Displaying publications 81 - 100 of 460 in total

Abstract:
Sort:
  1. Shukor H, Abdeshahian P, Al-Shorgani NK, Hamid AA, Rahman NA, Kalil MS
    Bioresour Technol, 2016 Feb;202:206-13.
    PMID: 26710346 DOI: 10.1016/j.biortech.2015.11.078
    In this work, hydrolysis of cellulose and hemicellulose content of palm kernel cake (PKC) by different types of hydrolytic enzymes was studied to evaluate monomeric sugars released for production of biobutanol by Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) in acetone-butanol-ethanol (ABE) fermentation. Experimental results revealed that when PKC was hydrolyzed by mixed β-glucosidase, cellulase and mannanase, a total simple sugars of 87.81±4.78 g/L were produced, which resulted in 3.75±0.18 g/L butanol and 6.44±0.43 g/L ABE at 168 h fermentation. In order to increase saccharolytic efficiency of enzymatic treatment, PKC was pretreated by liquid hot water before performing enzymatic hydrolysis. Test results showed that total reducing sugars were enhanced to 97.81±1.29 g/L with elevated production of butanol and ABE up to 4.15±1.18 and 7.12±2.06 g/L, respectively which represented an A:B:E ratio of 7:11:1.
    Matched MeSH terms: Fermentation
  2. Samsudin MD, Mat Don M
    Bioresour Technol, 2015 Jan;175:417-23.
    PMID: 25459850 DOI: 10.1016/j.biortech.2014.10.116
    Oil palm trunk (OPT) sap was utilized for growth and bioethanol production by Saccharomycescerevisiae with addition of palm oil mill effluent (POME) as nutrients supplier. Maximum yield (YP/S) was attained at 0.464g bioethanol/g glucose presence in the OPT sap-POME-based media. However, OPT sap and POME are heterogeneous in properties and fermentation performance might change if it is repeated. Contribution of parametric uncertainty analysis on bioethanol fermentation performance was then assessed using Monte Carlo simulation (stochastic variable) to determine probability distributions due to fluctuation and variation of kinetic model parameters. Results showed that based on 100,000 samples tested, the yield (YP/S) ranged 0.423-0.501g/g. Sensitivity analysis was also done to evaluate the impact of each kinetic parameter on the fermentation performance. It is found that bioethanol fermentation highly depend on growth of the tested yeast.
    Matched MeSH terms: Fermentation
  3. Yasin M, Jeong Y, Park S, Jeong J, Lee EY, Lovitt RW, et al.
    Bioresour Technol, 2015 Feb;177:361-74.
    PMID: 25443672 DOI: 10.1016/j.biortech.2014.11.022
    Microbial conversion of syngas to energy-dense biofuels and valuable chemicals is a potential technology for the efficient utilization of fossils (e.g., coal) and renewable resources (e.g., lignocellulosic biomass) in an environmentally friendly manner. However, gas-liquid mass transfer and kinetic limitations are still major constraints that limit the widespread adoption and successful commercialization of the technology. This review paper provides rationales for syngas bioconversion and summarizes the reaction limited conditions along with the possible strategies to overcome these challenges. Mass transfer and economic performances of various reactor configurations are compared, and an ideal case for optimum bioreactor operation is presented. Overall, the challenges with the bioprocessing steps are highlighted, and potential solutions are suggested. Future research directions are provided and a conceptual design for a membrane-based syngas biorefinery is proposed.
    Matched MeSH terms: Fermentation
  4. Shukor H, Al-Shorgani NK, Abdeshahian P, Hamid AA, Anuar N, Rahman NA, et al.
    Bioresour Technol, 2014 Oct;170:565-73.
    PMID: 25171212 DOI: 10.1016/j.biortech.2014.07.055
    Palm kernel cake (PKC) was used for biobutanol production by Clostridium saccharoperbutylacetonicum N1-4 in acetone-butanol-ethanol (ABE) fermentation. PKC was subjected to acid hydrolysis pretreatment and hydrolysates released were detoxified by XAD-4 resin. The effect of pH, temperature and inoculum size on butanol production was evaluated using an empirical model. Twenty ABE fermentations were run according to an experimental design. Experimental results revealed that XAD-4 resin removed 50% furfural and 77.42% hydroxymethyl furfural. The analysis of the empirical model showed that linear effect of inoculums size with quadratic effect of pH and inoculum size influenced butanol production at 99% probability level (P<0.01). The optimum conditions for butanol production were pH 6.28, temperature of 28°C and inoculum size of 15.9%. ABE fermentation was carried out under optimum conditions which 0.1g/L butanol was obtained. Butanol production was enhanced by diluting PKC hydrolysate up to 70% in which 3.59g/L butanol was produced.
