Displaying publications 81 - 100 of 135 in total

Abstract:
Sort:
  1. Yuniati R, Sihombing NRB, Nauphar D, Tiawarman B, Kartikasari DS, Dewi M, et al.
    Intractable Rare Dis Res, 2021 May;10(2):114-121.
    PMID: 33996357 DOI: 10.5582/irdr.2020.03143
    Xeroderma pigmentosum (XP) is a rare autosomal recessive disease characterized by hypersensitivity of the skin to ultraviolet radiation and other carcinogenic agents. This ailment is characterized by increased photosensitivity, skin xerosis, early skin aging, actinic keratosis, erythematous lesions, and hyperpigmentation macules. In this serial case report, we presented four cases with XP from two families in Indonesia. Both families were referred from rural referral health centers, and each family has two affected siblings. They had freckle-like pigmentation on the face, trunk, and extremities, which progressed since childhood. One patient of family 2 died because of an infectious disease. Histopathological examination using cytokeratine (CK), CD10, and Ber-EP4 staining from available tissue biopsy of one affected case of family 1 identified basal cell carcinoma (BCC) on the cheek and melanoma on the right eye. Mutation analysis found ERCC2, c2047C>T and XPC, c1941T>A in the first and second families, respectively. We suppose that this is the first case report of XP in Indonesia that incorporates clinical examination, genetic analysis, and extensive histopathological examination, including immunohistochemistry staining, and a novel pathogenic variant of XPC was found in the second family.
    Matched MeSH terms: DNA Mutational Analysis
  2. Zainal SA, Md Daud MK, Abd Rahman N, Zainuddin Z, Alwi Z
    Int J Pediatr Otorhinolaryngol, 2012 Aug;76(8):1175-9.
    PMID: 22613756 DOI: 10.1016/j.ijporl.2012.04.027
    To identify the mutations in the GJB2 gene and to determine its association with non-syndromic hearing loss in Malays.
    Matched MeSH terms: DNA Mutational Analysis
  3. Dorajoo R, Blakemore AI, Sim X, Ong RT, Ng DP, Seielstad M, et al.
    Int J Obes (Lond), 2012 Jan;36(1):159-63.
    PMID: 21544081 DOI: 10.1038/ijo.2011.86
    Recent genome-wide association studies (GWAS) have identified 38 obesity-associated loci among European populations. However, their contribution to obesity in other ethnicities is largely unknown.
    Matched MeSH terms: DNA Mutational Analysis
  4. Hamid S, Lim KP, Zain RB, Ismail SM, Lau SH, Mustafa WM, et al.
    Int J Mol Med, 2007 Mar;19(3):453-60.
    PMID: 17273794
    We have established 3 cell lines ORL-48, -115 and -136 from surgically resected specimens obtained from untreated primary human oral squamous cell carcinomas of the oral cavity. The in vitro growth characteristics, epithelial origin, in vitro anchorage independency, human papilloma-virus (HPV) infection, microsatellite instability status, karyotype and the status of various cell cycle regulators and gatekeepers of these cell lines were investigated. All 3 cell lines grew as monolayers with doubling times ranging between 26.4 and 40.8 h and were immortal. Karyotyping confirmed that these cell lines were of human origin with multiple random losses and gains of entire chromosomes and regions of chromosomes. Immunohistochemistry staining of cytokeratins confirmed the epithelial origin of these cell lines, and the low degree of anchorage independency expressed by these cell lines suggests non-transformed phenotypes. Genetic analysis identified mutations in the p53 gene in all cell lines and hypermethylation of p16INK4a in ORL-48 and -136. Analysis of MDM2 and EGFR