Displaying publications 81 - 100 of 226 in total

Abstract:
Sort:
  1. Brodie JF
    Proc Natl Acad Sci U S A, 2017 11 07;114(45):11998-12002.
    PMID: 29078339 DOI: 10.1073/pnas.1710172114
    Large, fruit-eating vertebrates have been lost from many of the world's ecosystems. The ecological consequences of this defaunation can be severe, but the evolutionary consequences are nearly unknown because it remains unclear whether frugivores exert strong selection on fruit traits. I assessed the macroevolution of fruit traits in response to variation in the diversity and size of seed-dispersing vertebrates. Across the Indo-Malay Archipelago, many of the same plant lineages have been exposed to very different assemblages of seed-dispersing vertebrates. Phylogenetic analysis of >400 plant species in 41 genera and five families revealed that average fruit size tracks the taxonomic and functional diversity of frugivorous birds and mammals. Fruit size was 40.2-46.5% smaller in the Moluccas and Sulawesi (respectively), with relatively depauperate assemblages of mostly small-bodied animals, than in the Sunda Region (Borneo, Sumatra, and Peninsular Malaysia), with a highly diverse suite of large and small animals. Fruit color, however, was unrelated to vertebrate diversity or to the representation of birds versus mammals in the frugivore assemblage. Overhunting of large animals, nearly ubiquitous in tropical forests, could strongly alter selection pressures on plants, resulting in widespread, although trait-specific, morphologic changes.
    Matched MeSH terms: Ecology
  2. Daszak P, Zambrana-Torrelio C, Bogich TL, Fernandez M, Epstein JH, Murray KA, et al.
    Proc Natl Acad Sci U S A, 2013 Feb 26;110 Suppl 1:3681-8.
    PMID: 22936052 DOI: 10.1073/pnas.1201243109
    Emerging infectious diseases (EIDs) pose a significant threat to human health, economic stability, and biodiversity. Despite this, the mechanisms underlying disease emergence are still not fully understood, and control measures rely heavily on mitigating the impact of EIDs after they have emerged. Here, we highlight the emergence of a zoonotic Henipavirus, Nipah virus, to demonstrate the interdisciplinary and macroecological approaches necessary to understand EID emergence. Previous work suggests that Nipah virus emerged due to the interaction of the wildlife reservoir (Pteropus spp. fruit bats) with intensively managed livestock. The emergence of this and other henipaviruses involves interactions among a suite of anthropogenic environmental changes, socioeconomic factors, and changes in demography that overlay and interact with the distribution of these pathogens in their wildlife reservoirs. Here, we demonstrate how ecological niche modeling may be used to investigate the potential role of a changing climate on the future risk for Henipavirus emergence. We show that the distribution of Henipavirus reservoirs, and therefore henipaviruses, will likely change under climate change scenarios, a fundamental precondition for disease emergence in humans. We assess the variation among climate models to estimate where Henipavirus host distribution is most likely to expand, contract, or remain stable, presenting new risks for human health. We conclude that there is substantial potential to use this modeling framework to explore the distribution of wildlife hosts under a changing climate. These approaches may directly inform current and future management and surveillance strategies aiming to improve pathogen detection and, ultimately, reduce emergence risk.
    Matched MeSH terms: Ecology
  3. Kai Z, Woan TS, Jie L, Goodale E, Kitajima K, Bagchi R, et al.
    PLoS One, 2014;9(1):e86598.
    PMID: 24466163 DOI: 10.1371/journal.pone.0086598
    The value of local ecological knowledge (LEK) to conservation is increasingly recognised, but LEK is being rapidly lost as indigenous livelihoods change. Biodiversity loss is also a driver of the loss of LEK, but quantitative study is lacking. In our study landscape in SW China, a large proportion of species have been extirpated. Hence, we were interested to understand whether species extirpation might have led to an erosion of LEK and the implications this might have for conservation. So we investigated peoples' ability to name a selection of birds and mammals in their local language from pictures. Age was correlated to frequency of forest visits as a teenager and is likely to be closely correlated to other known drivers of the loss of LEK, such as declining forest dependence. We found men were better at identifying birds overall and that older people were better able to identify birds to the species as compared to group levels (approximately equivalent to genus). The effect of age was also stronger among women. However, after controlling for these factors, species abundance was by far the most important parameter in determining peoples' ability to name birds. People were unable to name any locally extirpated birds at the species level. However, contrary to expectations, people were better able to identify extirpated mammals at the species level than extant ones. However, extirpated mammals tend to be more charismatic species and several respondents indicated they were only familiar with them through TV documentaries. Younger people today cannot experience the sights and sounds of forest animals that their parents grew up with and, consequently, knowledge of these species is passing from cultural memory. We suggest that engaging older members of the community and linking the preservation of LEK to biodiversity conservation may help generate support for conservation.