    Matched MeSH terms: Fermentation
  5. Vincent M, Pometto AL, van Leeuwen JH
    Bioresour Technol, 2014 Apr;158:1-6.
    PMID: 24561994 DOI: 10.1016/j.biortech.2014.01.083
    Ethanol was produced via the simultaneous saccharification and fermentation (SSF) of dilute sodium hydroxide treated corn stover. Saccharification was achieved by cultivating either Phanerochaete chrysosporium or Gloeophyllum trabeum on the treated stover, and fermentation was then performed by using either Saccharomyces cerevisiae or Escherichia coli K011. Ethanol production was highest on day 3 for the combination of G. trabeum and E. coli K011 at 6.68 g/100g stover, followed by the combination of P. chrysosporium and E. coli K011 at 5.00 g/100g stover. SSF with S. cerevisiae had lower ethanol yields, ranging between 2.88 g/100g stover at day 3 (P. chrysosporium treated stover) and 3.09 g/100g stover at day 4 (G. trabeum treated stover). The results indicated that mild alkaline pretreatment coupled with fungal saccharification offers a promising bioprocess for ethanol production from corn stover without the addition of commercial enzymes.
    Matched MeSH terms: Fermentation*
  6. Zahari MA, Zakaria MR, Ariffin H, Mokhtar MN, Salihon J, Shirai Y, et al.
    Bioresour Technol, 2012 Apr;110:566-71.
    PMID: 22342083 DOI: 10.1016/j.biortech.2012.01.119
    In this paper, we report that pressed juice from oil palm frond (OPF) contained renewable sugars such as glucose, sucrose and fructose. By using a simple sugarcane press, 50% (wt/wt) of OPF juice was obtained from fresh OPF. The glucose content in the juice was 53.95±2.86g/l, which accounts for 70% of the total free sugars. We have examined the effect of various OPF juice concentrations on the production of poly(3-hydroxybutyrate), P(3HB) by Cupriavidus necator CCUG 52238(T). The cell dry mass in shake flask experiment reached 8.42g/l, with 32wt.% of P(3HB) at 30% (v/v) of OPF juice, comparable with using technical grade sugars. The biopolymer had a molecular mass, M(w) of 812kDa, with a low polydispersity index of 1.61. This result indicates that OPF juice can be used as an alternative renewable carbon source for P(3HB) production and has potential as a renewable carbon source.
    Matched MeSH terms: Fermentation*
  7. Show PL, Tan CP, Shamsul Anuar M, Ariff A, Yusof YA, Chen SK, et al.
    Bioresour Technol, 2012 Jul;116:226-33.
    PMID: 22061444 DOI: 10.1016/j.biortech.2011.09.131
    An extractive fermentation technique was developed using a thermoseparating reagent to form a two-phase system for simultaneous cell cultivation and downstream processing of extracellular Burkholderia cepacia lipase. A 10% (w/w) solution of ethylene oxide-propylene oxide (EOPO) with a molecular mass of 3900 g/mol and pH 8.5, a 200 rpm speed, and 30 °C were selected as the optimal conditions for lipase production (55 U/ml). Repetitive batch fermentation was performed by continuous replacement of the top phase every 24h, which resulted in an average cell growth mass of 4.7 g/L for 10 extractive batches over 240 h. In scaling-up the process, a bench-scale bioreactor was tested under the conditions that had been optimized in flasks. The production rate and recovery yield were higher in the bioreactor compared to fermentation performed in flasks.
    Matched MeSH terms: Fermentation/drug effects*
  8. Arifin AA, Don MM, Uzir MH
    Bioresour Technol, 2011 Oct;102(19):9318-20.