expression indicated MDM2 overexpression in ORL-48 and EGFR overexpression in ORL-136 in comparison to the protein levels in normal oral keratinocytes. Analysis of the BAT-26 polyadenine repeat sequence and MLH-1 and MSH-2 repair enzymes demonstrated that all 3 cell lines were microsatellite stable. The role of HPV in driving carcinogenesis in these tumours was negated by the absence of HPV. Finally, analysis of the tissues from which these cell lines were derived indicated that the cell lines were genetically representative of the tumours, and, therefore, are useful tools in the understanding of the molecular changes associated with oral cancers.
    Matched MeSH terms: DNA Mutational Analysis
  5. Yusoff NM, Shirakawa T, Nishiyama K, Ghazali S, Ee CK, Orita A, et al.
    Int J Hematol, 2002 Aug;76(2):149-52.
    PMID: 12215013 DOI: 10.1007/BF02982577
    Multiplex polymerase chain reaction (PCR) using multiple tandem forward primers and a common reverse primer (MPTP) was recently established as a comprehensive screening method for mutations in X-linked recessive diseases. In the work reported here, MPTP was used to scan for mutations of the glucose-6-phosphate dehydrogenase (G6PD) gene. Mutations in exons 3,4,5,6,7,9, 11, and 12 of the G6PD gene were screened by MPTP in 93 unrelated Malaysian patients with G6PD deficiency. Of the 93 patients, 80 (86%) had identified mutations. Although all of these were missense mutations, identified nucleotide changes were heterogeneous, with 9 mutations involving various parts of the exons. These 9 mutations were G-to-A nucleotide changes at nucleotide 871 of the G6PD gene (G871A), corresponding to G6PD Viangchan, G6PD Mediterranean (C563T), G6PD Vanua Lava (T383C), G6PD Coimbra (C592T), G6PD Kaiping (G1388A), G6PD Orissa (C131G), G6PD Mahidol (G487A), G6PD Canton (G1376T), and G6PD Chatham (G1003A). Our results document heterogeneous mutations of the G6PD gene in the Malaysian population.
    Matched MeSH terms: DNA Mutational Analysis
  6. Low DE, Tang MM, Surana U, Lee JY, Pramano ZAD, Leong KF
    Int J Dermatol, 2019 Oct;58(10):e190-e193.
    PMID: 31192449 DOI: 10.1111/ijd.14518
    Matched MeSH terms: DNA Mutational Analysis
  7. Jo T, Momita S, Sadamori N, Tomonaga M, Fucharoem S, Fukumaki Y, et al.
    Intern. Med., 1992 Feb;31(2):269-72.
    PMID: 1600278
    A 26-year-old Chinese-Malaysian female patient with beta-thalassemia is presented. The main hematological values found in this patient were as follows: 1) normocytic hypochromic anemia (RBC 444 x 10(4)/microliters, Hb 11.8 g/dl) with marked anisopoikilocytosis, 2) erythroid hyperplasia, and 3) increased HbF (HbA 41.4%, HbA2 2.9%, HbF 48.9%). DNA obtained from peripheral leukocytes was analyzed using dot blot hybridization of the polymerase chain reaction (PCR)-amplified DNA with allele-specific oligonucleotide probes. A C----T substitution at position 654 of the second intervening sequence (IVS-2) was detected in her beta-globin clone.
    Matched MeSH terms: DNA Mutational Analysis
  8. Lee AS, Ho GH, Oh PC, Balram C, Ooi LL, Lim DT, et al.
    Hum Mutat, 2003 Aug;22(2):178.
    PMID: 12872263