    Matched MeSH terms: Ecology
  4. Nazeri M, Jusoff K, Madani N, Mahmud AR, Bahman AR, Kumar L
    PLoS One, 2012;7(10):e48104.
    PMID: 23110182 DOI: 10.1371/journal.pone.0048104
    One of the available tools for mapping the geographical distribution and potential suitable habitats is species distribution models. These techniques are very helpful for finding poorly known distributions of species in poorly sampled areas, such as the tropics. Maximum Entropy (MaxEnt) is a recently developed modeling method that can be successfully calibrated using a relatively small number of records. In this research, the MaxEnt model was applied to describe the distribution and identify the key factors shaping the potential distribution of the vulnerable Malayan Sun Bear (Helarctos malayanus) in one of the main remaining habitats in Peninsular Malaysia. MaxEnt results showed that even though Malaysian sun bear habitat is tied with tropical evergreen forests, it lives in a marginal threshold of bio-climatic variables. On the other hand, current protected area networks within Peninsular Malaysia do not cover most of the sun bears potential suitable habitats. Assuming that the predicted suitability map covers sun bears actual distribution, future climate change, forest degradation and illegal hunting could potentially severely affect the sun bear's population.
    Matched MeSH terms: Ecology/methods*; Ecology/trends
  5. Faheem M, Saeed S, Sajjad A, Wang S, Ali A
    PLoS One, 2019;14(9):e0222635.
    PMID: 31568475 DOI: 10.1371/journal.pone.0222635
    Aphids are major pests of wheat crop in Pakistan inflicting considerable economic losses. A better knowledge of landscape scale spatial distribution of aphids and their natural enemies could be used to improve integrated pest management programs. Therefore, the present study aimed to document spatio-temporal variations in populations of wheat aphids and their natural enemies in Pakistan. The 2-year survey study was carried out at ten experimental farms located in five districts of four contrasted agro-ecological zones of eastern Pakistan (Punjab area) i.e. District Chakwal in arid zone, Gujranwala in rice-cropped zone, Faisalabad in central mixed-cropped zone, and Khanewal and Multan in cotton-cropped zone. The dominant aphid species i.e. Schizaphis graminum, Rhopalosiphum padi, R. maidis and Sitobion avenae varied significantly among the five districts surveyed. The population of S. graminum was observed more abundant in arid, R. padi in rice, S. avenae in aird and rice, and R. maidis in cotton-I zones. Aphids ended their population dynamics on 25th March in central mixed-cropped zone and 12th April in other three zones. Various species of natural enemies, mainly Coccinella septumpunctata, C. undecimpunctata, Menochilus sexmaculata, Chrysoperla carnea, Syrphidae and parasitoid mummies were inconsistently observed in four agro-ecological zones. The population of C. septumpunctata, was observed more abundant in rice zone, C. undecimpunctata and C. carnea in cotton-I and arid zones, M. sexmaculata in cotton-I and II zones, Syrphidae in cotton-I zone and parasitoid mummies in rice and arid zones. There were no clear relationships between aphid and the natural enemy populations. The present study may serve as a baseline regarding distribution of wheat aphids and their natural enemies and the results provided insights for further studies on the potential top-down (natural enemies) versus bottom-up (fertilization and irrigation regimes) forces in management of wheat aphids in eastern Pakistan.
    Matched MeSH terms: Ecology
  6. da Silva LG, Kawanishi K, Henschel P, Kittle A, Sanei A, Reebin A, et al.
    PLoS One, 2017;12(4):e0170378.