    PMID: 21835610 DOI: 10.1016/j.biortech.2011.07.053
    The present work aims to address the gas-phase biotransformation of geraniol into citronellol using growing cells of Saccharomyces cerevisiae (baker's yeast) in a continuous-closed-gas-loop bioreactor (CCGLB). This study revealed that the gaseous geraniol had a severe effect on the production of biomass during the growing cell biotransformation resulting in the decrease in the specific growth rate from 0.07 to 0.05 h⁻¹. The rate of reaction of the growing cell biotransformation was strongly affected by agitation and substrate flow rates. The highest citronellol concentration of 1.18 g/L and initial rate of reaction of 7.06 × 10⁻⁴ g/min g(cell) were obtained at 500 rpm and 8 L/min, respectively.
    Matched MeSH terms: Fermentation
  9. Chin KL, H'ng PS, Wong LJ, Tey BT, Paridah MT
    Bioresour Technol, 2010 May;101(9):3287-91.
    PMID: 20056407 DOI: 10.1016/j.biortech.2009.12.036
    Ethanolic fermentation using Saccharomyces cerevisiae was carried out on three types of hydrolysates produced from lignocelulosic biomass which are commonly found in Malaysia such as oil palm trunk, rubberwood and mixed hardwood. The effect of fermentation temperature and pH of hydrolysate was evaluated to optimize the fermentation efficiency which defined as maximum ethanol yield in minimum fermentation time. The fermentation process using different temperature of 25 degrees Celsius, 30 degrees Celsius and 40 degrees Celsius were performed on the prepared fermentation medium adjusted to pH 4, pH 6 and pH 7, respectively. Results showed that the fermentation time was significantly reduced with the increase of temperature but an adverse reduction in ethanol yield was observed using temperature of 40 degrees Celsius. As the pH of hydrolysate became more acidic, the ethanol yield increased. Optimum fermentation efficiency for ethanolic fermentation of lignocellulosic hydrolysates using S. cerevisiae can be obtained using 33.2 degrees Celsius and pH 5.3.
    Matched MeSH terms: Fermentation*
  10. Alam MZ, Muyibi SA, Wahid R
    Bioresour Technol, 2008 Jul;99(11):4709-16.
    PMID: 17981027
    A two-level fractional factorial design (FFD) was used to determine the effects of six factors, i.e. substrate (domestic wastewater sludge - DWS) and co-substrate concentration (wheat flour - WF), temperature, initial pH, inoculum size and agitation rate on the production of cellulase enzyme by Trichoderma harzianum in liquid state bioconversion. On statistical analysis of the results from the experimental studies, optimum process conditions were found to be temperature 32.5 degrees C, substrate concentration (DWS) 0.75% (w/w), co-substrate (WF) concentration 2% (w/w), initial pH 5, inoculum size 2% (v/w) and agitation 175 rpm. Analysis of variance (ANOVA) showed a high coefficient of determination (R2) of 0.975. Cellulase activity reached 10.2 FPU/ml at day 3 during the fermentation process which indicated about 1.5-fold increase in production compared to the cellulase activity obtained from the results of design of experiment (6.9 FPU/ml). Biodegradation of DWS was also evaluated to verify the efficiency of the bioconversion process as a waste management method.
    Matched MeSH terms: Fermentation
  11. Sim JH, Kamaruddin AH
    Bioresour Technol, 2008 May;99(8):2724-35.
    PMID: 17697778
    Efforts in optimizing reducing agents, cysteine-HCl.H2O and sodium sulfide in order to attain satisfactory responses during acetic acid fermentation have been carried out in this study. Cysteine-HCl.H2O each with five concentrations (0.00-0.50 g/L) was optimized one at a time and followed by sodium sulfide component (0.00-0.50 g/L). Response surface methodology (RSM) was used to determine the optimum concentrations of cysteine-HCl.H2O and sodium sulfide. The statistical analysis showed that the amount of cells produced and efficiency in CO conversion were not affected by sodium sulfide concentration. However, sodium sulfide is required as it does influence the acetic acid production. The optimum reducing agents for acetic acid fermentation was at 0.30 g/L cysteine-HCl.H2O and sodium sulfide respectively and when operated for 60 h cultivation time resulted in 1.28 g/L acetic acid production and 100% CO conversion.