    The mutation spectrum of the BRCA1 gene among ethnic groups from Asia has not been well studied. We investigated the frequency of mutations in the BRCA1 gene among Malay breast cancer patients from Singapore, independent of family history. By using the protein truncation test (PTT) and direct sequencing, BRCA1 mutations were detected in 6 of 49 (12.2%) unrelated patients. Four novel missense mutations in exon 11, T557A (1788A>G), T582A (1863A>G), N656S (2086A>G) and P684S (2169C>T) were identified in one patient. Two patients had missense mutations in exon 23, V1809A (5545T>C), which has been previously detected in individuals from Central and Eastern Europe. Three unrelated patients had the deleterious 2846insA frameshift mutation in exon 11. Methylation specific PCR (MSP) of the promoter region of the BRCA1 gene detected hypermethylation of tumor DNA in an additional 2 patients. Haplotype analysis using the microsatellite markers D17S855, D17S1323 and D17S1325 revealed a common haplotype for the three unrelated patients and their three relatives with the 2846insA mutation. These findings strongly suggest that the 2846insA mutation, the most common deleterious mutation in this study, may possibly be a founder mutation in breast cancer patients of Malay ethnic background.
    Matched MeSH terms: DNA Mutational Analysis/methods
  9. Ainoon O, Yu YH, Amir Muhriz AL, Boo NY, Cheong SK, Hamidah NH
    Hum Mutat, 2003 Jan;21(1):101.
    PMID: 12497642 DOI: 10.1002/humu.9103
    We performed DNA analysis using cord blood samples on 86 male Malay neonates diagnosed as G6PD deficiency in the National University of Malaysia Hospital by a combination of rapid PCR-based techniques, single-stranded conformation polymorphism analysis (SSCP) and DNA sequencing. We found 37.2% were 871G>A (G6PD Viangchan), 26.7% were nt 563 C>T (G6PD Mediterranean) and 15.1% were 487G>A (G6PD Mahidol) followed by 4.7% 1376G>T (G6PD Canton), 3.5% 383T>C (G6PD Vanua Lava), 3.5% 592C>T (G6PD Coimbra), 2.3% 1388G>A (G6PD Kaiping), 2.3% 1360C>T (G6PD Union), 2.3% 1003G>A (G6PD Chatham), 1.2% 131C>G (G6PD Orissa) and 1.2% 1361G>A (G6PD Andalus). Seventy-one (82.6%) of the 86 G6PD-deficient neonates had neonatal jaundice. Fifty seven (80%) of the 71 neonates with jaundice required phototherapy with only one neonate progressing to severe hyperbilirubinemia (serum bilirubin >340 micromol/l) requiring exchange transfusion. There was no significant difference in the incidence of neonatal jaundice, mean serum bilirubin level, mean age for peak serum bilirubin, percentage of babies requiring phototherapy and mean number of days of phototherapy between the three common variants. In conclusion, the molecular defects of Malay G6PD deficiency is heterogeneous and G6PD Viangchan, Mahidol and Mediterranean account for at least 80% of the cases. Our findings support the observation that G6PD Viangchan and Mahidol are common Southeast Asian variants. Their presence in the Malays suggests a common ancestral origin with the Cambodians, Laotians and Thais. Our findings together with other preliminary data on the presence of the Mediterranean variant in this region provide evidence of strong Arab influence in the Malay Archipelago.
    Matched MeSH terms: DNA Mutational Analysis
  10. Tan LP, Ng BK, Balraj P, Poh BH, Lim PK, Peh SC
    Hum Genet, 2005 Dec;118(3-4):539-40.
    PMID: 16521263
    Matched MeSH terms: DNA Mutational Analysis
  11. Iwai K, Hirono A, Matsuoka H, Kawamoto F, Horie T, Lin K, et al.
    Hum Genet, 2001 Jun;108(6):445-9.
    PMID: 11499668
