no reference material is available. Animal species identification is not only important for the prevention of wildlife crimes for the purpose of wildlife protection and conservation but it is also becoming more and more significant in food safety issues especially for the meat industry. Owing to the demand and the necessity of providing such services for regulation and enforcement in the context of environmental protection, food safety and biosafety, the Department of Chemistry (DOC)
    Malaysia has initiated the use of DNA techniques employing the most widely used genetic markers as part of its scientific solution for animal species identification.
    Matched MeSH terms: DNA Fingerprinting
  12. Chong LK, Tan SG, Yusoff K, Siraj SS
    Biochem Genet, 2000 Apr;38(3-4):63-76.
    PMID: 11100266
    This work represents the first application of the amplified fragment length polymorphism (AFLP) technique and the random amplified polymorphic DNA (RAPD) technique in the study of genetic variation within and among five geographical populations of M. nemurus. Four AFLP primer combinations and nine RAPD primers detected a total of 158 and 42 polymorphic markers, respectively. The results of AFLP and RAPD analysis provide similar conclusions as far as the population clustering analysis is concerned. The Sarawak population, which is located on Borneo Island, clustered by itself and was thus isolated from the rest of the populations located in Peninsular Malaysia. Both marker systems revealed high genetic variability within the Universiti Putra Malaysia (UPM) and Sarawak populations. Three subgroups each from the Kedah, Perak, and Sarawak populations were detected by AFLP but not by RAPD. Unique AFLP fingerprints were also observed in some unusual genotypes sampled in Sarawak. This indicates that AFLP may be a more efficient marker system than RAPD for identifying genotypes within populations.
    Matched MeSH terms: DNA Fingerprinting
  13. Chen CH, Shimada T, Elhadi N, Radu S, Nishibuchi M
    Appl Environ Microbiol, 2004 Apr;70(4):1964-72.
    PMID: 15066786
    Of 97 strains of Vibrio cholerae isolated from various seafoods in Malaysia in 1998 and 1999, 20 strains carried the ctx gene and produced cholera toxin. Fourteen, one, and five of these toxigenic strains belonged to the O139, O1 Ogawa, and rough serotypes, respectively. The rough strains had the rfb gene of the O1 serotype. The toxigenic strains varied in their biochemical characteristics, the amount of cholera toxin produced, their antibiograms, and the presence or absence of the pTLC plasmid sequence. DNA fingerprinting analysis by arbitrarily primed PCR, ribotyping, and a pulsed-field gel electrophoresis method classified the toxigenic strains into 3, 7, and 10 types, respectively. The relatedness of these toxigenic strains to clinical strains isolated in other countries and from international travelers was examined by using a dendrogram constructed from the pulsed-field gel electrophoresis profiles. The results of the examination of the antibiogram and the possession of the toxin-linked cryptic plasmid were consistent with the dendrogram-based relatedness: the O139 strains isolated from Malaysian seafoods could be separated into two groups that appear to have been introduced from the Bengal area independently. The rough strains of Malaysian seafood origin formed one group and belonged to a cluster unique to the Thailand-Malaysia-Laos region, and this group may have persisted in this area for a long period. The single O1 Ogawa strain detected in Malaysian seafood appears to have an origin and route of introduction different from those of the O139 and the rough strains.
    Matched MeSH terms: DNA Fingerprinting
  14. Chang YM, Swaran Y, Phoon YK, Sothirasan K, Sim HT, Lim KB, et al.
    Forensic Sci Int Genet, 2009 Jun;3(3):e77-80.
    PMID: 19414156 DOI: 10.1016/j.fsigen.2008.07.007
    17 Y-STRs (DYS456, DYS389I, DYS390, DYS389II, DYS458, DYS19, DYS385a/b, DYS393, DYS391, DYS439, DYS635 or Y-GATA C4, DYS392, Y-GATA H4, DYS437, DYS438 and DYS448) have been analyzed in 320 male individuals from Sarawak, an eastern state of Malaysia on the Borneo island using the AmpFlSTR Y-filer (Applied Biosystems, Foster City, CA). These individuals were from three indigenous ethnic groups in Sarawak comprising of 103 Ibans, 113 Bidayuhs and 104 Melanaus. The observed 17-loci haplotypes and the individual allele frequencies for each locus were estimated, whilst the locus diversity, haplotype diversity and discrimination capacity were calculated in the three groups. Analysis of molecular variance (AMOVA) indicated that 87.6% of the haplotypic variation was found within population and 12.4% between populations (fixation index F(ST)=0.124, p=0.000). This study has revealed that the indigenous populations in Sarawak are distinctly different to each other, and to the three major ethnic groups in Malaysia (Malays, Chinese and Indians), with the Melanaus having a strikingly high degree of shared haplotypes within. There are rare unusual variants and microvariants that were not present in Malaysian Malay, Chinese or Indian groups. In addition, occurrences of DYS385 duplications which were only noticeably present in Chinese group previously was also observed in the Iban group whilst null alleles were detected at several Y-loci (namely DYS19, DYS392, DYS389II and DYS448) in the Iban and Melanau groups.