    Matched MeSH terms: Fermentation
  12. Vikineswary S, Abdullah N, Renuvathani M, Sekaran M, Pandey A, Jones EB
    Bioresour Technol, 2006 Jan;97(1):171-7.
    PMID: 15967661
    A comparative study on solid substrate fermentation (SSF) of sago 'hampas', oil palm frond parenchyma tissue (OPFPt) and rubberwood sawdust with Pycnoporus sanguineus for laccase production was carried out. Optimal mycelial growth of Pyc. sanguineus was observed on all the substrates studied over a 21 days time-course fermentation. Laccase productivity was highest during degradation of sago 'hampas' and OPFPt and a range from 7.5 to 7.6 U/g substrate on the 11th day of fermentation compared to degradation of rubberwood sawdust with a maximum laccase productivity of 5.7 U/g substrate on day 11 of SSF. Further optimization of laccase production was done by varying the inoculum age, density and nitrogen supplementation. SSF of OPFPt by Pyc. sanguineus gave maximum productivity of laccase of 46.5 U/g substrate on day 6 of fermentation with a 30% (w/w) of 4 weeks old inoculum and 0.92% nitrogen in the form of urea supplemented in the substrate. The extraction of laccase was also optimized in this study. Recovery of laccase was fourfold higher at 30.6 U/g substrate on day 10 of SSF using unadjusted tap water at pH 8.0 as extraction medium at 25+/-2 degrees C compared to laccase recovery of 7.46 U/g substrate using sodium acetate buffer at pH 4.8 at 4 degrees C. Further optimization showed that laccase recovery was increased by 50% with a value of 46.5 U/g substrate on day 10 of SSF when the extraction medium was tap water adjusted to pH 5.0 at 25+/-2 degrees C.
    Matched MeSH terms: Fermentation
  13. Tan L, Wang M, Li X, Li H, Zhao J, Qu Y, et al.
    Bioresour Technol, 2016 Jan;200:572-8.
    PMID: 26539970 DOI: 10.1016/j.biortech.2015.10.079
    In this work, fractionation of empty fruit bunch (EFB) by bisulfite pretreatment was studied for the production of bioethanol and high value products to achieve biorefinery of EFB. EFB was fractionated to solid and liquor components by bisulfite process. The solid components were used for bioethanol production by quasi-simultaneous saccharification and fermentation. The liquor components were then converted to furfural by hydrolysis with sulfuric acid. Preliminary results showed that the concentration of furfural was highest at 18.8g/L with 0.75% sulfuric acid and reaction time of 25min. The conversion of xylose to furfural was 82.5%. Furthermore, we attempted to fractionate the liquor into hemicellulose sugars and lignin by different methods for producing potential chemicals, such as xylose, xylooligosaccharide, and lignosulfonate. Our research showed that the combination of bisulfite pretreatment and resin separation could effectively fractionate EFB components to produce bioethanol and other high value chemicals.
    Matched MeSH terms: Fermentation
  14. Abdul PM, Jahim JM, Harun S, Markom M, Lutpi NA, Hassan O, et al.
    Bioresour Technol, 2016 Jul;211:200-8.
    PMID: 27017130 DOI: 10.1016/j.biortech.2016.02.135
    Oil palm empty fruit bunch (OPEFB) fibre is widely available in Southeast Asian countries and found to have 60% (w/w) sugar components. OPEFB was pretreated using the ammonia fibre expansion (AFEX) method and characterised physically by the Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The results show that there were significant structural changes in OPEFB after the pretreatment step, and the sugar yield after enzymatic hydrolysis using a cocktail of Cellic Ctec2® and Cellic Htec2® increased from 0.15gg(-1) of OPEFB in the raw untreated OPEFB sample to 0.53gg(-1) of OPEFB in AFEX-pretreated OPEFB (i.e. almost a fourfold increase in sugar conversion), which enhances the economic value of OPEFB. A biohydrogen fermentability test of this hydrolysate was carried out using a locally isolated bacterium, Enterobacter sp. KBH6958. The biohydrogen yield after 72h of fermentation was 1.68mol H2 per mol sugar. Butyrate, ethanol, and acetate were the major metabolites.
    Matched MeSH terms: Fermentation
  15. Tan IS, Lee KT
    Bioresour Technol, 2016 Jan;199:336-346.