    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a heterogeneous enzyme abnormality with high frequency in tropical areas. We performed population screening and molecular studies of G6PD variants to clarify their distribution and features in Southeast Asia. A total of 4317 participants (2019 males, 2298 females) from 16 ethnic groups in Myanmar, Lao in Laos, and Amboinese in Indonesia were screened with a single-step screening method. The prevalence of G6PD-deficient males ranged from 0% (the Akha) to 10.8% (the Shan). These G6PD-deficient individuals and 12 G6PD-deficient patients who had been diagnosed at hospitals in Indonesia and Malaysia were subjected to molecular analysis by a combination of polymerase-chain-reaction-based single-strand conformation polymorphism analysis and direct sequencing. Ten different missense mutations were identified in 63 G6PD-deficient individuals (50 hemizygotes, 11 heterozygotes, and 2 homozygotes) from 14 ethnic groups. One missense mutation (1291 G-->A) found in an Indonesian Chinese, viz., G6PD Surabaya, was previously unknown. The 487 G-->A (G6PD Mahidol) mutation was widely seen in Myanmar, 383 T-->C (G6PD Vanua Lava) was specifically found among Amboinese, 871 G-->A (G6PD Viangchan) was observed mainly in Lao, and 592 C-->T (G6PD Coimbra) was found in Malaysian aborigines (Orang Asli). The other five mutations, 95 A-->G (G6PD Gaohe), 1003 G-->A (G6PD Chatham), 1360 C-->T (G6PD Union), 1376 G-->T (G6PD Canton), and 1388 G-->A (G6PD Kaiping) were identified mostly in accordance with distributions reported previously.
    Matched MeSH terms: DNA Mutational Analysis
  12. Furuumi H, Firdous N, Inoue T, Ohta H, Winichagoon P, Fucharoen S, et al.
    Hemoglobin, 1998 Mar;22(2):141-51.
    PMID: 9576331
    We have systematically analyzed beta-thalassemia genes using polymerase chain reaction-related techniques, dot-blot hybridization with oligonucleotide probes, allele specific-polymerase chain reaction, and sequencing of amplified DNA fragments from 41 unrelated patients, including 37 beta-thalassemia homozygotes, three with beta-thalassemia/Hb E, and one with beta-thalassemia/Hb S. Four different beta-thalassemia mutations were detected in 78 alleles. These are the IVS-I-5 (G-->C), codon 30 (AGG-->ACG) [also indicated as IVS-I (-1)], IVS-I-1 (G-->A), and codons 41/42 (-TTCT) mutations. The distribution of the beta-thalassemia mutations in the Maldives is 58 alleles (74.3%) with the IVS-I-5 (G-->C) mutation, 12 (15.4%) with the codon 30 (AGG-->ACG) mutation, seven (9%) with the IVS-I-1 (G-->A) mutation, and one with the codons 41/42 (-TTCT) mutation. The first three mutations account for 98.7% of the total number of beta-thalassemia chromosomes studied. These mutations are clustered in the region spanning 6 bp around the junction of exon 1 and the first intervening sequence of the beta-globin gene. These observations have significant implications for setting up a thalassemia prevention and control program in the Maldives. Analysis of haplotypes and frameworks of chromosomes bearing each beta-thalassemia mutation suggested that the origin and spread of these mutations were reflected by the historical record.
    Matched MeSH terms: DNA Mutational Analysis
  13. Lama R, Yusof W, Shrestha TR, Hanafi S, Bhattarai M, Hassan R, et al.
    Hematol Oncol Stem Cell Ther, 2022 Mar 01;15(1):279-284.
    PMID: 33592169 DOI: 10.1016/j.hemonc.2021.01.004
    BACKGROUND: Beta-thalassemia is a genetic disorder that is inherited in an autosomal recessive pattern. This genetic disease leads to a defective beta-globin hemoglobin chain causing partial or complete beta-globin chain synthesis loss. Beta-thalassemia major patients need a continuous blood transfusion and iron chelation to maintain the normal homeostasis of red blood cells (RBCs) and other systems in the body. Patients also require treatment procedures that are costly and tedious, resulting in a serious health burden for developing nations such as Nepal.