    PMID: 28379961 DOI: 10.1371/journal.pone.0170378
    The geographic distribution and habitat association of most mammalian polymorphic phenotypes are still poorly known, hampering assessments of their adaptive significance. Even in the case of the black panther, an iconic melanistic variant of the leopard (Panthera pardus), no map exists describing its distribution. We constructed a large database of verified records sampled across the species' range, and used it to map the geographic occurrence of melanism. We then estimated the potential distribution of melanistic and non-melanistic leopards using niche-modeling algorithms. The overall frequency of melanism was ca. 11%, with a significantly non-random spatial distribution. Distinct habitat types presented significantly different frequencies of melanism, which increased in Asian moist forests and approached zero across most open/dry biomes. Niche modeling indicated that the potential distributions of the two phenotypes were distinct, with significant differences in habitat suitability and rejection of niche equivalency between them. We conclude that melanism in leopards is strongly affected by natural selection, likely driven by efficacy of camouflage and/or thermoregulation in different habitats, along with an effect of moisture that goes beyond its influence on vegetation type. Our results support classical hypotheses of adaptive coloration in animals (e.g. Gloger's rule), and open up new avenues for in-depth evolutionary analyses of melanism in mammals.
    Matched MeSH terms: Ecology
  7. Rama Rao S, Liew TS, Yow YY, Ratnayeke S
    PLoS One, 2018;13(5):e0196582.
    PMID: 29734361 DOI: 10.1371/journal.pone.0196582
    Invasive snails in the genus Pomacea have spread across Southeast Asia including Peninsular Malaysia. Their effects on natural and agricultural wetlands are appreciable, but species-specific effects are less clear because of morphological similarity among the species. Our objective was to establish diagnostic characteristics of Pomacea species in Malaysia using genetic and morphological criteria. The mitochondrial COI gene of 52 adult snails from eight localities in Peninsular Malaysia was amplified, sequenced, and analysed to verify species and phylogenetic relationships. Shells were compared using geometric morphometric and covariance analyses. Two monophyletic taxa, P. canaliculata and P. maculata, occurred in our samples. The mean ratio of shell height: aperture height (P = 0.042) and shell height: shell width (P = 0.007) was smaller in P. maculata. P. maculata co-occurred with P. canaliculata in five localities, but samples from three localities contained only P. canaliculata. This study is the first to confirm the presence of two of the most invasive species of Pomacea in Peninsular Malaysia using a molecular technique. P. canaliculata appears to be the more widespread species. Despite statistical differences, both quantitative and qualitative morphological characteristics demonstrated much interspecific overlap and intraspecific variability; thus, shell morphology alone cannot reliably verify species identity. Molecular techniques for distinguishing between these two highly invasive Pomacea species are needed to understand their specific ecological niches and to develop effective protocols for their management.
    Matched MeSH terms: Ecology
  8. Twining JP, Bernard H, Ewers RM
    PLoS One, 2017;12(5):e0177143.
    PMID: 28494004 DOI: 10.1371/journal.pone.0177143
    Human land use is continuously altering the natural environment, yet the greater ecological implications of this change for many groups that are key to healthy ecosystem functioning remains uncharacterised in the tropics. Terrestrial scavenging vertebrates are one such group, providing integral ecosystem services through the removal of carrion which is a crucial component of both nutrient cycling and disease dynamics. To explore how anthropogenic processes may affect forest scavengers, we investigated the changes in the relative occupancy of two important terrestrial scavengers along a gradient of land use intensity, ranging from protected forest to oil palm plantation in Borneo. We found the Malay civet (Viverra tangalunga) had highest, albeit variable, occupancy in areas of low land use intensity and the Southeast Asian water monitor (Varanus salvator macromaculatus) had highest occupancy in areas of high land use intensity. Land use had no effect on the combined occupancy of the two species. In high land use intensity sites, individual water monitors were larger and had better body condition, but at population level had a highly biased sex ratio with more males than females and increased signs of intraspecific conflict. We did not assess scavenging rate or efficiency as a process, but the high occupancy rates and apparent health of the scavengers in high land use intensity landscapes suggests this ecological process is robust to land use change.
    Matched MeSH terms: Ecology
  9. Hearn AJ, Cushman SA, Ross J, Goossens B, Hunter LTB, Macdonald DW
    PLoS One, 2018;13(7):e0200828.