    PMID: 26283313 DOI: 10.1016/j.biortech.2015.08.008
    The aim of this work was to evaluate the efficacy of red macroalgae Eucheuma cottonii (EC) as feedstock for third-generation bioethanol production. Dowex (TM) Dr-G8 was explored as a potential solid catalyst to hydrolyzed carbohydrates from EC or macroalgae extract (ME) and pretreatment of macroalgae cellulosic residue (MCR), to fermentable sugars prior to fermentation process. The highest total sugars were produced at 98.7 g/L when 16% of the ME was treated under the optimum conditions of solid acid hydrolysis (8% (w/v) Dowex (TM) Dr-G8, 120°C, 1h) and 2% pretreated MCR (P-MCR) treated by enzymatic hydrolysis (pH 4.8, 50°C, 30 h). A two-stream process resulted in 11.6g/L of bioethanol from the fermentation of ME hydrolysates and 11.7 g/L from prehydrolysis and simultaneous saccharification and fermentation of P-MCR. The fixed price of bioethanol obtained from the EC is competitive with that obtained from other feedstocks.
    Matched MeSH terms: Fermentation
  16. Najafpour G, Younesi H, Syahidah Ku Ismail K
    Bioresour Technol, 2004 May;92(3):251-60.
    PMID: 14766158
    Fermentation of sugar by Saccharomyces cerevisiae, for production of ethanol in an immobilized cell reactor (ICR) was successfully carried out to improve the performance of the fermentation process. The fermentation set-up was comprised of a column packed with beads of immobilized cells. The immobilization of S. cerevisiae was simply performed by the enriched cells cultured media harvested at exponential growth phase. The fixed cell loaded ICR was carried out at initial stage of operation and the cell was entrapped by calcium alginate. The production of ethanol was steady after 24 h of operation. The concentration of ethanol was affected by the media flow rates and residence time distribution from 2 to 7 h. In addition, batch fermentation was carried out with 50 g/l glucose concentration. Subsequently, the ethanol productions and the reactor productivities of batch fermentation and immobilized cells were compared. In batch fermentation, sugar consumption and ethanol production obtained were 99.6% and 12.5% v/v after 27 h while in the ICR, 88.2% and 16.7% v/v were obtained with 6 h retention time. Nearly 5% ethanol production was achieved with high glucose concentration (150 g/l) at 6 h retention time. A yield of 38% was obtained with 150 g/l glucose. The yield was improved approximately 27% on ICR and a 24 h fermentation time was reduced to 7 h. The cell growth rate was based on the Monod rate equation. The kinetic constants (K(s) and mu(m)) of batch fermentation were 2.3 g/l and 0.35 g/lh, respectively. The maximum yield of biomass on substrate (Y(X-S)) and the maximum yield of product on substrate (Y(P-S)) in batch fermentations were 50.8% and 31.2% respectively. Productivity of the ICR were 1.3, 2.3, and 2.8 g/lh for 25, 35, 50 g/l of glucose concentration, respectively. The productivity of ethanol in batch fermentation with 50 g/l glucose was calculated as 0.29 g/lh. Maximum production of ethanol in ICR when compared to batch reactor has shown to increase approximately 10-fold. The performance of the two reactors was compared and a respective rate model was proposed. The present research has shown that high sugar concentration (150 g/l) in the ICR column was successfully converted to ethanol. The achieved results in ICR with high substrate concentration are promising for scale up operation. The proposed model can be used to design a lager scale ICR column for production of high ethanol concentration.
    Matched MeSH terms: Fermentation
  17. Rambabu K, Bharath G, Thanigaivelan A, Das DB, Show PL, Banat F
    Bioresour Technol, 2021 Jan;319:124243.
    PMID: 33254466 DOI: 10.1016/j.biortech.2020.124243
    This study highlights biohydrogen production enrichment through NiO and CoO nanoparticles (NPs) inclusion to dark fermentation of rice mill wastewater using Clostridium beijerinckii DSM 791. NiO (~26 nm) and CoO (~50 nm) NPs were intrinsically prepared via facile hydrothermal method with polyhedral morphology and high purity. Dosage dependency studies revealed the maximum biohydrogen production characteristics for 1.5 mg/L concentration of both NPs. Biohydrogen yield was improved by 2.09 and 1.9 folds higher for optimum dosage of NiO and CoO respectively, compared to control run without NPs. Co-metabolites analysis confirmed the biohydrogen production through acetate and butyrate pathways. Maximum COD reduction efficiencies of 77.6% and 69.5% were observed for NiO and CoO inclusions respectively, which were higher than control run (57.5%). Gompertz kinetic model fitted well with experimental data of NPs assisted fermentation. Thus, NiO and CoO inclusions to wastewater fermentation seems to be a promising technique for augmented biohydrogen production.