    Matched MeSH terms: DNA Fingerprinting
  15. Chang YM, Perumal R, Keat PY, Yong RY, Kuehn DL, Burgoyne L
    Forensic Sci Int, 2007 Mar 2;166(2-3):115-20.
    PMID: 16765004
    The use of STR multiplexes with the incorporated gender marker Amelogenin is common practice in forensic DNA analysis. However, when a known male sample shows a dropout of the Amelogenin Y-allele, the STR system falsely genotypes it as a female. To date, our laboratory has observed 18 such cases: 12 from our Y-STR database and six from casework. A study on 980 male individuals in the Malaysian population using the AmpFlSTR Y-filer has revealed a distinct Y-chromosome haplotype associated with the Amelogenin nulls. Our results showed that whilst the Amelogenin nulls were noticeably absent among the Chinese, both the Indians and Malays exhibited such mutations at 3.2 and 0.6%, respectively. It was also found that the Amelogenin negative individuals predominantly belonged to the J2e lineage, suggesting the possibility of a common ancestor for at least some of these chromosomes. The null frequencies showed concordance with the data published in Chang et al. [Higher failures of Amelogenin sex test in an Indian population group, J. Forensic Sci. 48 (2003) 1309-1313] on a smaller Malaysian population of 338 males which used a Y-STR triplex. In the current study, apart from the absence of the Amelogenin Y-locus, a complete absence of the DYS458 locus in all the nulls was also observed. This study together with the 2003 study has indicated a similar deletion region exists on the Y(p)11.2 band in all the 18 Y-chromosomes. Using bioinformatics, this deletion has been mapped to a region of at least 1.13 Mb on the Y(p)11.2 encompassing the Amelogenin, MSY1 minisatellite and DYS458 locus. Further, the Y-filer haplotypes revealed an additional null at Y-GATA H4 in two of the Indian males presented here.
    Matched MeSH terms: DNA Fingerprinting
  16. Chang YM, Perumal R, Keat PY, Kuehn DL
    Forensic Sci Int, 2007 Mar 22;167(1):70-6.
    PMID: 16457976
    We have analyzed 16 Y-STR loci (DYS456, DYS389I, DYS390, DYS389II, DYS458, DYS19, DYS385a/b, DYS393, DYS391, DYS439, DYS635 or Y-GATA C4, DYS392, Y-GATA H4, DYS437, DYS438 and DYS448) from the non-recombining region of the human Y-chromosome in 980 male individuals from three main ethnic populations in Malaysia (Malay, Chinese, Indian) using the AmpFlSTR((R)) Y-filertrade mark (Applied Biosystems, Foster City, CA). The observed 17-loci haplotypes and the individual allele frequencies for each locus were estimated, whilst the locus diversity, haplotype diversity and discrimination capacity were calculated in the three ethnic populations. Analysis of molecular variance indicated that 88.7% of the haplotypic variation is found within population and 11.3% is between populations (fixation index F(ST)=0.113, p=0.000). This study has revealed Y-chromosomes with null alleles at several Y-loci, namely DYS458, DYS392, DYS389I, DYS389II, DYS439, DYS448 and Y-GATA H4; and several occurrences of duplications at the highly polymorphic DYS385 loci. Some of these deleted loci were in regions of the Y(q) arm that have been implicated in the occurrence of male infertility.
    Matched MeSH terms: DNA Fingerprinting
  17. Chang YM, Burgoyne LA, Both K
    J Forensic Sci, 2003 Nov;48(6):1309-13.