    PMID: 30028844 DOI: 10.1371/journal.pone.0200828
    Niche differentiation, the partitioning of resources along one or more axes of a species' niche hyper-volume, is widely recognised as an important mechanism for sympatric species to reduce interspecific competition and predation risk, and thus facilitate co-existence. Resource partitioning may be facilitated by behavioural differentiation along three main niche dimensions: habitat, food and time. In this study, we investigate the extent to which these mechanisms can explain the coexistence of an assemblage of five sympatric felids in Borneo. Using multi-scale logistic regression, we show that Bornean felids exhibit differences in both their broad and fine-scale habitat use. We calculate temporal activity patterns and overlap between these species, and present evidence for temporal separation within this felid guild. Lastly, we conducted an all-subsets logistic regression to predict the occurrence of each felid species as a function of the co-occurrence of a large number of other species and showed that Bornean felids co-occurred with a range of other species, some of which could be candidate prey. Our study reveals apparent resource partitioning within the Bornean felid assemblage, operating along all three niche dimension axes. These results provide new insights into the ecology of these species and the broader community in which they live and also provide important information for conservation planning for this guild of predators.
    Matched MeSH terms: Ecology
  10. Hoe YC, Gibernau M, Wong SY
    Plant Biol (Stuttg), 2018 May;20(3):563-578.
    PMID: 29316090 DOI: 10.1111/plb.12687
    Field studies integrating pollination investigations with an assessment of floral scent composition and thermogenesis in tropical aroids are rather few. Thus, this study aimed to investigate the pollination biology of nine species belonging to Schismatoglottis Calyptrata Complex Clade. The flowering mechanism, visiting insect activities, reproductive system, thermogenesis and floral scent composition were examined. Anthesis for all species started at dawn and lasted 25-29 h. Colocasiomyia (Diptera, Drosophilidae) are considered the main pollinators for all the investigated species. Cycreon (Coleoptera, Hydrophilidae) are considered secondary pollinators as they are only present in seven of the nine host plants, despite the fact that they are the most effective pollen carrier, carrying up to 15 times more pollen grains than Colocasiomyia flies. However, the number of Colocasiomyia individuals was six times higher than Cycreon beetles. Chaloenus (Chrysomelidae, Galeuricinae) appeared to be an inadvertent pollinator. Atheta (Coleoptera, Staphylinidae) is considered a floral visitor in most investigated species of the Calyptrata Complex Clade in Sarawak, but a possible pollinator in S. muluensis. Chironomidae midges and pteromalid wasps are considered visitors in S. calyptrata. Thermogenesis in a biphasic pattern was observed in inflorescences of S. adducta, S. calyptrata, S. giamensis, S. pseudoniahensis and S. roh. The first peak occurred during pistillate anthesis; the second peak during staminate anthesis. Inflorescences of all investigated species of Calyptrata Complex Clade emitted four types of ester compound, with methyl ester-3-methyl-3-butenoic acid as a single major VOC (volatile organic compound). The appendix, pistillate zone, staminate zone and spathe emitted all these compounds. A mixed fly-beetle pollination system is considered an ancestral trait in the Calyptrata Complex Clade, persisting in Sarawak taxa, whereas the marked reduction of interpistillar staminodes in taxa from Peninsular Malaysia and especially, Ambon, Indonesia, is probably linked to a shift in these taxa to a fly-pollinated system.
    Matched MeSH terms: Ecology
  11. Rahman RA
    PhytoKeys, 2019;118:65-73.
    PMID: 30863195 DOI: 10.3897/phytokeys.118.32186
    A new species, Microchiritahairulii Rafidah (Gesneriaceae) from limestone hills in Perlis, Peninsular Malaysia, is described and illustrated. Diagnostic characters, description, detailed illustrations, geographical distribution, regional provisional conservation status assessment (Endangered) and ecological observations of the new taxon, as well as an updated key to Microchirita species in Peninsular Malaysia, are provided.
    Matched MeSH terms: Ecology
  12. Walsh RP, Newbery DM
    Philos Trans R Soc Lond B Biol Sci, 1999 Nov 29;354(1391):1869-83.