    METHODS: A total of 61 individuals clinically diagnosed to have thalassemia were genotyped with multiplex amplification refractory mutation system-polymerase chain reaction (ARMS-PCR). Twenty-one major mutations were investigated using allele-specific primers grouped into six different panels.

    RESULTS: The most common mutations found (23%) were IVS 1-5 (G-C) and Cd 26 (G-A) (HbE), followed by 619 deletion, Cd 8/9 (+G), Cd 16 (-C), Cd 41/42 (-TTCT), IVS 1-1 (G-T), Cd 19 (A-G), and Cd 17 (A-T) at 20%, 12%, 8%, 6%, 4%, 3%, and 1%, respectively.

    CONCLUSION: The results of this study revealed that Nepal's mutational profile is comparable to that of its neighboring countries, such as India and Myanmar. This study also showed that thalassemia could be detected across 17 Nepal's ethnic groups, especially those whose ancestors originated from India and Central Asia.

    Matched MeSH terms: DNA Mutational Analysis/methods
  14. Hasmad HN, Lai KN, Wen WX, Park DJ, Nguyen-Dumont T, Kang PCE, et al.
    Gynecol Oncol, 2016 05;141(2):318-322.
    PMID: 26541979 DOI: 10.1016/j.ygyno.2015.11.001
    OBJECTIVE: Despite the discovery of breast and ovarian cancer predisposition genes BRCA1 and BRCA2 more than two decades ago, almost all the available data relate to women of European ancestry, with only a handful of studies in Asian populations. In this study, we determined the frequency of germline alterations in BRCA1 and BRCA2 in ovarian cancer patients from a multi-ethnic cross-sectional cohort of Asian ovarian cancer patients from Malaysia.

    METHODS: From October 2008 to February 2015, we established a hospital-based cohort of ovarian cancer patients and the germline status of all 218 women with invasive epithelial ovarian cancer was tested using targeted amplification and sequencing of the intron-exon junctions and exonic sequences of BRCA1, BRCA2, PALB2 and TP53.

    RESULTS: BRCA1 and BRCA2 mutations were found in 8% (17 cases) and 3% (7 cases) of the ovarian cancer patients, respectively. Mutation carriers were diagnosed at a similar age to non-carriers, but were more likely to be Indian, have serous ovarian cancer, and have more relatives with breast or ovarian cancer. Nonetheless, 42% (10/24) of mutation carriers did not have any family history of breast or ovarian cancer and offering genetic counselling and genetic testing only to women with family history would mean that 35% (6/17) of BRCA1 mutation carriers and 57% (4/7) of BRCA2 mutation carriers would not be offered genetic testing.

    CONCLUSIONS: Our data suggest that, similar to Caucasians, a significant proportion of Asian ovarian cancer was attributed to germline mutations in BRCA1 and to a lesser extent in BRCA2.