    Matched MeSH terms: Fermentation
  18. Bukhari NA, Loh SK, Nasrin AB, Luthfi AAI, Harun S, Abdul PM, et al.
    Bioresour Technol, 2019 Dec;293:122085.
    PMID: 31499328 DOI: 10.1016/j.biortech.2019.122085
    In this study, the potential of oil palm trunk (OPT) sap as a sole substrate for succinic acid (SA) production was evaluated using Actinobacillus succinogenes 130Z. After OPT sap was characterised, the effects of adding carbonate, yeast extract (YE) and minerals to this medium were investigated in an attempt to develop a low-cost fermentation medium. The OPT sap alone, gave comparable SA yield and productivity (0.54 g/g and 0.35 g/L/h) to those supplemented with YE (0.50 g/g and 0.36 g/L/h) and minerals (0.55 g/g and 0.40 g/L/h). The findings showed that OPT sap has sufficient amount of nutrients for SA biosynthesis by A. succinogenes 130Z and could potentially reduce cost without requiring expensive nutrients supplementation.
    Matched MeSH terms: Fermentation
  19. Chai CY, Tan IS, Foo HCY, Lam MK, Tong KTX, Lee KT
    Bioresour Technol, 2021 Jun;330:124930.
    PMID: 33735730 DOI: 10.1016/j.biortech.2021.124930
    Managing plastic waste remains an urgent environmental concern and switching to biodegradable plastics can reduce the dependence on depleting fossil fuels. This study emphasises the efficacy of macroalgae wastes, Eucheuma denticulatum residues (EDRs), as potential alternate feedstock to produce l-lactic acid (l-LA), the monomer of polylactic acid, through fermentation. An innovative environmental friendly strategy was explored in this study to develop a glucose platform from EDRs: pretreatment with microwave-assisted autohydrolysis (MAA) applied to enhance enzymatic hydrolysis of EDRs. The results indicate that MAA pretreatment significantly increased the digestibility of EDRs during the enzymatic hydrolysis process. The optimum pretreatment conditions were 120 °C and 50 min, resulting in 96.5% of enzymatic digestibility after 48 h. The high l-LA yield of 98.6% was obtained using pretreated EDRs and supplemented with yeast extract. The energy analysis implies that MAA pretreatment could further improve the overall energy efficiency of the process.
    Matched MeSH terms: Fermentation
  20. Shukor H, Abdeshahian P, Al-Shorgani NK, Hamid AA, Rahman NA, Kalil MS
    Bioresour Technol, 2016 Oct;218:257-64.
    PMID: 27372004 DOI: 10.1016/j.biortech.2016.06.084
    Catalytic depolymerization of mannan composition of palm kernel cake (PKC) by mannanase was optimized to enhance the release of mannan-derived monomeric sugars for further application in acetone-butanol-ethanol (ABE) fermentation. Efficiency of enzymatic hydrolysis of PKC was studied by evaluating effects of PKC concentration, mannanase loading, hydrolysis pH value, reaction temperature and hydrolysis time on production of fermentable sugars using one-way analysis of variance (ANOVA). The ANOVA results revealed that all factors studied had highly significant effects on total sugar liberated (P<0.01). The optimum conditions for PKC hydrolysis were 20% (w/v) PKC concentration, 5% (w/w) mannanase loading, hydrolysis pH 4.5, 45°C temperature and 72h hydrolysis time. Enzymatic experiments in optimum conditions revealed total fermentable sugars of 71.54±2.54g/L were produced including 67.47±2.51g/L mannose and 2.94±0.03g/L glucose. ABE fermentation of sugar hydrolysate by Clostridium saccharoperbutylacetonicum N1-4 resulted in 3.27±1.003g/L biobutanol.
    Matched MeSH terms: Fermentation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links