    PMID: 11605629
    Climatic records for Danum for 1985-1998, elsewhere in Sabah since 1879, and long monthly rainfall series from other rainforest locations are used to place the climate, and particularly the dry period climatology, of Danum into a world rainforest context. The magnitude frequency and seasonality of dry periods are shown to vary greatly within the world's rainforest zone. The climate of Danum, which is aseasonal but subject, as in 1997-1998, to occasional drought, is intermediate between less drought-prone north-western Borneo and the more drought-prone east coast. Changes through time in drought magnitude frequency in Sabah and rainforest locations elsewhere in South-East Asia and in the Neotropics are compared. The 1997-1998 ENSO-related drought event in Sabah is placed into a historical context. The effects of drought on tree growth and mortality in the tropics are assessed and a model relating intensity and frequency of drought disturbance to forest structure and composition is discussed.
    Matched MeSH terms: Ecology
  13. Ojonubah, James Omaiye, Mohd Hafiz Mohd
    MyJurnal
    Interactions between multispecies are usual incidence in their habitats. Such interactions among the species are thought to be asymmetric in nature, which combine with environmental factors can determine the distributions and abundances of the species. Most often, each species responds differentially to biotic interactions and environmental factors. Therefore, predicting the presence-absence of species is a major challenge in ecology. In this paper, we used mathematical modelling to study the combined effects of biotic interactions (i.e. asymmetric competition) and environmental factors on the presence-absence of the species across a geographical region. To gain better insight on this problem, we performed invasion and numerical simulation analyses of the model of multispecies competitive dynamics. Different threshold values of competition coefficients were observed, which result in different phenomena; such as coexistence of species and priority effects. Consequently, we propose that asymmetric biotic interactions, combined with environmental factors can allow coexistence of relatively weak and strong species at the same location x.
    Matched MeSH terms: Ecology
  14. Adole, Adole Michael, Jamaludin Mohamad Yatim, Suhaimi Abubakar Ramli, Athirah Othman, Norazura Azzmi Mizal
    MyJurnal
    (Kenaf fibre is a good reinforcement in fibre polymer composites due to its high strength
    and elastic modulus, high stiffness, low density, low cost and eco-efficient, less health
    hazards, renewability, good mechanical and thermal properties, and biodegradability. It is
    traditionally used for rope, twine, fish net and sacking materials. Recently, it was observed
    that kenaf fibre had huge potentials to replacing synthetic fibre in composites due to the
    rising environmental and ecological issues, thus this awareness has motivated efforts for
    the advancement of new innovative bio-based composites incorporating kenaf fibre for
    various end-use structural applications. This paper presents an overview of the development
    made so far in the area of kenaf fibre and its composites in terms of chemical and microstructural
    properties, mechanical properties, dimensional stability, thermal stability, product
    development and application. Some fundamental issues and suggestions for further research
    in this area are also discussed.
    Matched MeSH terms: Ecology
  15. Chelliah A, Amar HB, Hyde J, Yewdall K, Steinberg PD, Guest JR
    PeerJ, 2015;3:e777.
    PMID: 25737817 DOI: 10.7717/peerj.777
    Knowledge about the timing and synchrony of coral spawning has important implications for both the ecology and management of coral reef ecosystems. Data on the timing of spawning and extent of synchrony, however, are still lacking for many coral reefs, particularly from equatorial regions and from locations within the coral triangle. Here we present the first documentation of a multi-species coral spawning event from reefs around Pulau Tioman, Peninsular Malaysia, a popular diving and tourist destination located on the edge of the coral triangle. At least 8 coral species from 3 genera (Acropora, Montipora and Porites) participated in multi-species spawning over five nights in April 2014, between two nights before and two nights after the full moon. In addition, two Acropora species were witnessed spawning one night prior to the full moon in October 2014. While two of the Acropora species that reproduced in April (A. millepora and A. nasuta) exhibited highly synchronous spawning (100% of sampled colonies), two other common species (A. hyacinthus and A. digitifera) did not contain visible eggs in the majority of colonies sampled (i.e., <15% of colonies) in either April or October, suggesting that these species spawn at other times of the year. To the best of our knowledge, this is the first detailed documented observation of multi-species coral spawning from reefs in Malaysia. These data provide further support for the contention that this phenomenon is a feature of all speciose coral assemblages, including equatorial reefs. More research is needed, however, to determine the seasonal cycles and extent of spawning synchrony on these reefs and elsewhere in Malaysia.