    Matched MeSH terms: DNA Mutational Analysis
  15. Chua KH, Ng CC, Hilmi I, Goh KL
    Genet. Mol. Res., 2012;11(3):3115-21.
    PMID: 23007989
    Crohn's disease is a chronic, relapsing inflammatory bowel disease; it affects the mucosa and deeper layers of the digestive wall. Two Crohn's disease patients who carried the JW1 variant and two patients who carried the SNP5 variant were investigated for other co-inherited polymorphisms that could influence Crohn's disease development. Based on the sequencing results, a homozygous 5'-UTR-59 G to A variant in exon 1 (SNP6) was observed in a patient who carried SNP5, while a heterozygous SNP6 variant was detected in the other patient who carried SNP5. No other associated mutations or polymorphisms were detected in the two patients who carried the JW1 variant of the CARD15/NOD2 gene.
    Matched MeSH terms: DNA Mutational Analysis
  16. Tan KL, Tan JA, Wong YC, Wee YC, Thong MK, Yap SF
    Genet. Test., 2001;5(1):17-22.
    PMID: 11336396 DOI: 10.1089/109065701750168626
    Beta-thalassemia major patients have chronic anemia and are dependent on blood transfusions to sustain life. Molecular characterization and prenatal diagnosis of beta3-thalassemia is essential in Malaysia because about 4.5% of the population are heterozygous carriers for beta-thalassemia. The high percentage of compound heterozygosity (47.62%) found in beta-thalassemia major patients in the Thalassaemia Registry, University of Malaya Medical Centre (UMMC), Malaysia, also supports a need for rapid, economical, and sensitive protocols for the detection of beta-thalassemia mutations. Molecular characterization of beta-thalassemia mutations in Malaysia is currently carried out using ARMS, which detects a single beta-thalassemia mutation per PCR reaction. We developed and evaluated Combine amplification refractory mutation system (C-ARMS) techniques for efficient molecular detection of two to three beta-thalassemia mutations in a single PCR reaction. Three C-ARMS protocols were evaluated and established for molecular characterization of common beta-thalassemia mutations in the Malay and Chinese ethnic groups in Malaysia. Two C-ARMS protocols (cd 41-42/IVSII #654 and -29/cd 71-72) detected the beta-thalassemia mutations in 74.98% of the Chinese patients studied. The CARMS for cd 41-42/IVSII #654 detected beta-thalassemia mutations in 72% of the Chinese families. C-ARMS for cd 41-42/IVSI #5/cd 17 allowed detection of beta-thalassemia mutations in 36.53% of beta-thalassemia in the Malay patients. C-ARMS for cd 41-42/IVSI #5/cd 17 detected beta-thalassemia in 45.54% of the Chinese patients. We conclude that C-ARMS with the ability to detect two to three mutations in a single reaction provides more rapid and cost-effective protocols for beta-thalassemia prenatal diagnosis and molecular analysis programs in Malaysia.
    Matched MeSH terms: DNA Mutational Analysis/economics*; DNA Mutational Analysis/methods*
  17. Tan JA, Kok JL, Tan KL, Wee YC, George E
    Genes Genet Syst, 2009 Feb;84(1):67-71.
    PMID: 19420802
    Co-inheritance of alpha-thalassemia with homozygosity or compound heterozygosity for beta-thalassemia may ameliorate beta-thalassemia major. A wide range of clinical phenotypes is produced depending on the number of alpha-thalassemia alleles (-alpha/alphaalpha --/alphaalpha, --/-alpha). The co-inheritance of beta-thalassemia with alpha-thalassemia with a single gene deletion (-alpha/alphaalpha) is usually associated with thalassemia major. In contrast, the co-inheritance of beta-thalassemia with two alpha-genes deleted in cis or trans (--/alphaalpha or -alpha/-alpha) generally produces beta-thalassemia intermedia. In Southeast Asia, the most common defect responsible for alpha-thalassemia is the Southeast Asian (SEA) deletion of 20.5 kilobases. The presence of the SEA deletion with Hb Constant Spring (HbCS) produces HbH-CS disease. Co-inheritance of HbH-CS with compound heterozygosity for beta-thalassemia is very rare. This study presents a Malay patient with HbH-CS disorder and beta degrees/beta+-thalassemia. The SEA deletion was confirmed in the patient using a duplex-PCR. A Combine-Amplification Refractory Mutation System (C-ARMS) technique to simultaneously detect HbCS and Hb Quong Sze confirmed HbCS in the patient. Compound heterozygosity for CD41/42 and Poly A was confirmed using the ARMS. This is a unique case as the SEA alpha-gene deletion in cis (--SEA/alphaalpha) is generally not present in the Malays, who more commonly possess the two alpha-gene deletion in trans (-alpha/-alpha). In addition, the beta-globin gene mutation at CD41/42 is a common mutation in the Chinese and not in the Malays. The presence of both the SEA deletion and CD41/42 in the mother of the patient suggests the possible introduction of these two defects into the family by marriage with a Chinese.