    PMID: 14640276
    The human sex test in forensic multiplexes is based on the amelogenin gene on both the X and Y chromosomes commonly used in sex genotyping. In this study of 338 male individuals in a Malaysian population comprising Malays, Chinese and Indians, using the AmpFlSTR Profiler Plus kit, the amelogenin test gave a significant proportion of null alleles in the Indian ethnic group (3.6% frequency) and 0.88% frequency in the Malay ethnic group due to a deletion of the gene on the Y chromosome. This sex test also failed in a forensic casework sample. Failure of the amelogenin test highlights the need for more reliable sex determination than is offered by the amelogenin locus in the Malay and Indian populations. The gender of the Indian-Malay amelogenin nulls was confirmed by the presence of three Y-STR alleles (DYS438, DYS390 and DYS439). For the Indian ethnic group, one of the Y-STR forms a stable haplotype with the amelogenin null. The amelogenin-deletion individuals also showed a null with a male-specific minisatellite MSY1, indicating that a very large deletion was involved that included the amelogenin and the MSY1 loci on the short arm of the Y chromosomes (Yp).
    Matched MeSH terms: DNA Fingerprinting/methods*
  18. Chan Mun Wei J, Zhao Z, Li SC, Ng YK
    Comput Biol Chem, 2018 Jun;74:428-433.
    PMID: 29625871 DOI: 10.1016/j.compbiolchem.2018.03.010
    DNA fingerprinting, also known as DNA profiling, serves as a standard procedure in forensics to identify a person by the short tandem repeat (STR) loci in their DNA. By comparing the STR loci between DNA samples, practitioners can calculate a probability of match to identity the contributors of a DNA mixture. Most existing methods are based on 13 core STR loci which were identified by the Federal Bureau of Investigation (FBI). Analyses based on these loci of DNA mixture for forensic purposes are highly variable in procedures, and suffer from subjectivity as well as bias in complex mixture interpretation. With the emergence of next-generation sequencing (NGS) technologies, the sequencing of billions of DNA molecules can be parallelized, thus greatly increasing throughput and reducing the associated costs. This allows the creation of new techniques that incorporate more loci to enable complex mixture interpretation. In this paper, we propose a computation for likelihood ratio that uses NGS (next generation sequencing) data for DNA testing on mixed samples. We have applied the method to 4480 simulated DNA mixtures, which consist of various mixture proportions of 8 unrelated whole-genome sequencing data. The results confirm the feasibility of utilizing NGS data in DNA mixture interpretations. We observed an average likelihood ratio as high as 285,978 for two-person mixtures. Using our method, all 224 identity tests for two-person mixtures and three-person mixtures were correctly identified.
    Matched MeSH terms: DNA Fingerprinting
  19. Carlsohn MR, Groth I, Tan GYA, Schütze B, Saluz HP, Munder T, et al.
    Int J Syst Evol Microbiol, 2007 Jul;57(Pt 7):1640-1646.
    PMID: 17625209 DOI: 10.1099/ijs.0.64903-0
    Three actinomycetes isolated from the surfaces of rocks in a medieval slate mine were examined in a polyphasic taxonomic study. Chemotaxonomic and morphological characteristics of the isolates were typical of strains of the genus Amycolatopsis. The isolates had identical 16S rRNA gene sequences and formed a distinct phyletic line towards the periphery of the Amycolatopsis mediterranei clade, being most closely related to Amycolatopsis rifamycinica. The organisms shared a wide range of genotypic and phenotypic markers that distinguished them from their closest phylogenetic neighbours. On the basis of these results, a novel species, Amycolatopsis saalfeldensis sp. nov., is proposed. The type strain is HKI 0457(T) (=DSM 44993(T)=NRRL B-24474(T)).
    Matched MeSH terms: DNA Fingerprinting
  20. Bilung, Lesley Maurice, Yong, Sy Fuh, Linang, Velnetti, Benjamin, Adam, Vincent, Micky, Apun, Kasing, et al.
    MyJurnal
    Thirty one Vibrio cholera isolates recovered from cholera outbreak in Bintulu, Sarawak (Malaysia) were detected with the presence of ctx gene by using specific PCR. These isolates were further characterized and differentiated by using the Enterobacterial Repetitive Intergenic Consensus PCR (ERIC-PCR) and BOX-PCR to determine their genomic fingerprints. The specific PCR result confirmed the identities of 27 isolates out of 31 as pathogenic V. cholerae. The ERIC-PCR generated several genetic profiles consisting of 4-6 bands with sizes in the range of 100 to 600 bp, while the BOX-PCR produced profiles numbering 2-7 bands in the sizes between 200 to 1000 bp. Based on the dendrogram generated from the DNA fingerprinting profiles (ERIC-PCR and BOX-PCR), all of the isolates can be divided into 2 main clusters that is further divided into 2 sub-clusters. The low genetic diversity of the isolates indicated the outbreak of V. cholerae in the study area was due to the contamination from a single or few sources of V. cholerae.
    Matched MeSH terms: DNA Fingerprinting
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links