    Matched MeSH terms: Ecology
  16. Moyle RG, Manthey JD, Hosner PA, Rahman M, Lakim M, Sheldon FH
    PeerJ, 2017;5:e3335.
    PMID: 28533979 DOI: 10.7717/peerj.3335
    Topographically complex regions often contain the close juxtaposition of closely related species along elevational gradients. The evolutionary causes of these elevational replacements, and thus the origin and maintenance of a large portion of species diversity along elevational gradients, are usually unclear because ecological differentiation along a gradient or secondary contact following allopatric diversification can produce the same pattern. We used reduced representation genomic sequencing to assess genetic relationships and gene flow between three parapatric pairs of closely related songbird taxa (Arachnothera spiderhunters, Chloropsis leafbirds, and Enicurus forktails) along an elevational gradient in Borneo. Each taxon pair presents a different elevational range distribution across the island, yet results were uniform: little or no gene flow was detected in any pairwise comparisons. These results are congruent with an allopatric "species-pump" model for generation of species diversity and elevational parapatry of congeners on Borneo, rather than in situ generation of species by "ecological speciation" along an elevational gradient.
    Matched MeSH terms: Ecology
  17. Mohamad-Matrol AA, Chang SW, Abu A
    PeerJ, 2018;6:e5579.
    PMID: 30186704 DOI: 10.7717/peerj.5579
    Background: The amount of plant data such as taxonomical classification, morphological characteristics, ecological attributes and geological distribution in textual and image forms has increased rapidly due to emerging research and technologies. Therefore, it is crucial for experts as well as the public to discern meaningful relationships from this vast amount of data using appropriate methods. The data are often presented in lengthy texts and tables, which make gaining new insights difficult. The study proposes a visual-based representation to display data to users in a meaningful way. This method emphasises the relationships between different data sets.

    Method: This study involves four main steps which translate text-based results from Extensible Markup Language (XML) serialisation format into graphs. The four steps include: (1) conversion of ontological dataset as graph model data; (2) query from graph model data; (3) transformation of text-based results in XML serialisation format into a graphical form; and (4) display of results to the user via a graphical user interface (GUI). Ontological data for plants and samples of trees and shrubs were used as the dataset to demonstrate how plant-based data could be integrated into the proposed data visualisation.

    Results: A visualisation system named plant visualisation system was developed. This system provides a GUI that enables users to perform the query process, as well as a graphical viewer to display the results of the query in the form of a network graph. The efficiency of the developed visualisation system was measured by performing two types of user evaluations: a usability heuristics evaluation, and a query and visualisation evaluation.

    Discussion: The relationships between the data were visualised, enabling the users to easily infer the knowledge and correlations between data. The results from the user evaluation show that the proposed visualisation system is suitable for both expert and novice users, with or without computer skills. This technique demonstrates the practicability of using a computer assisted-tool by providing cognitive analysis for understanding relationships between data. Therefore, the results benefit not only botanists, but also novice users, especially those that are interested to know more about plants.

    Matched MeSH terms: Ecology
  18. Lim KC, Then AY, Loh KH
    PeerJ, 2023;11:e15849.
    PMID: 37637173 DOI: 10.7717/peerj.15849
    Small coastal demersal sharks form a major proportion of the sharks landed in Malaysia. However, little is known about their feeding ecology and reproduction. This study sought to elucidate the dietary patterns, role of ontogeny in prey consumption, and reproductive biology of four dominant small demersal shark species in Malaysian waters: the Hasselt's bamboo shark, Chiloscyllium hasseltii; brownbanded bamboo shark, C. punctatum; spadenose shark, Scoliodon laticaudus; and Pacific spadenose shark, S. macrorhynchos. Dietary analyses revealed a high overlap in prey taxa consumed; clear resource partitioning among co-occurring species based on the percentage Prey-specific Index of Relative Importance (%PSIRI), with higher fish %PSIRI for Chiloscyllium hasseltii, higher cephalopod %PSIRI for C. punctatum, and higher crustacean %PSIRI for both Scoliodon species; and an ontogenetic diet shift, seen through changes in prey size. Based on the examination of reproductive organs, the results showed larger sizes at maturity for males compared to females for all four species; no obvious reproductive cycles, based on hepatosomatic and gonadosomatic indices for all species; female bias in the sex ratio of the embryos of Scoliodon species; and increased reproductive output (number of eggs or embryos and size of eggs) with larger female size for C. hasseltii and Scoliodon species. The partitioning of food resources minimizes direct competition for food and supports coexistence within shared coastal habitats. The reproductive strategies of these small coastal sharks appear to be favorable for supporting short-term population productivity; although a reduction in fishing pressure, especially from bottom trawlers, is essential for the long-term sustainable use of these sharks.