    Matched MeSH terms: DNA Mutational Analysis/methods
  18. Chear CT, Ripen AM, Mohamed SA, Dhaliwal JS
    Gene, 2015 Apr 15;560(2):245-8.
    PMID: 25680287 DOI: 10.1016/j.gene.2015.02.019
    Bruton's tyrosine kinase (BTK), encoded by the BTK gene, is a cytoplasmic protein critical in B cell development. Mutations in the BTK gene cause X-linked agammaglobulinemia (XLA), a primary immunodeficiency with characteristically low or absent B cells and antibodies. This report describes a five year-old boy who presented with otitis externa, arthritis, reduced immunoglobulins and no B cells. Flow cytometry showed undetectable monocyte BTK expression. Sequencing revealed a novel mutation at exon 13 of the BTK gene which created a de novo splice site with a proximal 5 nucleotide loss resulting in a truncated BTK protein. The patient still suffered from ear infection despite intravenous immunoglobulin replacement therapy. In this study, mosaicism was seen only in the mother's genomic DNA. These results suggest that a combination of flow cytometry and BTK gene analysis is important for XLA diagnosis and carrier screening.
    Matched MeSH terms: DNA Mutational Analysis
  19. Baker RJ, Dickins B, Wickliffe JK, Khan FAA, Gaschak S, Makova KD, et al.
    Evol Appl, 2017 09;10(8):784-791.
    PMID: 29151870 DOI: 10.1111/eva.12475
    Currently, the effects of chronic, continuous low dose environmental irradiation on the mitochondrial genome of resident small mammals are unknown. Using the bank vole (Myodes glareolus) as a model system, we tested the hypothesis that approximately 50 generations of exposure to the Chernobyl environment has significantly altered genetic diversity of the mitochondrial genome. Using deep sequencing, we compared mitochondrial genomes from 131 individuals from reference sites with radioactive contamination comparable to that present in northern Ukraine before the 26 April 1986 meltdown, to populations where substantial fallout was deposited following the nuclear accident. Population genetic variables revealed significant differences among populations from contaminated and uncontaminated localities. Therefore, we rejected the null hypothesis of no significant genetic effect from 50 generations of exposure to the environment created by the Chernobyl meltdown. Samples from contaminated localities exhibited significantly higher numbers of haplotypes and polymorphic loci, elevated genetic diversity, and a significantly higher average number of substitutions per site across mitochondrial gene regions. Observed genetic variation was dominated by synonymous mutations, which may indicate a history of purify selection against nonsynonymous or insertion/deletion mutations. These significant differences were not attributable to sample size artifacts. The observed increase in mitochondrial genomic diversity in voles from radioactive sites is consistent with the possibility that chronic, continuous irradiation resulting from the Chernobyl disaster has produced an accelerated mutation rate in this species over the last 25 years. Our results, being the first to demonstrate this phenomenon in a wild mammalian species, are important for understanding genetic consequences of exposure to low-dose radiation sources.
    Matched MeSH terms: DNA Mutational Analysis
  20. Tan JA, Tan KL, Omar KZ, Chan LL, Wee YC, George E
    Eur J Pediatr, 2009 Sep;168(9):1049-54.
    PMID: 19034506 DOI: 10.1007/s00431-008-0877-9
    INTRODUCTION: Interactions of different hemoglobin variants with thalassemia alleles can result in various clinical phenotypes. HbE-beta-thalassemia generally manifests with severe anemia where individuals exhibit beta-thalassemia major with regular blood transfusions or beta-thalassemia intermedia with periodic blood transfusions. This study presents a unique Malay family with three beta-globin gene defects-HbE, Hb South Florida, and IVS1-1 (G-->A).

    MATERIALS AND METHODS: HbE activates a cryptic splice site that produces non-functional mRNAs. Hb South Florida is a rare beta-hemoglobin variant, and its interactions with other beta-thalassemia alleles have not been reported. IVS1-1 is a Mediterranean mutation that affects mRNA processing giving rise to beta(o)-thalassemia.

    RESULTS AND DISCUSSION: Fifteen mutations along the beta-globin gene complex were analyzed using the amplification refractory mutation system. Hb South Florida was identified by direct sequencing using genomic DNA.

    CONCLUSION: The affected child with HbE/IVS1-1 produced a beta-thalassemia major phenotype. Compound heterozygosity for Hb South Florida/IVS1-1 produced a beta-thalassemia carrier phenotype in the mother.

    Matched MeSH terms: DNA Mutational Analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links