    Matched MeSH terms: Ecology*
  19. Bradley DJ
    Parassitologia, 1994 Aug;36(1-2):137-47.
    PMID: 7898951
    Following the discovery of mosquito transmission of malaria, the theory and practice of malaria control by general and selective removal of specific vector populations resulted particularly from Malcolm Watson's empirical work in peninsular Malaysia, first in the urban and peri-urban areas of Klang and Port Swettenham and subsequently in the rural rubber plantations, and from the work of N.H. Swellengrebel in nearby Indonesia on the taxonomy, ecology and control of anophelines. They developed the concept of species sanitation: the selective modification of the environment to render a particular anopheline of no importance as a vector in a particular situation. The lack of progress along these lines in India at that time is contrasted with that in south-east Asia. The extension of species sanitation and related concepts to other geographical areas and to other vector-borne disease situations is outlined.
    Matched MeSH terms: Ecology
  20. Kidson C, Indaratna K
    Parassitologia, 1998 Jun;40(1-2):39-46.
    PMID: 9653730
    The documented history of malaria in parts of Asia goes back more than 2,000 years, during which the disease has been a major player on the socioeconomic stage in many nation states as they waxed and waned in power and prosperity. On a much shorter time scale, the last half century has seen in microcosm a history of large fluctuations in endemicity and impact of malaria across the spectrum of rice fields and rain forests, mountains and plains that reflect the vast ecological diversity inhabited by this majority aggregation of mankind. That period has seen some of the most dramatic changes in social and economic structure, in population size, density and mobility, and in political structure in history: all have played a part in the changing face of malaria in this extensive region of the world. While the majority of global malaria cases currently reside in Africa, greater numbers inhabited Asia earlier this century before malaria programs savored significant success, and now Asia harbors a global threat in the form of the epicenter of multidrug resistant Plasmodium falciparum which is gradually encompassing the tropical world. The latter reflects directly the vicissitudes of economic change over recent decades, particularly the mobility of populations in search of commerce, trade and personal fortunes, or caught in the misfortunes of physical conflicts. The period from the 1950s to the 1990s has witnessed near "eradication" followed by resurgence of malaria in Sri Lanka, control and resurgence in India, the influence of war and postwar instability on drug resistance in Cambodia, increase in severe and cerebral malaria in Myanmar during prolonged political turmoil, the essential disappearance of the disease from all but forested border areas of Thailand where it remains for the moment intractable, the basic elimination of vivax malaria from many provinces of central China. Both positive and negative experiences have lessons to teach in the debate between eradication and control as alternative strategies. China has for years held high the goal of "basic elimination", eradication by another name, in sensible semi-defiance of WHO dictates. The Chinese experience makes it clear that, given community organization, exhaustive attention to case detection, management and focus elimination, plus the political will at all levels of society, it is possible both to eliminate malaria from large areas of an expansive nation and to implement surveillance necessary to maintain something approaching eradication status in those areas. But China has not succeeded in the international border regions of the tropical south where unfettered population movement confounds the program. Thailand, Malaysia and to an extent Vietnam have also reached essential elimination in their rice field plains by vigorous vertical programs but fall short at their forested borders. Economics is central to the history of the rise and fall of nations, and to the history of disease in the people who constitute nations. The current love affair with free market economics as the main driving force for advance of national wealth puts severe limitations on the essential involvement of communities in malaria management. The task of malaria control or elimination needs to be clearly related to the basic macroeconomic process that preoccupies governments, not cloistered away in the health sector Historically malaria has had a severe, measurable, negative impact on the productivity of nations. Economic models need rehoning with political aplomb and integrating with technical and demographic strategies. Recent decades in Chinese malaria history carry some lessons that may be relevant in this context.
    Matched MeSH terms: Ecology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links